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Abstract All known approaches to nonlinear principal
components are based on minimizing a quadratic loss, which
makes them sensitive to data contamination. A predictive
approach in which a spline curve is fit minimizing a residual
M-scale is proposed for this problem. For a p-dimensional
random sample xi (i = 1, . . . , n) the method finds a function
h : R → Rp and a set {t1, . . . , tn} ⊂ R that minimize a joint
M-scale of the residuals xi − h(ti), where h ranges on the
family of splines with a given number of knots. The com-
putation of the curve then becomes the iterative computing
of regression S-estimators. The starting values are obtained
from a robust linear principal components estimator. A sim-
ulation study and the analysis of a real data set indicate that
the proposed approach is almost as good as other proposals
for row-wise contamination, and is better for element-wise
contamination.

Keywords S-estimators · Splines · Principal curves

This research was partially supported by grants X–018 from
University of Buenos Aires, PID 5505 from CONICET and PICTs
21407 and 00899 from ANPCyT.

R.A. Maronna (B)
Faculty of Exact Sciences, University of La Plata, C.C. 172, 1900
La Plata, Argentina
e-mail: rmaronna@retina.ar

F. Méndez
Faculty of Economic Science and Statistics, University of
Rosario, Bv. Oroño 1261, 2000 Rosario, Argentina

V.J. Yohai
Departamento de Matemática, Faculty of Natural and Exact
Sciences, Universidad de Buenos Aires, Ciudad Universitaria,
Pabellon 1, 1428 Buenos Aires, Argentina

1 Introduction

Principal components (henceforth PCs) are a well-establish-
ed tool for data representation and compression. Let x be a
random vector in Rp . The first PC can be defined by two
linear functions g : Rp → R and h : R → Rp such that
E‖x − h(g(x))‖2 = min. It is well-known that the coeffi-
cients of g are those of the eigenvector corresponding to the
largest eigenvalue of the covariance matrix of x.

There have been several approaches to enlarge the fam-
ily of functions considered. An early (and little known) pro-
posal was made by Yohai et al. (1985). It was based on a
predictive point of view, and it considers parametric fam-
ilies for g and h. Later, Hastie and Stuetzle (1989) pro-
posed principal curves, which became a popular tool. The
subject of principal curves was later discussed by Tibshi-
rani (1992) and Delicado (2001). A clever approach to prin-
cipal curves, based on ideas similar to k-means clustering,
was proposed by Verbeek et al. (2002). Gerber and Whitaker
(2013) present an approach based on a new objective func-
tion. Several authors propose predictive approaches based
on nonparametric or semiparametric fitting; see e.g. Bolton
et al. (2003) and the references therein.

All the aforementioned approaches are based on sec-
ond moments, and are therefore sensitive to atypical obser-
vations. The R function principal.curve that imple-
ments Hastie and Stuetzle’s (1989) proposal, includes a ro-
bust option, in which a standard smoother is replaced by a
robust one. The robust option of principal.curve has
two drawbacks. The first one is that the starting values are
given by classical linear PCs, and are therefore not robust.

In order to explain the second drawback, consider a data
set X ∈ Rn×p with n cases in p dimensions. We may con-
sider two forms of outlier contamination. One is “row-wise”,
in which a proportion ε of the n rows is contaminated; the
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other is “element-wise”, in which a proportion ε of the np

elements of X is contaminated. The second type of contam-
ination presents serious problems in high-dimensional data,
and has been considered by Maronna and Yohai (2008) and
Alqallaf et al. (2009). The linear PC estimator proposed by
Croux et al. (2003) may also be used for this type of con-
tamination. The second drawback is that, even if the starting
classical PCs are replaced by robust ones, the smoothing can
be sensitive to element-wise contamination.

In this article we propose an approach basically similar
to that of Yohai et al. (1985) with two changes. Firstly, the
family of functions is enlarged to a broader family of smooth
functions. Secondly, the quadratic criterion is replaced by
another one based on robust scales, in a way that the result-
ing estimator is less sensitive to both row-wise and element-
wise contamination, as will be explained in the next section.

Section 2 reviews Hastie and Stuetzle’s (1989) principal
curves and their robust versions. Section 3 presents the pro-
posed estimator. Section 4 gives some theoretical results on
both types of estimators. Section 5 shows the results of a
small simulation study. Section 6 contains an example with
a real data set. Section 7 shows the computing running times
of the estimator. Finally Sect. 8 is an appendix containing
proofs of theoretic results.

2 Principal curves

Given a curve h(t) where t ranges over an interval I , define
the projection index of point x as

tx = tx(h) = arg min
t∈I

∥
∥x − h(t)

∥
∥. (1)

Then h defines a principal curve if the conditional expecta-
tion is

E[x|tx] = h(tx).

Section 3 of Hastie and Stuetzle (1989) gives results on the
relationships between principal curves and (linear) principal
components.

Consider now sample principal curves. Let X = [xij ] ∈
Rn×p be a p-dimensional data set, and put xi = (xi1,

. . . , xin)
′, i = 1, . . . , n. Let h0 be an initial approximation

to a principal curve, usually given by the first linear PC (i.e.
h0 = ta + b with a,b ∈ Rp and t ∈ R). Then h is the re-
sult of an iterative procedure in which hk+1 is obtained by
smoothing each of the columns of X on txi

(hk), i = 1, . . . , n,
and then txi

is updated through (1). Hastie and Stuetzle
(1989) propose both lowess (Cleveland 1979) and smooth-
ing splines as smoothing devices, and use the classical PC
as the starting point. The robust version of this procedure
as implemented in the R code principal.curve men-
tioned above employs the robust option for lowess, keep-
ing the classical PC as the starting point. In order to im-
prove the robustness of the procedure towards both row- and

element-wise contamination, the classical PC must be re-
placed by a robust PC; see the beginning of Sect. 5.2. How-
ever, even using a robust starting point and robust smooth-
ing, elementwise contamination may affect the updating
of txi

. In fact, if some of the coordinates of xi are con-
taminated, then (1) may assign xi to a wrong place on the
curve.

3 Spline-based nonlinear principal components

We first describe the approach of Yohai et al. (1985). Given
the functions g : Rp → R and h = (h1, . . . , hp) : R → Rp ,
call the residuals ri = ri (g,h) = xi − h(g(xi )). Then the
goal is to find g ∈ G and h ∈ H —where G and H are some
specified families of functions—such that the criterion

C0(g,h) =
p

∑

j=1

n
∑

i=1

r2
ij = min . (2)

Yohai et al. (1985) consider nondecreasing quadratic func-
tions for G and H , but their approach can be employed for
more general families. Note that given h, g is determined
by the minimization of the criterion C0. We now describe
our robust version of the former approach, also based on the
minimization of a criterion C. Instead of expressing C as a
function of (g,h) as in (2), we shall define it as a function
of (t,h) with ti = g(xi ), which will yield more tractable ex-
pressions. Note that t is the nonlinear analogue of the first
(linear) “principal component”.

A scale M estimator (an M-scale for short) of the sample
z = (z1, . . . , zn) is the solution S = S(z) of the equation

1

n

n
∑

i=1

ρ

(
zi

S

)

= δ. (3)

Here ρ is a “bounded ρ-function” in the sense of Maronna
et al. (2006), namely, ρ(t) is a nondecreasing function of
|t |, ρ(0) = 0, ρ(∞) = 1, and ρ(t) is increasing for t ≥ 0
such that ρ(t) < 1; and δ ∈ (0,1) calibrates the estimator’s
breakdown point.

Given h and t = (t1, . . . , tn) let ri = xi − h(ti). Call
r.j = (r1j , . . . , rnj )

′ the j -th column of the matrix R with
rows r′

1, . . . , r′
n. Instead of quadratic loss we will employ

the criterion

C(t,h) =
p

∑

j=1

S(r.j )
2, (4)

where S is an M-scale. Given h, we choose t so that C(t,h)

is minimum. Instead of a parametric family for h, we adopt
a family of “smooth” functions. We first give the definition
of our proposed estimator, and then show its motivation.
We choose for h the family of natural splines with a fixed
number of knots Nknots, located at the quantiles sk of order
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k/(n + 1), k = 1, . . . ,Nknots. Let (b1(t), . . . , bNknots(t))
′ be

a functional basis of the space NSm(s1, . . . , sNknots) of natu-
ral splines of order 2m on I with knots s1, . . . , sNknots , with
m = 2 (cubic splines). Let

bi = (

b1(ti), . . . , bNknots(ti)
)′
, i = 1, . . . , n. (5)

Then given t, hj is a linear combination of the bks, i.e.

hj (t) =
Nknots∑

k=1

bk(t)β
(j)
k , (6)

where the coefficients β
(j)
k have to be determined. Let

β(j) = (β
(j)

1 , . . . , β
(j)
Nknots

), and put for β ∈ RNknots : rij =
rij (β) = xij − β ′bi . Then to minimize (4) define for j =
1, . . . , p

β(j) = arg min
β

S
(

r.j (β)
)

. (7)

That is, β(j) is a regression S estimator (Rousseeuw and
Yohai 1984). Henceforth we choose for ρ in (3) the bisquare
function:

ρ(t) = 1 − (

1 − t2)3I
(|t | ≤ 1

)

where I(.) is the indicator function; and δ = 0.5(1 −
Nknots/n). The reason for this choice of δ is that Nknots is
the dimension of each β(j), and therefore this δ maximizes
the breakdown point of the regression S estimator in (7) (see
Maronna et al. 2006).

Notice that the definition above involves some arbitrari-
ness, since h(t) could be replaced by h(u(t)) where u is a
smooth strictly monotonic function. The justification of our
choice of h is the following. For a general h, an adequate
way to obtain a smooth robust fit would be to penalize the
“roughness” of h as follows:

p
∑

j=1

S
(

x.j − hj (t)
)2 + λ

p
∑

j=1

∫

I

(

h′′
j (s)

)2
ds = min, (8)

where λ is a penalty parameter and I is any interval that
contains the elements of t. When λ = 0 one gets a (rough)
interpolating curve. It can be shown that for λ > 0 the re-
sulting hj s are cubic splines with knots at each ti . How-
ever, the selection of λ is very computationally expensive,
for it requires re-computing the estimator for many values
of λ, which makes the procedure impractically slow. Instead
of (8) we could also have considered penalized splines as
in Tharmaratnam et al. (2010); but with this alternative ap-
proach the problem of the choice of λ would remain. For
this reason we prefer to employ a fixed set of knots. The fact
that the resulting estimator has the form of a regression S
estimator greatly simplifies the computation, as will be seen
in the next section. In this work we deal only with the first
PC.

3.1 Computing the spline-based PCs

The algorithm for the proposed PCs is iterative. Compute an
initial approximation (t0,h0). Given (tm,hm) compute

hm+1 = arg min
h

C(tm,h) and

tm+1 = arg min
t

C(t,hm+1).
(9)

We cannot hope for absolute minima above, but we would
at least want that each step decreases the criterion, i.e.,

C(tm,hm+1) ≤ C(tm,hm) and

C(tm+1,hm+1) ≤ C(tm,hm+1).
(10)

In similarity with principal curves, the initial (t0,h0) are ob-
tained from the first linear PC. In order to ensure robustness
against both row- and element-wise contamination, we em-
ploy the PCs described in Maronna and Yohai (2008).

We now deal with the first half of (9) starting with m = 0.
We have (tm,hm) and want to compute hm+1 and there-
fore the respective β(j)s, ensuring at least (10). This part
involves p robust linear regressions, each of which requires
an adequate set of starting values for the respective iterative
process. Choosing them does not seem an easy task. The
standard approach to compute initial values in high break-
down point regression is subsampling (see Maronna et al.
2006, Sect. 5.7.2); but even if subsampling could ensure
(10), it could become too expensive. We therefore employ
another approach. Recall that S estimators can be computed
by the “iterative reweighted least squares” (IRWLS) algo-
rithm (Maronna et al. 2006, p. 136). Recall that tm defines
the bis in (5). Compute the residuals rij = xij − hm,j (tm,j ).
Call γ (j) the regression S estimator of r.j on the bis, com-
puted through IRWLS and starting values of zero. Let q(t)

have elements

qj (t) =
Nknots∑

k=1

bk(t)γ
(j)
k .

Finally define hm+1(t) = hm(t)+q(t). Then it can be shown
that

C(tm,hm+1) ≤ C(tm,hm). (11)

The proof is deferred to Sect. 8.1.
Now given tm = (tm,1, . . . , tm,n)

′ and hm+1 we have to
compute tm+1 as in the second half of (9). An exact result
would involve simultaneous optimization over all elements
of t; therefore we shall employ a “greedy” approximation,
optimizing one element at a time. For each i = 1, . . . , n we
let all elements of t fixed except for the i-th, and optimize
over this value. Instead of letting this value range over an
interval, the candidates are just all elements of t. More for-
mally, define for i = 1, . . . , n

i∗ = arg min
l=1,...,n

C
(

t(i,l),hm+1
)

, (12)
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where t(i,l) = tm except that its i-th element is tm,l . Then put
tm+1,i=tm,i∗ .

This procedure requires recomputing C in (4)—and
therefore the p scales S(r.j )—for each i. To save time, we
employ just one iteration of IRWLS. The results are suffi-
ciently similar to those of the “exact” procedure and repre-
sent considerable save in computing time.

As for the choice of Nknots, we prefer to think in terms of
the ratio “observations/knots” Rknots = n/Nknots. Recall that
the breakdown point of the S estimator is 0.5(1 −Nknots/n),
and therefore Rknots should not be too small. Moreover,
exploratory simulations indicate that if Rknots is small, a
few outliers at the extremes of t may have a disastrous ef-
fect. To determine Rknots we tried both fixed values and
cross-validation. Exploratory simulations indicate that in the
trade-off between efficiency and robustness, the choice of
Rknots between 10 and 15—i.e. one knot for each 10 to 15
observations—is better (and cheaper) than cross-validation.

4 Some theoretical results

Hastie and Stuetzle (1989) show in their Propositions 1 and
2 that if the functions involved are linear, then their princi-
pal curves coincide with the classical PCs. We would like
to show the same for our proposed estimator. However, the
fact that these estimators are nonlinear and do not have an
explicit expression makes it very difficult to give general re-
sults. For these reasons we must restrict ourselves to dis-
tributions with some symmetry properties. We shall deal
specifically with elliptically symmetric distributions. For a
vector μ ∈ Rp , a symmetric positive definite matrix Σ and
a nonnegative function f0, we shall say that x has an elliptic
distribution E (μ,Σ, f0) if x has density

f (x) = f0
(

(x − μ)′Σ−1(x − μ)
)

,

where in general A′ denotes the transpose of A. If f0 is de-
creasing we call f unimodal. If x has second moments, then
the covariance matrix of x, Var(x), is a constant times Σ ,
and therefore the principal directions are given by the eigen-
vectors of Σ . It then makes sense to call these eigenvectors
the “principal directions” of x even when Var(x) does not
exist.

In order to obtain theoretical results, we have to deal
with the population versions of the estimators, rather than
with their original sample-based form. The following results
correspond to Propositions 1 and 2 of Hastie and Stuetzle
(1989). Define an M-scale of a random variable x as the so-
lution S = S(x) of

Eρ

(
x

S

)

= δ. (13)

The S in (13) is the population version of the sample-based
scale (3).

We have functions g ∈ G and h ∈ H where G and H are
given families of functions that contain linear functions. Call
r = x − h(g(x)) the residual vector. For a random vector x
the population nonlinear PC’s are defined by the criterion

C(g,h) =
p

∑

j=1

S(rj )
2 = min . (14)

Proposition 1 shows that when restricted to linear func-
tions, the criterion (14) yields the classical PCs.

Proposition 1 Let x ∼ E (μ,Σ, f0) and unimodal, and as-
sume that the largest eigenvalue of Σ is unique. If g and h
are restricted to be linear, then the solution of (14) is given
by h(t) = μ + ctb and g(x) = b′(x − μ)/c, where b is the
first eigenvector of Σ . and c is any constant.

Note that all values of c yield the same curve.
Proposition 2 shows that if the data lie around some

straight line, when the criterion (14) is restricted to linear
functions it has that same line as output.

Proposition 2 Let x = b0s +u where u ∼ E (0, I, f0) is uni-
modal and independent of the random variable s. If g and h
are linear, then h(t) = b0t and g(x) = b′

0x.

All proofs are given in Sect. 8.

5 Simulations

5.1 Scenario

Our simulation scenario is built on a basic smooth curve
given by a smooth function h0 : R → Rp , and a basic set of
points along the curve: x0,i = h0(si) where (s1, . . . , sn) are
given values. In this study they are uniform random values:
si ∼ U(0,1) The “clean” observations x1,i are obtained by
adding normal noise to x0,i , namely x1,i = x0,i +σei , where
ei have a standard p-variate normal distribution Np(0, I)
and σ is specified below. The final “data” xij (i = 1, . . . , n,
j = 1, . . . , p) are obtained by contaminating x1,ij at a con-
tamination rate ε. We have two types of contamination. The
first type is element-wise contamination, in which each x1,ij

is contaminated at random with probability ε, namely:

xij = x1,ij + KI(uij ≤ ε)vij , (15)

where uij ∼ Un(0,1) independent (where “Un” denotes the
uniform distribution), vij are standard normal, and I(.) de-
notes the indicator. The second type is row-wise contamina-
tion. Let m = [nε] where [.] denotes the integer part. Choose
m rows at random; then for the respective i’s put

xij = x1,ij + Kvij , (16)
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Table 1 Components of the function h0(s)

i h0i (s) i h0i (s)

1 s 6 exp(−10s)

2 s3 7 exp(−(s − 0.3)2)

3 s5 8 (1 + 10s)−1

4 (s − 0.4)2 9 (1 + 10s2)−1

5 (s − 0.6)4 10 (1 + 10s)−2

with vij as above, and xij = x1,ij for the other rows.
There are infinite possible configurations for the ba-

sic curve. We want to include both monotonic and non–
monotonic functions. We take p = 10. In Table 1 we give
the components of h0(s).

We take σ = 0.1, ε = 0, 0.05, 0.10, 0.15 and 0.20, and
the values of K in (15) and (16) between 0 and Kmax = 200,
namely K = 0,1, . . . ,10,20,30, . . . ,200. We choose the
sample size n = 100 and the number of simulation replicates
as Nrep = 200.

5.2 Estimators

In order to obtain useful results, we have to compare our
proposal to other robust nonlinear PCs.

The nonlinear estimators employed here require an initial
linear approximation. There are several proposals for robust
linear PCs; e.g. Maronna (2005) and Hubert et al. (2003),
but they are not resistant to element-wise contamination.
The proposal by Candès et al. (2011) is very fast and is re-
sistant to element-wise contamination, but not to row-wise
contamination. This fact can be inferred from the definition
of their estimator, and we have verified it through simula-
tions. As initial estimator we choose Maronna and Yohai’s
(2008) “Perturbed MM”, which is resistant to both types
of contamination. The estimator proposed by Croux et al.
(2003) might also be used, but the results from Maronna
and Yohai’s (2008) show that it is outperformed by the “Per-
turbed MM” method.

The estimators considered are:

– the “classical” principal curves (henceforth “Pr.Cv.”)
computed with the standard version of code princi-
pal.curve (see Sect. 2) starting from classical PCs.

– the robust Pr.Cv. computed using the robust version of
principal.curve and starting from Spherical Prin-
cipal Components (SPC) (Locantore et al. 1999), which
are fast to compute and are robust against row-wise but
not against element-wise contamination.

– the same robust Pr.Cv., but starting from Maronna and
Yohai’s (2008) “Perturbed MM” PCs.

– and our spline-based PCs with Rknots = 15, starting
also from the “Perturbed MM” PCs (henceforth “Spline-
based” for short).

The parameters for the “Perturbed MM” estimator were
the same as in the simulation in Maronna and Yohai (2008),
i.e., γ = 0.5 and m = 5 (see Sect. 4 thereof). As shown on
Table 8 thereof, the method is reasonably fast; its computa-
tion for one component requires O(np) operations.

The R code for the estimators is available from the au-
thors upon request.

5.3 Evaluation

For a given estimator and a given simulation sample let (t,h)

be the final outcome, and let x̂ij = hij (ti) be the “fitted val-
ues”. We want to evaluate the estimator by comparing the fit
with the data. However, we should not compare x̂ij with the
observed xij , because with this criterion, the “best” curve
would be one passing through all the observations. There-
fore we define our “prediction errors” by comparing the fit
with the “true” curve, namely

zij = x0,ij − x̂ij . (17)

The classical way to measure the z’s is the mean squared
error (MSE) equal to the average of z2

ij .
We have observed that for all the estimators considered

the fitted curve is good overall, except for a small propor-
tion of points where the fit can be very poor. For our proce-
dure this happens at the extremes, while for principal curves
it happens at the regions with highest curvature. Also, for
some samples the principal.curve code did not con-
verge, yielding a very poor fit. We therefore believe that
a robust error measure of the set {zij , i = 1, . . . , n, j =
1, . . . , p} may be more informative than the MSE. The one
we chose is a truncated MSE similar to the τ -scale defined
by Yohai and Zamar (1988). Let

s = 1

0.675
Median

(|zij |, i = 1, . . . , n, j = 1, . . . , p
)

,

and define the scale τ by

τ 2 = (cs)2

np

p
∑

j=1

n
∑

i=1

ρ(ziji/cs)
2

where ρ is the truncation function ρ(t) = min{|t |,1} and
c = 4.

For replications k = 1, . . . ,Nrep call respectively MSEk

and τk the MSE and the τ -scale corresponding to a given
estimator. Then the overall error measures for the estimator
are the root MSE and the mean τ , defined as

RMSE =

√
√
√
√
√

1

Nrep

Nrep
∑

k=1

MSEk, τ = 1

Nrep

Nrep
∑

k=1

τk.
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Table 2 Simulation: maximum mean τ -scales of prediction errors

Contamination ε Principal curves Spline

Class. Rob-SPC Rob-MM

0 0.037 0.057 0.058 0.085

Row 0.05 0.112 0.071 0.071 0.138

0.10 0.660 0.086 0.085 0.155

0.15 0.971 0.102 0.098 0.180

0.20 1.187 0.119 0.104 0.226

Element 0.05 4.212 0.163 0.157 0.150

0.10 4.290 0.408 0.404 0.200

0.15 4.362 0.630 0.625 0.245

0.20 4.408 0.759 0.764 0.327

5.4 Results

For each contamination situation, Table 2 gives the maxi-
mum mean τ of each estimator over all values of the outlier
size K in (16) and (15). The headings correspond respec-
tively to classical Pr.Cv., robust Pr.Cv. starting from SPC,
robust Pr.Cv. starting from MM, and our spline-based esti-
mator. In all cases, the values of the mean τ increased with
the outlier size K , and therefore the maxima in the table cor-
respond to K = Kmax.

It is seen that:

– For ε = 0, classical Pr.Cv. is the best estimator, as ex-
pected. The two robust Pr.Cv. perform better than the
Spline-based; they all have low efficiency.

– Both robust Pr.Cv. have similar behaviors. For element-
wise contamination, Rob-MM is only sightly better than
Rob-SPC, which shows that the basic approach of Pr.Cv
is not resistant to this type of contamination, whatever the
starting values.

– For row-wise contamination, Spline-based is clearly more
robust than classical Pr.Cv., but the robust Pr.Cv. performs
better.

– The opposite happens with element-wise contamination,
as is to be expected. The difference is more visible for
large ε.

These results suggest that if we need an estimator to
deal with just row-wise contamination, robust Pr.Cv. starting
from SPC (which is much faster than “Perturbed MM”) is to
be preferred. But if we want an estimator able to deal with
both types of contamination, then Spline-based is preferable.

For another point of view, Table 3 gives the estimators’
maximum RMSEs.

Here we observe that

– for ε = 0 all estimators are rather inefficient as compared
to classical Pr.Cv.

Table 3 Simulation: maximum mean RMSEs of prediction errors

Contamination ε Principal curves Spline

Class. Rob-SPC Rob-MM

0 0.04 0.10 0.12 0.35

Row 0.05 4.46 2.01 1.99 6.65

0.10 5.93 2.49 2,54 7.80

0.15 6.79 2.99 2.97 8.09

0.20 7.59 3.42 3.27 10.00

Element 0.05 6.73 1.38 1.08 1.03

0.10 6.84 2.01 1.62 1.13

0.15 6.90 2.79 2.41 1.70

0.20 6.98 3.34 3.01 1.75

– in general, robust Pr.Cv. starting from MM is slightly bet-
ter than starting from SPC

– For row-wise contamination, Spline-based shows the
worst performance

– For element-wise contamination, Spline-based outper-
forms the other estimators.

The picture given by Table 3 does not exactly coincide
with that from Table 2. However, as explained above, those
differences depend on the behavior of the curves at just a
small proportion of points, and therefore we consider the
results from Table 2 as more representative.

To illustrate the results in Tables 2 and 3 we show the
results from a realization of the simulation with element-
wise contamination, with n = 100, ε = 0.10 and K = 20.
For Spline-based and Pr.Cv.-MM we compute the norms of

the prediction errors:
√

∑p

j=1 z2
ij with zij defined in (17).

Figures 1 and 2 show the results for element- and row-
wise contamination, respectively. The first one shows that
the prediction errors of Spline-based are generally smaller
than those of Pr.Cv.-MM, while the second one shows the
opposite picture.

6 A real data set

We analyze a data set from Ein-Dor and Feldmesser (1987)
in which p = 8 measures of the relative performance are
given for n = 209 CPUs. The eight columns were normal-
ized by their MADs. Contamination was then added to the
data, with rates ε = 0, 0.1 and 0.2. For row-wise contami-
nation, m = [nε] rows were chosen at random and the value
K was added to each of their elements; for element-wise
contamination, for each element xij , with probability ε, the
quantity Kzij was added, with the zij i.i.d. standard nor-
mal. In both cases K ranged between 1 and 10. The crite-
rion was the τ -scale of the errors xij − x̂ij where x̂ij is the
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Fig. 1 Simulation: Prediction
errors of Spline-based and
Pr.Cv.-MM for elementwise
contamination, with identity line
for comparison

Fig. 2 Simulation: Prediction
errors of Spline-based and
Pr.Cv.-MM for row-wise
contamination, with identity line
for comparison

fitted value based on the contaminated data, and xij are the
uncontaminated data. Besides the four estimators employed
in the simulation, we added the linear classical and spherical
PCs. Table 4 shows the results.

It is seen that Spline-based yields the lowest error scales
in all cases. For another point of view, Table 5 shows the
RMSEs.

Here for ε = 0 the classical Pr.Cv. clearly outperform
the other estimators. For row-wise contamination, SPC is
clearly the best. For element-wise contamination, SPC is the
worst and the three nonlinear robust estimators have similar
behaviors, with Spline-based as the best. Again, we recall
that these results are heavily influenced by a small propor-
tion of anomalous cases, and therefore we consider Table 4
as more representative.

Table 4 Computer data: maximum τ -scales of errors for row- and
element-wise contamination

Cont. ε Class. SPC Principal curves Spline

Class Rob-SPC Rob-MM

0 1.20 1.15 0.67 0.64 0.66 0.56

Row 0.10 1.29 1.40 0.90 0.81 0.82 0.75

0.20 1.86 1.41 1.36 1.08 1.09 1.05

Elem. 0.10 1.72 1.70 1.07 0.79 0.80 0.68

0.20 2.82 3.59 2.64 1.60 1.35 0.87
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Table 5 Computer data: maximum MSEs of errors for row- and
element-wise contamination

Cont. ε Class. SPC Principal curves Spline

Class. Rob-SPC Rob-MM

0 2.38 2.40 1.17 1.74 1.75 2.02

Row 0.10 3.06 2.89 3.33 3.70 3.71 3.73

0.20 4.27 3.47 4.65 4.96 4.95 4.84

Elem. 0.10 3.53 3.70 2.42 2.20 2.12 2.03

0.20 4.59 4.67 2.98 2.44 2.46 2.24

Table 6 Running times in seconds of spline-based estimator

n\p 10 20

50 28 30

100 50 55

200 117 133

400 316 413

7 Computing times

The running times of our proposal were computed for
datasets of size n × 10 generated as in Sect. 5. Then the
squares of the data were added, to obtain datasets of size
n × 20. The times (in seconds) displayed in Table 6 are the
averages of 10 runs, on a PC with an AMD Phenom II X2
560 processor with 3.30 GHz and 6 GB RAM, using an R
code which is available from the authors.

It is seen that the estimator can be computed in a reason-
able time for moderate datasets. An important proportion of
the running time is consumed by the initial linear “Perturbed
MM” estimator, which is O(np), and by the search (12),
which is O(n2p). We have not been able to find an explana-
tion for the slow increase of the running times with p.

8 Proofs of theoretical results

8.1 Proof of (18)

To prove (11), we want to show that each of the scales S(r.j )

in (4) decreases. Call T (X,y;β0) a regression S estimator
applied to the regression dataset (X,y) employing IRWLS
starting from some β0. Let X1 and X2 be two predictor ma-
trices. Let β̂1 be a regression estimator, and put ŷ1 = X1β̂1,
γ = T (X2,y − ŷ1;0), and ŷ2 = X2γ + ŷ1. We want to show
that

S(y − ŷ2) ≤ S(y − ŷ1). (18)

Since IRWLS ensures that the residual scale decreases at
each iteration (Maronna et al. 2006, p. 328), we have S(y −
ŷ1 − X2γ ) ≤ S(y − ŷ1 − 0), which is the same as (18).

8.2 Some auxiliary definitions and results for Sect. 4

Lemma 1 Let x ∼ E (0,Σ, f ) and let S be defined by (13).
Then for a ∈ Rp we have S(a′x) = Ka′Σa, where K is a
constant depending on f .

Proof Is straightforward. �

For the proofs in this section, we shall assume without
loss of generality that K = 1.

Lemma 2 If x has a symmetric unimodal distribution and
S is an M-scale, then

(a) S(x + t) > S(x) for all t �= 0.
(b) If y is independent of x and P(y = 0) < 1, then S(x +

y) > S(x).

Proof Part (a) follows from Lemma 3.1 of Yohai (1987).
Part (b) follows from the same lemma and conditioning
on y. �

Now we deal with elliptical distributions.
For E (0.I, f0) we characterize the one- and two dimen-

sional marginals. Let

f2(t) =

⎧

⎪⎪⎨

⎪⎪⎩

∫ · · · ∫ f0(t + x2
3 + · · · + x2

p)dx3 · · ·dxp

if p > 2

f0(t) if p = 2

,

and

f1(t) =
∫

f2
(

t + x2
2

)

dx2.

If x ∼ E (0.I, f0), then (x1, x2)
′ ∼ E (0.I, f2) and x1 ∼

E (0.1, f1). If f0 is decreasing, so are f2 and f1. For simplic-
ity, we shall calibrate S so that S(x) = 1 if x1 ∼ E (0.1, f1).
As a consequence, if x ∼ E (0,Σ, f0) and a ∈ Rp , then by
Lemma 1

S
(

a′x
)2 = a′Σa. (19)

We now give a final auxiliary result:

Lemma 3 Let u = x′a and v = x′b where a,b ∈ Rp , x ∼
E (0,Σ, f0) unimodal. Call fu|v(u;v) the conditional den-
sity of u given v. Let

uv = v
a′Σb
b′Σb

.

Then fu|v(u − uv;v), as a function of u, is symmetric and
unimodal.

The proof is straightforward.
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8.3 Proof of Proposition 1

We may assume μ = 0 without loss of generality. Let r =
x − h(t), with t = g(x). We want
p

∑

j=1

S(rj )
2 = min .

We assume

h(t) = tb + a, t = d′x + c, (20)

where a,b, c ∈ Rp and we may assume ‖b‖ = 1. Then

r = (

I − bd′)x + (a − cb). (21)

For a given j ∈ {1, . . . , p} we have

rj = β ′x + α, with α = aj − cbj ; β = ej − bj d. (22)

Therefore rj ∼ E (α,β ′Σβ, f1), and hence by Lemma 2,
S(rj ) as a function of α is minimized for α = 0, which ob-
tains with a = 0 and c = 0, and yields by Lemma 1

S2(rj ) = β ′Σβ = e′
jΣej + b2

j d′Σd − 2bj e′
jΣd.

It follows that the criterion becomes
p

∑

j=1

S(rj )
2 = tr(Σ) + d′Σd − 2b′Σd.

For each d, this expression is minimized by b = Σd/

‖Σd‖, yielding d′Σd−2‖Σd‖.
Call λ1 ≥ λ2 · · · ≥ λp > 0 the eigenvalues of Σ , and

v1, . . . ,vp the respective eigenvectors, so that Σ =
∑p

j=1 λj vj , and let qj = v′
j d. We must minimize

d′Σd − 2‖Σd‖ =
p

∑

j=1

λjq
2
j − 2

(
p

∑

j=1

λ2
j q

2
j

)1/2

. (23)

Differentiating with respect to qj yields

λjqj

(

1 − λj

(
∑p

k=1 λ2
kq

2
k )1/2

)

= 0. (24)

Let J = {j : qj �= 0}. Then it follows from (24) that all
λj with j ∈ J have the common value λ = (

∑p

k=1 λ2
kq

2
k )1/2,

which implies λ = λ(
∑p

k=1 λ2
kq

2
k )1/2 and therefore

(
∑p

k=1 λ2
kq

2
k )1/2 = ‖d‖ = 1. It follows that (23) equals

−λ‖d‖, and this is minimized when λ = λ1. �

8.4 Proof of Proposition 2

We may assume ‖b0‖ = ‖b‖ = 1. Recall the notation (20).
From (21) we get r = Ju + Jb0s − α with J = I − bd′ and
α = a + cb. Put K = JJ′. Then we may write

r = μs + v (25)

where μs = Jb0s − α and v ∼ E (0, e′
j Kej , f1) is indepen-

dent of s and hence of μs .

The criterion to be minimized is

C = C(a,μb, c,d) =
p

∑

j=1

S
(

e′
j r

)2
.

We will show that it is minimized at (a,b, c,d) = (0,b0,

0,b0), which corresponds to μs = 0 and K = I − b0b′
0.

It follows from (25) that e′
j r = e′

jμ
′
s + e′

j v where
e′
j v ∼ E (0, e′

j Kej , f1) and is independent of μs . Therefore
Lemma 2(b) implies S(e′

j r) > S(e′
j v) = e′

j Kej , and then

p
∑

j=1

S
(

e′
j r

)2
>

p
∑

j=1

e′
j Kej = tr(K).

Since ‖b‖ = ‖b0‖ = 1, it is easy to verify that

tr(K) = p − 2b′d + ‖d‖2 ≥ p − 1 = tr
(

I − b0b′
0

)

,

which completes the proof. �
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