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Species exclusion and coexistence in a noisy voter model with a competition-colonization tradeoff
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We introduce an asymmetric noisy voter model to study the joint effect of immigration and a competition-
dispersal tradeoff in the dynamics of two species competing for space in regular lattices. Individuals of one
species can invade a nearest-neighbor site in the lattice, while individuals of the other species are able to invade
sites at any distance but are less competitive locally, i.e., they establish with a probability g � 1. The model also
accounts for immigration, modeled as an external noise that may spontaneously replace an individual at a lattice
site by another individual of the other species. This combination of mechanisms gives rise to a rich variety of
outcomes for species competition, including exclusion of either species, monostable coexistence of both species
at different population proportions, and bistable coexistence with proportions of populations that depend on
the initial condition. Remarkably, in the bistable phase, the system undergoes a discontinuous transition as the
intensity of immigration overcomes a threshold, leading to a half loop dynamics associated to a cusp catastrophe,
which causes the irreversible loss of the species with the shortest dispersal range.
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I. INTRODUCTION

Studying the balance between species competitive and
dispersal abilities is fundamental to understanding the role
of space in maintaining biodiversity [1–6]. Competition-
dispersal (or competition-colonization) tradeoffs have primar-
ily been invoked to explain the structure of plant communities
[7–10], but have also been measured in viruses [11], insects
[12], bacteria [13,14], rotifers and protozoa [15], and slime
molds [16–19] among other lineages. A key result is that
species that are weaker competitors may persist in the com-
munity because their enhanced dispersal, either in distance
or in rate, allows them to colonize empty patches before the
stronger competitor arrives [2]. Beyond ecological systems,
competition-colonization tradeoffs have also been suggested
to control tumor growth [20].

Different modeling approaches can be used to investi-
gate how dispersal rates turn species coexistence stable via a
competition-colonization tradeoff [2,21]. However, only spa-
tial models of interacting particles, either on-lattice [22–24]
or off-lattice [8,25–27], allow investigation of the tradeoff
between dispersal distance and competitive ability [8,28,29].
Within this family of models, the voter model (VM) was intro-
duced in Clifford and Sudbury [30] as a simple model for the
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dynamics of two species that compete to colonize a territory,
represented by a regular lattice. In the VM, each site of the
lattice is occupied by an individual of either species and thus
assigned a binary state. At each time step of the dynamics, one
lattice site, the receiver or voter [31], is chosen randomly and
adopts the state of an invader, which is one of its four nearest
neighbors, also chosen at random. After this seminal work,
the VM has been applied to other different processes, such
as opinion dynamics [32,33] and catalytic reactions [34,35],
and studied in complex networks [31] and with continuum
Langevin equations [36]. The voter model, however, does not
allow for coexistence, and the only possible stationary state is
the complete dominance of one species and the exclusion of
the other (or consensus in the context of social sciences); that
is, an absorbing state in which all lattice sites are in the same
state. The invasion process is a variation of the voter model
in which the invader is selected first and the receiver second
[37]. Although this different ordering in the updating rule can
change the dynamics in complex networks, it is unimportant
in regular lattices [31].

A competition-dispersal tradeoff can be studied in voter-
like models, including the invasion process, by considering
that species differ in their dispersal range, represented by
the size of the lattice neighborhood that they can potentially
invade, and their competitive strength, given by the probability
of displacing a nonspecific resident in a given lattice site
[29]. Using numerical simulations, Durrett and Levin [29]
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studied the effect of population spatial structure in determin-
ing the outcome of competition in hierarchical populations
(one species has a competitive advantage over all the other)
and nonhierarchical populations. In one of the studied sce-
narios, they investigated the effect of tradeoffs between
competition and dispersal distance in a two-species system.
They showed that such a tradeoff does not allow species
coexistence, and hence one species always excludes the other
and occupies the entire territory. The identity of the excluded
species will depend on the shape of the tradeoff and the
initial population sizes, which indicates the existence of a
bistability regime in the system. Moreover, Durrett and Levin
[29] showed that these patterns of species exclusions and the
transitions among them are not explained by a mean field
approximation, suggesting that spatial correlations in the pop-
ulation determine the outcome of the competitive interaction.

Following an approach similar to that of Durrett and Levin
[29] but considering off-lattice simulations, Minors emphet al.
[38] studied a tradeoff between interaction range and conver-
sion strength in a VM for opinion dynamics. Their results
show that opinions with larger spreading range but smaller
transmission probability are more likely to spread through the
population. Finally, Rodriguez emphet al. [39] studied a VM
in which the range of interactions is probabilistic, and found
a multidimensional crossover behavior, from one dimension
to infinite dimensions or mean field, as the probability of
long-range interactions increases. In none of these studies the
authors found stable coexistence of the competing species (or
opinions).

Another extended version of the VM is the so-called noisy
voter model (NVM; see Ref. [40] and references therein),
which incorporates the possibility of spontaneous changes
in the state of lattice sites. The NVM was introduced by
Kirman [41] to model the stochastic recruitment behavior of
groups of ants that suddenly switch their attention between
two food sources [42]. Other early works investigated the
dynamics of catalytic reactions [43–45], and, more recently,
the dynamics of the NVM has also been studied in complex
networks [46–48]. A multistate NVM has been proposed to
explain the emergence of flocking out from pairwise stochas-
tic interactions [49–51]. Experimental evidence of these noisy
voter-like interactions was found recently in groups of fish,
where schooling is induced by the intrinsic noise that arises
from the finite number of interacting individuals [52]. In all
these cases, the external noise eliminates the absorbing (con-
sensus) states, and, in the two-state NVM, the noise intensity
induces a transition from a bistable phase characterized by a
bimodal stationary distribution of opinion density to a monos-
table phase with a unimodal distribution [44]. In the multistate
NVM, this noise-driven transition happens between regimes
with multimodal and unimodal stationary distributions [53].
In both cases, in the monostable phase, the system fluctuates
around a state in which both opinions are equally represented.

Here we introduce and analyze an NVM in which each
of the competing species can invade lattice sites within dif-
ferent ranges. The motivation of the model is in the context
of species interactions and competition-dispersal tradeoffs.
Therefore, longer dispersal distances are penalized with
lower probability of displacing nonspecific individuals from
a lattice site. Using this model, we study whether and in

which conditions a competition-dispersal tradeoff and exter-
nal noise (mimicking immigration) may give rise to species
coexistence. To address this question, we develop a pair ap-
proximation and perform Monte Carlo simulations of the
model that unveil the existence of various dynamical regimes.
We find that both monostable and bistable coexistence of
species is possible if the competition-dispersal tradeoff and
immigration act simultaneously, and determine the conditions
and parameter regimes that lead to each of these scenar-
ios. As a by-product, we show that in the limit of no
immigration—the original model studied in Ref. [29]—the
pair approximation provides a qualitative description of the
transition between species dominance.

The outline of the paper is the following. The model and
its dynamics are defined in Sec. II. In Sec. III we develop
the pair approximation approach and study the cases with and
without immigration separately. Monte Carlo results in both
one- and two-dimensional lattices are given in Sec. IV, and
we summarize our results and provide some conclusions in
Sec. V.

II. THE MODEL

We consider an invasion process in which two species,
labeled by C and D, compete for a territory represented by
a one-dimensional lattice of N sites and periodic boundary
conditions. We will extend our results to two-dimensional
lattices in Sec. IV B. Because the dynamics runs on a reg-
ular lattice, it is equivalent to a voter updating rule [31].
Each of the N sites is occupied by one individual of ei-
ther species C or D. Species differ on how they balance a
competition-dispersal tradeoff. Individuals from species C (C
stands for competitors) can colonize only one of their two
nearest-neighbor sites, whereas individuals from species D
(D stands for dispersers) can colonize any other site of the
lattice. To account for the cost of enhanced dispersal range
typical of competition-colonization tradeoffs, dispersers have
a reduced local competition strength. D replicates have a
probability gD = g � 1 of replacing resident individuals after
dispersal, while competitors establish with probability gC =
1. The macroscopic state of the system is determined by the
fraction of sites occupied by competitors and dispersers, ρC

and ρD, respectively, with ρD(t ) + ρC(t ) = 1 for all times
t � 0.

In a single time step dt = 1/N of the dynamics, one of the
two following processes takes place (see Fig. 1):

(i) Immigration: With probability p, one individual is
chosen at random and replaced by an individual from the
other species with species-dependent probability. A disperser
is replaced by a competitor with probability one, while a
competitor is replaced by a disperser with establishment prob-
ability g. This updating rule, which results in an external noise,
represents the immigration of individuals from other patches.

(ii) Recruitment: With the complementary probability 1 −
p, one randomly chosen individual replicates. Following repli-
cation, this individual can potentially invade a site chosen
at random within its species-specific neighborhood (dispersal
range). A competitor invades a nearest-neighbor (NN) site
with probability 1, while a disperser invades any other site
of the lattice with probability g.
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FIG. 1. Model schematic. Each site of a one-dimensional regular
lattice is occupied by one individual that belongs to either species
C (red circles) or D (blue circles). At each time step, one of two
possible events takes place. With probability p, one individual is
randomly chosen and replaced by an individual of the other species
with establishing probabilities gC = 1 and gD = g for C and D
species, respectively (immigration). With the complementary prob-
ability 1 − p, one randomly chosen individual reproduces, and, with
the species-dependent establishing probability defined for immigra-
tion, its offspring invades a site chosen at random within its dispersal
range

Note that the model accounts for two different dispersal
processes that act independently of each other: interpatch
dispersal, represented by immigration, and intrapatch dis-
persal following individual reproduction. We assume that
each of these processes is mediated by different mech-
anisms, and therefore immigration is independent of the
competition-colonization tradeoff. Specifically, we consider
that immigration is mediated by external factors that are
species-independent. Therefore, both dispersers and competi-
tors arrive at the patch at the same rate, and the external noise
that models immigration is symmetric. Conversely, we assume
that the colonization-competition tradeoff is determined by
physiological species-dependent properties of the individual,
such as seed size or spore size [9,18]

Given this set of ingredients, we investigate the competi-
tion between a nearest-neighbor and a mean-field dispersal
strategy in which enhanced dispersal comes at the cost of
a lower competitive ability at the local scale. The combina-
tion of the external noise introduced by immigration and the
differences in dispersal ranges and site colonization probabil-
ities between species constitutes the unique ingredient of our
model with respect to previous versions of the voter model
or invasion process and posterior applications in biological
dynamics [29].

III. PAIR APPROXIMATION ANALYSIS OF THE MODEL

In this section we develop an analytical approach that cap-
tures the most salient features of the behavior of the model.
This approach is based on a pair approximation (PA), a mo-
ment closure approximation that takes into account the spatial
correlations between the states of individuals that are first
neighbors in the lattice [8,24,27,54,55], similar to that used
in Ref. [56]. We start by analyzing the case in which there
is only recruitment, and thus the dynamics is reduced to that
of two species, C and D, which compete for territory by
simple invasion. We then incorporate the external noise into
the analysis to explore how immigration affects the steady
state of the system.

A. Only recruitment case: p = 0

1. Derivation of pair approximation equations

When there is no immigration (p = 0), the only control
parameter is the cost of long-range dispersal, represented by
the establishment probability g of dispersers. In this limit, our
model reduces to that proposed by Durrett and Levin [29].
Using a PA, we extend their analysis and provide an analytical
support to the results observed in numerical simulations. First,
we bound the range of values of the establishment probability
for which the model is bistable. Second, within the bistable
phase, we provide an estimation for the relation between ini-
tial competitor density and establishment probability at which
the system undergoes a transition from competitor to disperser
dominance.

We consider that the fraction of sites occupied by competi-
tors (C sites), ρC, evolves in the N → ∞ limit according to
the following rate equation:

dρC

dt
= W +(ρC) − W −(ρC), (1)

where W +(ρC) = W (ρC → ρC + 1/N ) and W −(ρC) =
W (ρC → ρC − 1/N ) are, respectively, the gain and loss
transition probabilities in a time step dt = 1/N . These
probabilities can be estimated using a PA in which
correlations to second nearest neighbors are neglected.
The transition W − is calculated as

W −(ρC) = gρC(1 − ρC). (2)

That is, in a single time step a D site is selected at random
for replication with probability P(D) = ρD = 1 − ρC. Then a
random C site is chosen with probability ρC, which changes to
state D with probability g (D-offspring establishment). Anal-
ogously, W + is estimated as

W +(ρC) = ρC P(D|C) = ρCD, (3)

where ρCD is the fraction of neighboring CD pairs, i.e., the
fraction of NN sites occupied by a competitor and a disperser.
That is, with probability P(C) = ρC a C site is randomly
chosen, which then invades a NN site that is in state D
with probability P(D|C), where P(D|C) = P(CD)/P(C) =
ρCD/ρC is the conditional probability that a D site is a NN
of a C site.
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Replacing Eqs. (2) and (3) into Eq. (1), we arrive at

dρC

dt
= ρCD − gρC(1 − ρC). (4)

As the equation for ρC depends on the density of CD
pairs, we next have to derive an equation for ρCD to obtain
a closed system. For this calculation we need the complete set
of conditional probabilities

P(C|D) = ρCD

ρD
, (5a)

P(C|C) = ρCC

ρC
= 1 − ρCD

ρC
, (5b)

P(D|C) = ρCD

ρC
, (5c)

P(D|D) = ρDD

ρD
= 1 − ρCD

ρD
, (5d)

where we have used the relations

ρCD + ρCC = ρC and ρCD + ρDD = ρD (6)

that reflect the conservation of the fraction of pairs and sites.
The rate equation for ρCD reads

dρCD

dt
= 2W +(ρCD) − 2W −(ρCD), (7)

where the prefactor 2 comes from the change in ρCD by 2/N in
a single update. To calculate the gain and loss transition proba-
bilities W +(ρCD) = W (ρCD → ρCD + 2/N ) and W −(ρCD) =
W (ρCD → ρCD − 2/N ), respectively, we consider the possible
transitions that lead to a change in the density of CD pairs. For
instance, if σ is a discrete variable that denotes the state of
a lattice site, σi = {C, D}, the transition CDC → CCC takes
place when a randomly chosen site i in state σi = C invades
a NN site i + 1 in state σi+1 = D, whose other neighboring
site i + 2 is in state σi+2 = C. This happens with probability
P(CDC → CCC) = P(C)P(D|C)P(C|DC). Within a PA, the
probability P(C|DC) that σi+2 = C given that σi+1 = D and
σi = C can be approximated as P(C|D) if we neglect correla-
tions between σi+2 and σi. Therefore, using Eqs. (5) we have
P(CDC → CCC) � ρ2

CD/ρD. Calculating in the same way all
possible transition probabilities that lead to a change in ρCD in
a time step, we obtain

W +(ρCD) = P(CCC → CDC), (8a)

W −(ρCD) = P(DCD → DDD) + P(CDC → CCC), (8b)

where

P(CCC → CDC) � g (1 − ρC)(ρC − ρCD)2

ρC
, (9a)

P(DCD → DDD) � g (1 − ρC)ρ2
CD

ρC
, (9b)

P(CDC → CCC) � ρ2
CD

1 − ρC
. (9c)

The first two probabilities, Eqs. (9a) and (9b), correspond to
the transition C → D due to the long-range invasion of a dis-

FIG. 2. Bifurcation diagram of the model predicted by the pair
approximation with p = 0. A PA analysis predicts a region of C
dominance for 0 � g < 1/2 and a bistability region for 1/2 < g � 1.
Solid and dashed lines indicate the stable and unstable fixed points,
respectively.

perser, which happens with probability g. The other possible
transitions CDD → CCD and CCD → CDD do not generate
a change in ρCD, and thus they are omitted.

Finally, combining Eqs. (7)–(9) we obtain the following
equation for the evolution of ρCD:

dρCD

dt
= 2g(1 − ρC)(ρC − 2ρCD) − 2ρ2

CD

1 − ρC
. (10)

The closed system of Eqs. (4) and (10) for ρC and ρCD repre-
sents an approximate macroscopic description of the evolution
of the system, which we analyze below.

2. Analysis of pair approximation equations

We are interested in the behavior of the stationary value of
ρC as the germination probability g is changed. The system
of coupled equations (4) and (10) has two trivial fixed points
(ρ∗

C, ρ∗
CD) = (0, 0) and (1,0), corresponding to the complete

dominance of dispersers and competitors, respectively, and a
third nontrivial fixed point

�ρco
∗ =

(
2g − 1

g
,

(1 − g)(2g − 1)

g

)
(11)

that represents a coexistence of both species. Note that �ρco
∗

has a physical meaning (0 � ρ∗
C � 1 and 0 � ρ∗

CD � 1) only
for 1/2 � g � 1, while �ρco

∗ lies on the negative quadrant
ρ∗

C < 0 and ρ∗
CD < 0 for 0 � g < 1/2. Starting from a given

initial condition �ρ0 = (ρC(0), ρCD(0)), the system evolves to-
wards one of the three fixed points whose basin of attraction
contains the initial point �ρ0. In Appendix A we perform a
linear stability analysis that leads to the following picture
(Figs. 2 and 3):

(1) For 0 � g < 1/2, as discussed above, the coexistence
point �ρco

∗ is a nonphysical state. The fixed point (1,0) is stable
and (0,0) is a saddle point. Starting from any physical situation
[ρC(0) > 0 and ρCD(0) > 0] the system ends in the (1,0) fixed
point corresponding to a C dominance (Fig. 2)

(2) For 1/2 < g � 1 the fixed points (0,0) and (1,0) are
stable and �ρco

∗ is a saddle point (Fig. 2). Therefore, the system
is in a bistable phase where, depending on the initial condition
and g, the final state is either the one of competitor (1,0) or dis-
perser (0,0) dominance (Fig. 2). That is, the system falls into
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FIG. 3. Phase diagram of the model without immigration (p =
0). Color background represents the stationary state in the MC sim-
ulations of the stochastic dynamics. Competitors dominate in the
red region, and dispersers dominate in the blue region. The white
dashed line indicates the prediction of the pair approximation for
the transition from competitor dominance to disperser dominance.
We conducted the MC simulations on a one-dimensional lattice with
N = 105 and ran 100 independent realizations for each (ρC(0), g)
pair.

(1,0) for g < gT and into (0,0) for g > gT, where gT = gT( �ρ0)
is a transition point that depends on the initial state �ρ0. In
Fig. 3 we plot the transition line in the g–ρC(0) phase dia-
gram for an initial condition �ρ0 = (ρC(0), ρC(0) ρD(0)) that
corresponds to a density ρC(0) of individuals uniformly dis-
tributed over the lattice. For instance, for an initial condition
that corresponds to uniform densities ρC(0) = ρD(0) = 1/2
[ρCD(0) = 1/4] we found gT � 0.68 by integrating Eqs. (4)
and (10) numerically. The trajectories of the system for var-
ious values of g are depicted in the ρC-ρCD flow diagram of
Fig. 4. We can see that the final point of the trajectory starting
at (1/2, 1/4) changes at gT [Fig. 4(b)].

In summary, the analytical approach developed in this
section predicts that the stable coexistence of species is not
possible for any value of g when there is only recruitment
(p = 0), and thus either competitors or dispersers dominate
the space in the final stationary state. Specifically, for g in the
range [0, 1/2) competitors dominate for all initial densities
ρC(0) > 0, while for g in (1/2, 1] the model is bistable and
the final state depends on the initial condition �ρ0 [29]. That
is, either competitors dominate for g < gT( �ρ0) (left side of
the white dashed line in Fig. 3) or dispersers dominate for
g > gT( �ρ0) (right side of the white dashed line).

B. Recruitment and immigration: p > 0

We now study the model when, besides recruitment, im-
migration from other patches is taken into account (p > 0).
Immigration can be implemented in our model via an external
noise that spontaneously switches the identity of the species
that occupies a lattice site (note the similarity with the noisy
voter model). We concluded from the previous section that

(a)

(b)

FIG. 4. Schematic flow diagram of the system in the ρC-ρCD

plane. The stable fixed points (0,0) and (1,0) denoted by black disks
represent the dominance of D and C species, respectively. (a) The es-
tablishment probability is kept constant at g = 0.72 (bistable phase)
and the initial condition varied along the curve ρCD = ρC(1 − ρC)
(gray curve). The semifilled disk indicates the position of the saddle
node for the value of g used. (b) The initial condition is kept constant
at (ρC(0) = 1/2, ρCD(0) = 1/4), and the establishment probability
g varies in a way that trajectories change the ending point at the
transition value gT � 0.68 from competitor to disperser dominance.
The black dashed curve given by ρCD = ρC(1 − ρC)/(2 − ρC) corre-
sponds to the line of all coexistence saddle points �ρco

∗ for values of
g in [0,1].

recruitment acting alone leads to the dominance of one of the
species, either competitors or dispersers, for all values of g and
physical initial conditions. In this section, we study how these
stable states are affected by the external noise of amplitude p.

1. Pair approximation equations

The rate equations for this case can be obtained by follow-
ing the same approach introduced in Sec. III A. We obtain

dρC

dt
= (1 − p)[ρCD − gρC(1 − ρC)]

+p[1 − (1 + g)ρC], (12a)

dρCD

dt
= 2(1 − p)

[
g(1 − ρC)(ρC − 2ρCD) − ρ2

CD

1 − ρC

]
+2p[1 − (1 − g)ρC − 2(1 + g)ρCD]. (12b)

The first terms in Eqs. (12) with the prefactor 1 − p cor-
respond to the changes in the densities due to a recruitment
event, already derived in Sec. III A. The second terms, with
the prefactor p, represent a change due to immigration, as
we describe next. The gain (loss) transition probability for ρC

is W +(ρC) = (1 − ρC) [W −(ρC) = gρC], which corresponds
to selecting a D site (C site) at random and switching its
state with probability 1 (g). Then the net change W +(ρC) −
W −(ρC) leads to the second term of Eq. (12a).
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(a) (b) (c)

FIG. 5. (a) Phase diagram on the p-g space showing the region of bistable coexistence obtained from the pair approximation Eqs. (12)
(black solid line) and MC simulations (gray region). The dotted-dashed-cyan and dashed-orange lines indicate the immigration probability
p = 0.01 and the establishment probability g = 0.75 studied in detail in panels (b) and (c), respectively. (b) Stationary density of competitors
ρ∗

C vs g for p = 0.01. The system exhibits a classical hysteresis loop. (c) Stationary density of competitors ρ∗
C vs p for g = 0.75. The system

exhibits a discontinuous transition at pc, from a bistable phase to a monostable phase. In panels (b) and (c), solid curves correspond to PA
stable fixed points, dashed curves to PA unstable fixed points, and circles are MC simulation results.

For ρCD, the transition probabilities are

W +(ρCD) = P(CCC → CDC) + P(DDD → DCD),

(13a)

W −(ρCD) = P(DCD → DDD) + P(CDC → CCC),

(13b)

with

P(CCC → CDC) � g (ρC − ρCD)2

ρC
, (14a)

P(DDD → DCD) � (1 − ρC − ρCD)2

1 − ρC
, (14b)

P(DCD → DDD) � gρ2
CD

ρC
, (14c)

P(CDC → CCC) � ρ2
CD

1 − ρC
. (14d)

Then the resulting net change 2W +(ρCD) − 2W −(ρCD)
calculated from Eqs. (13) and (14) gives, after doing some
algebra, the second term of Eq. (12b).

2. Analysis of pair approximation equations

We now analyze the steady state of the system in the
entire p-g space using Eqs. (12). In Appendix B we show that
Eqs. (12) have four fixed points, whose analytical expressions
are hard to obtain. Instead, we estimated the fixed points by
finding numerically the roots of a polynomial of degree four,
within an error of ∼10−7. Because we are interested in phys-
ical density values, we focus only on ρ∗

C in the interval [0,1].
Results are summarized in the phase diagram of Fig. 5(a),
which we describe next:

(1) For 0 � g � 1/2 there is only one coexistence fixed
point in [0,1], ρ∗

C, which is stable for 0 � p � 1. The sta-
tionary density of competitors in this so-called monostable
phase decays as p increases, from ρ∗

C = 1 for p = 0 (shown in
Sec. III A and corresponding to survival only of competitors),
to ρ∗

C = 1/(1 + g) for p = 1 [from Eq. (12a)]. Thus, for any
p > 0 we have a situation with one single stable coexistence

of the two species. We note that in this coexistence regime,
competitors are always more abundant than dispersers for any
p and g.

(2) For 1/2 < g � 1 the most relevant feature is the ap-
pearance of a small region of bistability for small values of
p, where there are three fixed points [see phase diagram, or
stability diagram [57], in Fig. 5(a)]: two stable, ρ1

C and ρ3
C,

and one unstable, ρ2
C, with ρ1

C < ρ2
C < ρ3

C. This corresponds
to a situation with two different stable coexistences ρ3

C > ρ1
C

(i.e., ρ1
C is a stable coexistence with more dispersers than

competitors, and ρ3
C is the opposite situation). All along the

upper (lower) boundary of the bistability region [black lines
in Fig. 5(a)], the model has saddle-node bifurcations in which
one of the stable fixed points ρ3

C(p) [ρ1
C(p)] merges with the

unstable fixed point ρ2
C(p) and both disappear. At the tip of the

bistability region, where its upper and lower boundary meet,
the system has a cusp point.

Different transects of the p-g space keeping one of the
parameters fixed show different ρ∗

C vs p (or ρ∗
C vs g) bifur-

cation diagrams with important ecological implications for
the population dynamics. A bifurcation diagram ρ∗

C vs g with
p = 0.01 shows that the establishment probability controls
a classical hysteresis loop between two species-coexistence
states, ρ3

C(p) and ρ1
C(p) [Fig. 5(b)]. A bifurcation diagram ρ∗

C
vs p with g = 0.75 above the cusp point [Fig. 5(c)] shows an
imperfect pitchfork bifurcation. Here the lower piece consists
entirely of stable fixed points ρ1

C(p), while the upper piece
shows a saddle-node bifurcation in which a stable and an
unstable fixed point, ρ3

C(p) and ρ2
C(p), respectively, approach

to each other as p increases from 0, until p = pc where they
meet and disappear. Conversely, if g is kept constant below the
cusp point, a bifurcation diagram ρ∗

C vs p shows a reversed
imperfect pitchfork, as compared to the above-cusp transect
discussed before, where the upper branch of the bistable con-
nects with the branch in the monostable region (not shown).
Finally, at the cusp point the system shows a perfect pitchfork
bifurcation.

Both imperfect pitchfork bifurcations include a saddle-
node bifurcation at pc that defines a discontinuous transition in
the density of competitors and a half hysteresis loop with im-
portant ecological consequences (cusp catastrophe). If we set
p = 0 and g = 0.75 [above the cusp point, Fig. 5(c)] and start
the system from the absorbing state ρ∗

C = 1 corresponding to
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the dominance of species C, the system follows the upper
branch ρ3

C(p) as p increases, and undergoes a sharp transition
at pc where the stationary density of species C jumps from
ρ3

C(pc) � 0.755 to a lower value ρ1
C(pc) � 0.337, and then

increases until it reaches the value ρ1
C(1) = 2/3 at p = 1.

However, the reverse path from p = 1 to p = 0 is always
along the stable branch ρ1

C(p) until the point ρ1
C(0) = 0, cor-

responding to D dominance. Thus, once the system falls into
the lower branch it can never reach a state with the dominance
of C, and not even a density ρ∗

C larger than 1/(1 + g). From
an ecological point of view, this half loop represents an even
more dangerous transition for population persistence than the
usual hysteresis loops like the one in Fig. 5(b), since the
initial C dominance can never be recovered once the system
overcomes the threshold pc.

In summary, when external noise is added to the system,
two new phases of species coexistence appear, one with a
unique stable coexistence and the other with two stable co-
existences. The stationary densities in both phases vary with
the germination and immigration probabilities g and p.

IV. MONTE CARLO RESULTS

A. One-dimensional lattice

The pair approximation developed in the previous sec-
tions provides a qualitative description of the model dynamics
and is a good first approach to determine the dynamical
regimes present in our model. However, the PA assumes that
the system is infinitely large and takes into account only
nearest-neighbor correlations. Hence, finite-size fluctuations
and longer-distance correlations are neglected. To test the
validity of the PA assumptions we present here results from
extensive Monte Carlo (MC) simulations of the individual-
level stochastic dynamics described in Sec. II. We started the
simulations with a one-dimensional regular lattice in which
each site is occupied with a competitor or a disperser with
probabilities ρC(0) and 1 − ρC(0), respectively. Then we ran
the stochastic dynamics of Fig. 1 until the system reached the
stationary state.

In the no-immigration limit (p = 0), all realizations
eventually reach one of the two possible absorbing states
[Figs. 6(a) and 6(b)], confirming the species exclusion pre-
dicted by the PA calculations and numerical simulations in
Ref. [29]. Also in agreement with PA predictions, the system
undergoes a transition from competitor dominance to bistable
dominance as the establishment probability g increases (note
that in Fig. 3 dispersers are always excluded for low g, but the
dominant species depends on the initial condition for large
g). However, MC simulations place the onset of bistability
at g(p = 0) = 0.303, whereas PA calculations give an esti-
mated value g = 1/2. To obtain the MC transition point to the
bistable phase we ran spreading experiments on a lattice with
N = 105 and an initial condition consisting on all-dispersers
with only a triplet of competitors located in the central sites
of the lattice. Starting from this initial condition and using a
resolution in g of 10−3, we found that the system undergoes a
transition from disperser dominance to competitor dominance
at g(p = 0) � 0.303.

(a)

(c)

(e) (f)

(d)

(b)

FIG. 6. Single realizations of the stochastic particle dynamics
starting at different initial densities of competitors (color code as
indicated in the legend). Except in panel (d), N = 105 and initial
density of competitors goes from ρC = 0.9 (top) to ρC = 0.1 (bot-
tom). Note the different timescales in each panel. (a) No immigration
(p = 0) and g = 0.15 (competitor monostable dominance). (b) No
immigration and g = 0.75 (bistable dominance). (c) p = 0.035 and
g = 0.7 (bistable coexistence). (d) The same parameter values than
(e) but smaller system size, N = 103, allow finite-size fluctuations
to induce transitions between the two coexistence points. (e) p = 0.1
and g = 0.9 (monostable coexistence with more dispersers than com-
petitors). (f) p = 0.5 and g = 0.5 (monostable coexistence with more
competitors than dispersers).

A better analytical estimation of g(p = 0) can be obtained
by noticing that, for a very small initial density of competitors
ρC (0) � 1, the dynamics is akin to that of the contact process
for disease spreading [29] where competitors and dispersers
are considered as infected and susceptible individuals, respec-
tively. In this case, the gain and loss transition probabilities
Eqs. (2) and (3) are reduced to ρC and gρC , respectively, which
corresponds to a contact process where infected individuals
transmit the disease to a nearest neighbor at rate 1/dt and they
recover at rate g/dt . Then the disease-free state (dispersers’
dominance) loses stability when the ratio 1/g overcomes the
transition value 3.2978 for a one-dimensional system [58],
i.e., at g � 0.3032, which is in very good agreement with our
MC simulations.

On the other hand, for a fixed initial density of com-
petitors, the establishment probability g controls a transition
from competitor dominance at low g to disperser dominance
at high g. This transition is continuous for small systems,
indicating that finite-size fluctuations can cause the extinction
of the species that is favored by a specific value of g. As
system size increases, however, the transition gets sharper,
probably becoming discontinuous for infinite systems (Fig. 7).
However, the transition point from competitor to disperser
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FIG. 7. Disperser survival probability, SD, as a function of dis-
perser establishment probability calculated from MC simulations in
different system sizes (gray symbols and dashed lines). For each
system size and establishment probability, we ran 1000 independent
model realizations and calculated disperser survival probability as
the fraction of realizations in which dispersers excluded competitors
(i.e., the system reached the absorbing state ρC = 0). The vertical,
thinner red dashed line shows the PA estimated value of gT and the
vertical, thicker blue dashed line the MC estimated value of gT for
N = 105.

dominance gT, which we defined as the lowest value of the
establishment probability for which dispersers are more likely
to survive than competitors, SD > 1/2, is almost independent
of system size. The pair approximation analysis also predicts
this transition, but it overestimates the value of gT except for
very high initial densities of competitors (note the difference
between the white dashed line and the red-blue frontier in
Fig. 3). For the specific case of ρ(0)C = 0.5 shown in Fig. 7,
MC simulations give an estimated gT ≈ 0.64 (for N = 105)
and the PA predicts gT ≈ 0.68.

MC simulations qualitatively corroborate PA predictions
when immigration is allowed (p 
= 0) too. First, we tested
the existence of bistable coexistence in MC simulations. For
various values of p and g, we ran simulations with two
different initial densities of competitors, ρC(0) = 0.99 and
ρC(0) = 0.01, and calculated the mean density of competi-
tors in the steady state for each of them. Because we used
large systems, we do not observe noise-induced transitions
between steady states within each realization, which allowed
us to use the difference between the mean density of com-
petitors for each initial condition as a test for bistability [see
Figs. 6(c) and 6(d) for a comparison of model realizations
in the bistable phase using different system sizes]. Finally,
because the system loses bistability through a catastrophic
transition, this difference jumps abruptly from a nonzero to
a zero value [see Fig. 5(c)]. We placed the frontier of the
bistable phase at the values of p and g for which the difference
in the stationary mean density of competitors reached from
ρC(0) = 0.99 and ρC(0) = 0.01 is smaller than 10−5. Using
this definition, MC simulations confirm that the model may
show bistable coexistence if immigration is weak (0 < p �
0.06). That is, species reach a steady state of coexistence
in which the density of each species depends on the initial
conditions [light gray region in Fig. 5(a)]. When immigra-
tion becomes more frequent (p increases), bistability is lost
but species still coexist at varying population proportions.

FIG. 8. Mean density of competitors in the stationary state, 〈ρC〉,
obtained from MC simulations with a system size N = 105. Aver-
ages are taken both in time (once the system is in the stationary
state 105 > t > 5 × 105) and over 50 independent realizations. The
thicker contour indicates 〈ρC〉 = 0.5. In the region above (below)
this contour, dispersers (competitors) dominate, with more intense
blue (red) representing an increasing frequency of dispersers (com-
petitors). The top panels show 〈ρC〉 obtained in the bistable phase
(black region of the main panel) for two different initial conditions
[ρC(0) = 0.99 (left) and ρC(0) = 0.01 (right)].

For large establishment probability and weak immigration
probability, dispersers dominate the population [blue region
on the top-left corner of Fig. 8; Fig. 6(e)] However, when
immigration probability increases and establishment proba-
bility decreases, competitors take over [Fig. 6(f); red region
in Fig. 8]. In the only-immigration limit (p = 1) the dis-
persal component of the competition-dispersal tradeoff is
immaterial, and the frequency of each species in the mix
is determined by its probability to establish following an
immigration event. Species therefore coexist at a mean den-
sity of competitors 〈ρC〉 = 1/(1 + g), as predicted by the PA
approximation.

B. Two-dimensional lattice

To test the generality of our one-dimensional results, we
conducted numerical simulations in a two-dimensional reg-
ular lattice of lateral length � and using periodic boundary
conditions. In this case, competitors can invade one of their
four nearest neighbors upon recruitment and dispersers any
other lattice site. All the other model components follow the
one-dimensional dynamics introduced in Sec. II.

These numerical simulations confirm that the behavior of
the model in one-dimensional systems can be qualitatively
extended to two dimensions. In the no-immigration limit (p =
0) we find that competitors dominate at low disperser estab-
lishment probability g, while for high values of g a bistable

032406-8



SPECIES EXCLUSION AND COEXISTENCE IN A NOISY … PHYSICAL REVIEW E 103, 032406 (2021)

dominance is observed. Starting with very low densities of
competitors, our model without immigration can be mapped
to a contact process following the same rationale discussed
in Sec. IV A for the one-dimensional case. We estimate a
transition from competitor dominance to bistable dominance
at g ≈ 0.606, in good agreement with results for the contact
process in two-dimensional regular lattices [58]. When im-
migration is allowed, the system reaches a stationary state of
monostable species coexistence in most of the (p, g) parame-

ter space (Fig. 9), but bistable coexistence is also possible for
low p and large g (black region in Fig. 9).

Implementing a PA approach akin to that developed in
Sec. III for the model in a one-dimensional lattice, we ob-
tained the following approximate equations for the evolution
of the system in two-dimensional regular lattices (see Ap-
pendix C for the general derivation of the PA equations in
d-dimensional lattices):

dρC

dt
= (1 − p)[ρCD − gρC(1 − ρC)] + p[1 − (1 + g)ρC], (15a)

dρCD

dt
= (1 − p)

[
2g(1 − ρC)(ρC − 2ρCD) + ρCD − 3ρ2

CD

1 − ρC

]
+ 2p[1 − (1 − g)ρC − 2(1 + g)ρCD], (15b)

which further confirms the existence of the cusp catastrophe
found in MC simulations in two-dimensional lattices (white
line in Fig. 9).

V. SUMMARY AND CONCLUSIONS

In this article we introduced a modified version of the
noisy voter model to investigate the competition between two
species to colonize a territory. The two species differ in their
dispersion range and their ability to invade sites. Specifically,
one of the species is able to disperse offspring to any lat-
tice site but they have a reduced probability of establishing
upon dispersal g � 1, whereas the other species’ offspring
can reach only nearest-neighbor sites but replace nonspecific

FIG. 9. Mean density of competitors in the stationary state, 〈ρC〉,
obtained from MC simulations in a two-dimensional lattice with
lateral length � = 200. Note the different scale in the axes compared
to Fig. 8. Averages are taken both in time (once the system is in
the stationary state, 105 > t > 5 × 105) and over 50 independent
realizations. The thicker contour indicates 〈ρC〉 = 0.5. In the region
above (below) this contour, dispersers (competitors) dominate, with
more intense blue (red) representing an increasing frequency of dis-
persers (competitors). The black region indicates the bistable phase,
which was determined by identifying the combination of p, g values
that lead to different stationary states when starting simulations with
different initial conditions [ρC(0) = 0.99 (left) and ρC(0) = 0.01
(right)]. The white line limits the region of bistability predicted by
the pair approximation (see Appendix C for full derivation).

residents with probability 1. The model also accounts for
immigration, which causes the spontaneous replacement of
individuals belonging to one species by individuals of the
other species. The timescale of the immigration process com-
pared to that of recruitment is controlled by a parameter p that
measures how often immigration events take place compared
to reproduction. We conducted an intensive numerical and
analytical study of the model in one- and two-dimensional
lattices.

The different ways in which each of the two species bal-
ances a competition-dispersal tradeoff, together with the effect
of immigration, lead to a rich variety of possible competition
outcomes that depend on the relation between the germination
probability g and the frequency of immigration events p. For
the one-dimensional system, in the absence of immigration
(p = 0) the system eventually reaches an absorbing state in
which one of the species is excluded and the other occupies
the entire territory. For g � 0.303, the ability of dispersers
to invade distant sites is not enough to compensate their low
chances of establishing upon dispersal, resulting in a domi-
nance of competitors regardless of the initial composition of
the population. At g ≈ 0.303, however, the system undergoes
a transition to a bistable phase in which either of the species
can outcompete the other depending on the initial composition
of the population. PA calculations qualitatively recapitulate
these results, but overestimate the onset of bistability (gT =
1/2). In two-dimensional systems, the transition from monos-
table to bistable dominance occurs for larger values of g than
in one-dimensional g ≈ 0.606 lattices, and the PA approxima-
tion also overestimates the onset of bistability (gT = 3/4).

This bistable dominance observed for large values of g
when p = 0 is extended to a situation of bistable coexis-
tence of both species when immigration is allowed but weak
(0 < p < pc(g)). In this bistable phase, there are two possible
stable steady states that correspond to two different case sce-
narios of asymmetric coexistence in which one species has a
larger stationary density than the other. For values of p larger
than a threshold pc(g) the bistability is lost and replaced by
a monostable coexistence, which is also observed for g �
0.303 (1D) or g � 0.606 (2D) if p 
= 0. These results are also
qualitatively supported by a pair approximation both in one-
and two-dimensional lattices. In this region of monostable
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coexistence, competitors dominate for most (p, g) parame-
ter combinations because immigration is species independent
and competitors have a larger establishment probability. In
the limit p = 1 the dynamics reduces to a sequence of im-
migration events, and both species coexist at a frequency
that is determined by dispersers establishment probability g,
〈ρC〉 = 1/(1 + g).

At pc(g), the transition between the bistable and the
monostable phase is abrupt, and gives rise to an irreversible
hysteresis loop in the stationary density of competitors. In
this dynamical regime and starting from a stationary pop-
ulation with a high abundance of competitors, the density
of competitors decreases as p increases. When p overcomes
the threshold pc(g), the system becomes monostable and
the population jumps abruptly to a much lower density of
competitors, which are now less abundant than dispersers.
Mathematically, this means that the system jumps from the
upper to the lower stable branch of the stable equilibria. Fol-
lowing this abrupt transition, the system always moves along
the lower branch as p is varied, and it can never jump back
to the upper branch. As a consequence, if p goes back to
very low values, the population moves towards a high dom-
inance of dispersers, and it is not possible for competitors
to take over and become more abundant than dispersers any-
more. In a real ecological system, this irreversible path might
bring important consequences for the persistence of species
with short colonization ranges, especially in time-varying
environments with seasonal or fluctuating dispersal rates
[59–62]. Future work should focus on better understanding
this dynamics and its potential consequences for biodiversity
maintenance.

Our results also suggest other possible directions for
future work. We have shown that in voter-like models
(also termed replacement models in the ecological literature
[63,64]) a competition-dispersal tradeoff only allows long-
term species coexistence when coupled to immigration. Our
model, however, provides an analytically tractable frame-
work to investigate whether spatial heterogeneity, either in
the establishment probability or in the dispersal range, could
promote species coexistence even without immigration [65].
Moreover, we have considered that dispersers have an infinity
dispersal range, which facilitated the analytical treatment of
the model. Relaxing this assumption to allow large but finite
dispersal ranges [29] could provide deeper insights into the
role that competition-dispersal tradeoffs play in determining
the conditions for species coexistence in more realistic com-
munities [66]. Finally, it would be interesting to extend our
model to consider species-specific immigration probabilities.
Our results show a large region of the parameter space in
which competitors dominate over dispersers, which is likely
due to the fact that in the high immigration limit individuals
from each species arrive at the same rate but have different
establishment probabilities. Favoring the arrival of dispersers
over competitors, assuming that both intrapatch and interpatch
dispersal are mediated by the same mechanism, would proba-
bly balance this difference. From a theoretical point of view,
it would be worthwhile to explore other possible dynamics
that could lead to coexistence in voter-like models, such as
those implemented in the nonlinear voter models for social
dynamics [36,67,68].
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APPENDIX A: STABILITY ANALYSIS FOR THE p = 0
CASE

We start by analyzing the stability of the trivial fixed point
(0,0). For that, we linearize Eqs. (4) and (10) around (0,0) and
obtain the following system written in matrix representation:

d�ε
dt

= A �ε,
with

A ≡
(−g 1

2g −4g

)

and �ε ≡ (ε1, ε2), where the components of �ε are small in-
dependent perturbations of the fixed (0,0), i.e., ρC = ε1 and
ρCD = ε2. The eigenvalues of A are

λ± = 1

2

[−5g ±
√

g(9g + 8)
]
.

Then (0,0) is a stable fixed point along the direction associated
to λ− for all values of g in [0,1], while it is stable for g > 1/2
and unstable for g < 1/2 along the direction associated to λ+.
Therefore, (0,0) is stable for g > 1/2 and a saddle point for
g < 1/2.

A similar stability analysis around the coexistence fixed
point �ρco

∗ = ( 2g−1
g ,

(1−g)(2g−1)
g ) leads to the eigenvalues

λ± = 1

2

[−(2 + g) ±
√

−4 + 28g − 15g2
]
.

Then for 0.155 < g < 1.71 the eigenvalues λ± are real, while
outside this interval are complex with a negative real part.
Given that the physically possible values of g are in the in-
terval [0,1], we find that �ρco is a stable spiral fixed point for
0 � g < 0.155. As well, for 0.155 < g < 1/2 both λ± are real
and negative, and so �ρco is stable, while for 1/2 < g � 1 is
λ− < 0 and λ+ > 0, and so �ρco is a saddle point. Finally, the
fixed point (1,0) is stable for all g ∈ [0, 1].

In summary, �ρco
∗ and (1,0) are stable for 0 � g < 1/2,

while (0,0) and (1,0) are stable for 1/2 < g � 1. We have
checked numerically that for 0 � g < 1/2, starting from a
“nonphysical” initial condition with ρCD(0) < 0, the evolu-
tion of ρC(t ) and ρCD(t ) exhibits dumped oscillations in its
approach to the fixed point �ρco

∗, while for any real physical
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initial condition ρCD(0) > 0 and ρC(0) > 0 the evolution is
towards the stable fixed point (1,0). Also, for 1/2 < g � 1
the evolution is towards (0,0) or (1,0) depending on the initial
condition, as we explain in Sec. III A.

APPENDIX B: FIXED POINTS FOR THE p > 0 CASE

In this section we show how to obtain numerical estimates
of the fixed points of Eqs. (12) for p > 0. We set to zero the
left-hand side of Eqs. (12) and solve for ρC from Eq. (12a),
which leads to the following relation between the stationary
values of ρCD and ρC:

ρ∗
CD = gρ∗

C(1 − ρ∗
C) − p[1 − (1 + g)ρ∗

C]

1 − p
.

We now plug this expression for ρ∗
CD into Eq. (12b) at the

stationary state and obtain the condition

f (ρ∗
C) = A + Bρ∗

C +C(ρ∗
C)2 + D(ρ∗

C)3 + E (ρ∗
C)4 = 0, (B1)

assuming that ρ∗
C 
= 1, where the coefficients A, B,C, D, and

E are given by

A = 2(1 + 2g)p

1 − p
,

B = 2[−2g2 − 2p + g(1 − 7p + 2p2)]

1 − p
,

C = 2[p − g2(−5 + 4p) − g(2 − 9p + 5p2)]

1 − p
,

D = 2g[1 + 2g(p − 2) − 3p],

E = 2g2(1 − p).

The four roots of the polynomial f (ρ∗
C) from Eq. (B1) cor-

respond to the fixed points of Eqs. (12). We numerically
found the roots of f (ρ∗

C) with an approximate error of 10−7.
Depending on the values of p and g, only one root lays in
the physical interval ρ∗

C ∈ [0, 1] for 0 � g < 1/2, while one
or three roots are in [0,1] for 1/2 < g � 1, as we describe in
Sec. III B.

APPENDIX C: PAIR APPROXIMATION
IN d-DIMENSIONAL LATTICES

In this section we derive rate equations for the evolution
of ρC and ρCD in lattices of dimension d . We follow a PA
approach that is akin to that developed in Sec. III for one-
dimensional lattices, and that we now extend to a generic
dimension d � 1, where each lattice site has z ≡ 2d nearest
neighbors (NNs). In a single time step dt = 1/N , a site i with
state σi = {C, D} is chosen at random. Then either an immi-
gration event takes place with probability p or a recruitment
event happens with the complementary probability 1 − p.

Immigration. (1) With probability ρD = 1 − ρC, site i is in
state σi = D, and then its state is switched with probability 1
(σi = D → σi = C). This leads to a change �ρC = 1/N in the
density of C sites and to a net change

�ρCD = 2(z − 2 nDC)

zN
(C1)

in the density of CD–pairs, where nDC is the number of NNs
of site i that are in state C (0 � nDC � z), i.e., CD pairs
centered at σi = D. That is, if initially there are nDC CD pairs
around σi = D, the number of CD pairs after i switches state
is z − nDC (the initial DD pairs become CD pairs). This gives
a net change z − 2 nDC in the total number of CD pairs in the
system, which becomes expression (C1) for �ρCD when we
normalize by the total number of NNs pairs zN/2.

(2) With probability ρC, site i is in state σi = C, and thus it
switches state with probability g (σi = C → σi = D), leading
to the changes �ρC = −1/N and

�ρCD = 2(z − 2 nCD)

zN
, (C2)

where nCD is the initial number of CD pairs centered at σi =
C.

Assembling these factors, the average change of ρC in a
time step can be calculated as

dρC

dt
= 1

1/N

(
ρD

1

N
− gρC

1

N

)
= 1 − (1 + g)ρC, (C3)

while the average change of ρCD is given by

dρCD

dt
= ρD

1/N

z∑
nDC=0

B(nDC, z; PC|D)
2(z − 2 nDC)

zN

+ gρC

1/N

z∑
nCD=0

B(nCD, z; PD|C)
2(z − 2 nCD)

zN
,

(C4)

where B(nDC, z; PC|D) is the probability that there are nDC CD
pairs around a D site that has z NNs, and PC|D is the condi-
tional probability that a NN of a D site is a C site, and similarly
for B(nCD, z; PD|C). If we assume that the states of second
nearest neighbors are uncorrelated (pair approximation), B
becomes the Binomial distribution, with first moments

〈nDC〉 = z PC|D = z ρCD

ρD
and 〈nCD〉 = z PD|C = z ρCD

ρC
,

(C5)

where we have used expressions (5) for the conditional prob-
abilities PC|D and PD|C. Expanding Eq. (C4) we obtain

dρCD

dt
= 2 ρD

z
(z − 2〈nDC〉) + 2 gρC

z
(z − 2〈nCD〉),

(C6)

and replacing the expressions for the moments from Eq. (C5)
we finally arrive at

dρCD

dt
= 2[1 − (1 − g)ρC − 2(1 + g)ρCD]. (C7)

Recruitment. (1) Site i is in state σi = D with probability
ρD, which then chooses and invades a random site j 
= i
in state σ j = C with probability gρC (D . . .C → D . . . D).
This leads to changes �ρC = −1/N and �ρCD as given by
Eq. (C2).
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(2) Site i is in state σi = C with probability ρC, which then
chooses and invades a random NN D site j with probability
PD|C = ρCD/ρC (CD → CC). Then the associated changes are
�ρC = 1/N and �ρCD = 2[z − 2(1 + n′

DC)]/(zN ). Here the
total number of CD pairs centered at site σ j = D is nDC = 1 +
n′

DC, which is composed of the chosen CD pair and n′
DC CD

pairs over the other z − 1 NNs of j.
Combining these factors we obtain

dρC

dt
= ρCD − gρC(1 − ρC) and (C8)

dρCD

dt
= gρD ρC

1/N

z∑
nCD=0

B(nCD, z; PD|C)
2(z − 2 nDC)

zN

+ ρCD

1/N

z−1∑
n′

DC=0

B(n′
DC, z − 1; PC|D)

× 2[z − 2(1 + n′
DC)]

zN
, (C9)

= 2gρD ρC

z
(z − 2〈nCD〉) + 2ρCD

z

× (z − 2 − 2〈n′
DC〉), (C10)

which after replacing 〈nCD〉 by Eq. (C5) and 〈n′
DC〉 by (z −

1)ρCD/ρD becomes

dρCD

dt
= 2g(1 − ρC)(ρC − 2ρCD) + 2ρCD

z

×
[

z − 2 − 2(z − 1)ρCD

1 − ρC

]
. (C11)

Finally, combining Eqs. (C3) and (C7) for immigration
with Eqs. (C8) and (C11) for recruitment, we obtain the fol-
lowing set of approximate rate equations for the evolution of
the densities of C sites and CD pairs in lattices of dimension
d:

dρC

dt
= (1 − p)[ρCD − gρC(1 − ρC)]

+p[1 − (1 + g)ρC], (C12a)

dρCD

dt
= 2(1 − p)

{
g(1 − ρC)(ρC − 2ρCD)

+ρCD

z

[
z − 2 − 2(z − 1)ρCD

1 − ρC

]}

+2p[1 − (1 − g)ρC − 2(1 + g)ρCD].

(C12b)

We can check that Eqs. (C12) become Eqs. (12) for z = 2
(d = 1) and Eqs. (15) for z = 4 (d = 2).
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