Thermal reversion of spirooxazine in ionic liquids containing the $\left[\mathrm{NTf}_{2}\right]^{-}$anion

Simon Coleman, Robert Byrne, Stela Minkovska and Dermot Diamond

Phys. Chem. Chem. Phys., 2009, 11, 5608-5614 (DOI: 10.1039/b901417a). Amendment published 30 ${ }^{\text {th }}$ November 2009.
In the above paper, Table 1 inadvertently referenced the incorrect literature. The references should appear as shown in the table below (according to the numbering in the published paper). The literature value for α in ethanol is corrected to 0.86 from 0.83 and the literature value for β in ethanol is corrected to 0.75 from 0.77 .

Solvent	$\mathrm{Et}(30) / \mathrm{kcal} \mathrm{mol}{ }^{-1}$	α	β	π^{*}	SO			
					MC $\lambda_{\text {max }}$	$k \times 10^{-2} / \mathrm{s}^{-1}$	SD	τ / s
Methanol	55.4 (55.4) ${ }^{8}$	$1.06(1.05)^{41}$	$0.62(0.61)^{41}$	$0.71(0.73)^{41}$	640	3.2	± 0.008	31.25
Ethanol	$52.1(51.9)^{8}$	$0.90(0.86)^{42}$	$0.72(0.75)^{42}$	0.63 (0.54) ${ }^{42}$	642	3.8 (2.0) ${ }^{20}$	± 0.009	26.32
Acetonitrile	$46.4(45.6)^{8}$	0.42 (0.35) ${ }^{41}$	0.37 (0.37) ${ }^{41}$	0.79 (0.79) ${ }^{41}$	642	5.0 (5.2) ${ }^{20}$	± 0.006	20
Acetone	42.5 (42.2) ${ }^{8}$	0.25 (0.20) ${ }^{41}$	0.57 (0.54) ${ }^{41}$	0.67 (0.70) ${ }^{41}$	642	5.1 (5.4) ${ }^{20}$	± 0.011	19.61
[bmIm][NTf_{2}]	$52.4(51.5)^{43}$	$0.72(0.69)^{41}$	$0.24(0.25)^{41}$	$0.90(0.97)^{41}$	642	2	± 0.005	50
[$\mathrm{m}_{2} \mathrm{Im}$][NTf_{2}]	50	0.42	0.1	1.02	640	2.3	± 0.011	43.48
[bmPy][NTf_{2}]	49.6 (50.2) ${ }^{14}$	$0.57(0.43)^{13}$	0.23 (0.25) ${ }^{13}$	$0.87(0.95)^{13}$	642	2.2	± 0.009	45.45
[$\mathrm{P}_{6,6,6,14}$ [${ }^{\text {d }}$ NTf ${ }_{2}$]	46.1	0.37	0.27	0.83	648	1.1	± 0.005	90.91
$\underline{\left[\mathrm{N}_{1,8,8,8}\right]\left[\mathrm{NTf}_{2}\right]}$	45.9	0.33	0.23	0.87	646	1.5	± 0.008	66.67

41 C. P. Fredlake, M. J. Muldoon, S. N. V. K. Aki, T. Welton, J. F. Brennecke, Phys. Chem. Chem. Phys., 2004, 6, 3280. 42 Y. Marcus, Chem. Soc. Rev., 1993, 22, 409.
43 M. J. Muldoon, C. M. Gordon, I. R. Dunkin, J. Chem. Soc., Perkin Trans. 2, 2001, 433.

Analysis of isotope effects in NMR one-bond indirect nuclear spin-spin coupling constants in terms of localized molecular orbitals

Patricio F. Provasi and Stephan P. A. Sauer

Phys. Chem. Chem. Phys., 2009, 11, 3987-3995 (DOI: 10.1039/b819376b). Amendment published $7^{\text {th }}$ December 2009.

The numerical values given for the reduced coupling constants, $K_{\mathrm{X}-\mathrm{H}}$ (in $10^{18} \mathrm{~J}^{-1} \mathrm{~T}^{2}$), and for the changes in the reduced coupling constants, $\Delta K_{\mathrm{X}-\mathrm{H}}$ (in $10^{18} \mathrm{~J}^{-1} \mathrm{~T}^{2}$), in Tables 2 to 7 and Figures 1 to 4 have to be multiplied by the constant factor π. These changes have no influence on the discussion or conclusions of the paper as all values are equally affected.

