Comment

Comment on “Generalized differential transform method to differential-difference equation” by L. Zou et al.

Francisco M. Fernández

INIFTA, División Química Teórica, Blvd. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina

A R T I C L E I N F O

Article history:
Received 3 May 2021
Received in revised form 11 May 2021
Accepted 14 May 2021
Available online 26 May 2021
Communicated by B. Malomed

Keywords:
Differential transform method
Taylor series
Frobenius method
Padé approximants
Differential-difference equations

A B S T R A C T

We show that the differential transform is the well known Taylor series (contrary to what the authors claim) and that the differential transform method (DTM) is the well known Frobenius method, commonly used to obtain exact or approximate solutions to differential equations. The generalized transform method (GTM) is merely the application of Padé approximants to the Taylor series produced by the Frobenius method. We argue that the particular solutions to the differential-difference nonlinear equations are of scarce utility because the initial conditions are not flexible enough for practical physical applications.

© 2021 Elsevier B.V. All rights reserved.

Some time ago Zou et al. [1] (ZWZ from now on) solved differential-difference equations by means of the so-called differential transform method (DTM) and proposed an improvement that they termed generalized differential transform method (GDTM) and also differential transform-Padé technique or generalized differential-difference Padé approximation. They argued that it is simple and easy to apply and showed results for several models with exact particular solutions. The purpose of this Comment is the analysis of the DTM and the GTM.

According to ZWZ the differential transform of a function \(u_{\alpha}(t) \) is given by

\[
U_{\alpha}(k) = \frac{1}{k!} \left. \frac{d^k u_{\alpha}(t)}{dt^k} \right|_{t=t_0},
\]

whereas the differential inverse transform function is given by

\[
u_{\alpha}(t) = \sum_{k=0}^{\infty} U_{\alpha}(k) (t - t_0)^k.
\]

ZWZ forgot to add that the function \(u_{\alpha}(t) \) should be analytic in a neighbourhood of \(t = t_0 \). Anybody familiar with Calculus realizes that equations (1) and (2) give us the Taylor series of \(u_{\alpha}(t) \) about \(t = t_0 \) [2]. Curiously, ZWZ stated that “it is different from the traditional high order Taylor’s series method, which requires symbolic competition of the necessary derivatives of the data functions. The Taylor series method is computationally taken long time for large orders.” All the expressions shown in Table 1 are already well known mathematical properties of the derivative of a function and the coefficients of Taylor series. The fact is that the differential transform is the well known Taylor series and the DTM is the well known Frobenius method for the treatment of differential equations [3].

The GTM is merely the improvement of the Taylor series by means of Padé approximants [3]. If we have a finite number of coefficients of the Taylor series

\[
f(x) = \sum_{j=0}^{\infty} f_j x^j,
\]

then we can improve the results of the partial sums by means of Padé approximants of the form

\[
[M/N](x) = \frac{\sum_{j=0}^{M} a_j x^j}{\sum_{j=0}^{N} b_j x^j} = \sum_{j=0}^{M+N} f_j x^j + O(x^{M+N+1}).
\]

ZWZ applied the approach to four examples of differential-difference equations; the first one is

\[
u'' = u_n (u_{n+1} - u_{n-1}).
\]

If the initial condition is \(u_n(0) = n \) then there is a particular exact solution

\[\text{DO}1 \text{of original article: https://doi.org/10.1016/j.physleta.2009.09.036.}
\text{E-mail address: fernandez@quimica.unlp.edu.ar.}
\]
It seems that, in this as well as in the other examples, the initial condition is chosen according to the available particular solution. For example, \(u_n(t) = (\alpha + n)/(\beta - 2t) \), where \(\alpha \) and \(\beta \) are real parameters, is a somewhat more general particular solution with a more flexible initial condition \(u_n(0) = (\alpha + n)/\beta \). We obtain ZWZ’s example when \(\alpha = 0 \) and \(\beta = 1 \). The physical utility of this model appears to be highly dubious if restricted to this kind of particular exact solutions. ZWZ compared the Taylor series of \(u_n(t) \) and the [2, 3] Padé approximant with the exact solution (6) in their Figs. 1 and 2, respectively. The fact is that any Padé approximant with \(M \geq 1 \) yields the exact solution; therefore, Fig. 2 compares the exact solution with itself.

The second example is

\[
u'_n = u_n \left(u_{n+1} - u_{n-1} + u_{n+2} - u_{n+2} \right).
\]

A particular solution with the initial condition \(u_n(0) = n \) is

\[
u_n(t) = \frac{n}{1 + 6t}, \quad n = 1, 2, \ldots.
\]

A somewhat more general particular solution is \(u_n(t) = (\alpha + n)/(\beta + 6t) \), where \(\alpha \) and \(\beta \) are real parameters. Obviously, in this case the initial condition should be \(u_n(0) = (\alpha + n)/\beta \) and we obtain ZWZ’s example when \(\alpha = 0 \) and \(\beta = 1 \). All the conclusions about the preceding toy problem apply to this one. In particular, ZWZ’s Fig. 4 compares the exact solution with itself.

The third example

\[
u'_n = u_n \left(u_{n+1} - u_{n-1} \right),
\]

does not admit rational solutions and the Padé approximants do not yield the exact result. ZWZ chose the particular exact solution

\[
u_n(t) = 1 + \frac{\cosh(d) - 1}{1 + \cosh(d n + 2 \sinh(d) t - 2)}.
\]

with the initial condition \(u_n(0) \) given by setting \(t = 0 \) in this equation. ZWZ’s Fig. 5 shows that the [4, 4] Padé approximant is by far more accurate than the 10th-order Taylor series. This fact is hardly surprising because the radius of convergence of the Taylor series for \(\nu_n(t) \) is determined by the poles of this function closest to the origin in the complex \(t \)-plane, which in this case are given by

\[
t_c = \frac{d}{2} n - 2 \pm \frac{i \pi}{2 \sinh(d)}.
\]