
10th International Symposium on Process Systems Engineering - PSE2009
Rita Maria de Brito Alves, Claudio Augusto Oller do Nascimento and Evaristo
Chalbaud Biscaia Jr. (Editors)
© 2009 Elsevier B.V. All rights reserved.

A Reactive Scheduling Approach Based on
Domain-Knowledge
Juan M. Novas, Gabriela P. Henning
INTEC (UNL-CONICET),Güemes 3450, Santa Fe, CP 3000, Argentina

Abstract
Real world industrial environments frequently face unexpected events that generally
disrupt in-progress production schedules. This contribution presents advances in the
development of a support framework to address the repair-based reactive scheduling of
industrial batch plants. When facing an unforeseen event, the framework is capable of
capturing the current operational plan and its status. Based on this information, a
rescheduling problem specification is developed. Tasks to be rescheduled are identified
and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign,
etc.) is specified. For a given specification, many solutions to the problem could exist.
Then, the second step of this approach relies on the generation of a constraint
programming (CP) model to address the rescheduling problem just specified. To create
such model each rescheduling action type is automatically transformed into different
constraints. In addition, a search strategy based on domain knowledge can also be
developed. Finally, the solution of the CP model and its associated search strategy will
render the repaired schedule in which the repair action types that were suggested will be
instantiated. A case study of a multiproduct multistage batch plant is presented, where
an events of unit failure is considered.

Keywords: Reactive Scheduling, Decision Support Systems, Batch Plants.

1. Introduction
Usually, predictive scheduling techniques generate production plans which assume
stationary operating conditions along the whole scheduling horizon. However, real
industrial environments are dynamic in nature; unforeseen events disrupt frequently the
in-progress schedule. Reactive scheduling, or rescheduling, is then performed in order
to update the current agenda. This task can be periodically executed or when an
unexpected event, such as a unit breakdown, order cancellation or arrival, occurs,
leading to periodic versus event-driven rescheduling, respectively. To be adopted,
reactive scheduling systems must provide immediate responses to disruptions. Besides,
minimum changes to the original schedule are desired to maintain a smooth plant
operation. Hence, repair-based or partial rescheduling is preferred to a full-scale one.
Several works about reactive scheduling of batch plants have been reported. Janak et al.
(2006) presented a review of approaches tackling this kind of problem and other papers
in the field have recently been published (Ferrer-Nadal et al., 2007). Even though the
review of Vieira et al. (2003) focused on discrete manufacturing plants, most of the
issues described in it can be found in process industries too.
This contribution tackles the reactive scheduling problem by developing a support
environment based on both, an explicit representation of the domain knowledge and a
CP approach. The next section presents an overview which addresses these two
components. Finally, Section 3 discusses an illustrative example.

2 Juan M. Novas, Gabriela P. Henning

2. Reactive Support Environment
When addressing a rescheduling situation most of the objectives and basic constraints
that define the original problem still apply; however, the partially executed schedule and
the perturbation or triggering event has also to be taken into account. This contribution
presents a support framework able to represent this knowledge and use it in the
development of a solution. It has been envisioned to operate under an event-driven
policy. The framework explicitly captures the status of an in-progress schedule and
characterizes the disrupting event, in order to specify the rescheduling problem to be
faced and, afterwards, solve it. The environment integrates different modules, as it is
shown in Fig.1, all based on an explicit domain representation.
As the first step of the proposed approach, tasks to be rescheduled are identified, and for
each of them, the most suitable rescheduling action type is specified. An action type not
only prescribes what to do (e.g. shift, reassign, etc.) on a processing task, but also a
range of possibilities, i.e. feasible equipment for a reassignment, shifting interval, etc.
For a given specification, corresponding to the set of action types associated to the tasks
to be rescheduled, many solutions could exist. Then, the second step of this approach
relies on the generation of a constraint programming (CP) model to address the
rescheduling problem just specified. To create such model each rescheduling action
type is automatically transformed into different constraints. A search strategy based on
domain knowledge can be employed, too. Finally, the solution of the CP model and its
associated search strategy will render the repaired schedule, in which the proposed
repair action types will be instantiated.

Fig.1. Components of the Reactive Scheduling Support Framework

2.1. Domain Knowledge Representation and Problem Characterization
Scheduling is a knowledge intensive activity in terms of domain knowledge. The
representation of this type of knowledge is a critical issue in any scheduling support
system. Fig. 2 presents a simplified version of the conceptual model of multiproduct
batch plants scheduling knowledge included in the proposed framework. This
information is organized into different conceptual levels. Generic concepts represent
engineering or plant information that is used by entities which model a given scheduling
scenario. Because of the fact that scheduling is an evolving activity, different versions

A Reactive Scheduling Approach Based on Domain-Knowledge 3

of a schedule need to be captured and related among themselves. A schedule version is
a snapshot of an active schedule, which is valid at a given moment, and is represented
by means of scheduling domain entity versions (i.e., versions of the instances of Task,
ResourceSchedule, Schedule, etc.). The handling of versions is not discussed here due to
space limitations.

Fig.2. Partial view of batch scheduling domain concepts

Since the domain knowledge is explicitly captured, the problem characterization module
can fulfill the following functional requirements that were imposed when designing the
framework.
 Capture the current operational plan and its status at the rescheduling point.

Instances of entities represented at the scheduling knowledge level, their relationships,
as well as the values of their attributes, allow modeling each problem to be tacked.
When addressing a rescheduling situation, the status of each task involved in the
disrupted schedule must be known. At a rescheduling point t, a decision-making activity
about tasks to be included in the reactive process, has to be made. Hence, all the tasks
involved in the disrupted agenda, T , are classified in the following sets, depending on
their status at time point t: (i) already executed tasks, ,AE

tT (ii) non-executed tasks,
,NE

tT and (iii) in-progress tasks, .IP

tT In addition, if the disrupting event is a batch
cancellation, its associated tasks are included in the set CE

tT . In turn, new tasks to be
considered due to a rush batch arrival, belong to the set .NW

tT These sets are related in
the following way: { } ;AE IP NE

t t tT T T T= ∪ ∪ ;CE NE

t tT T⊆ NW

t tT T⊄ . Batch and equipment status
are also domain information which is taken into account in the rescheduling process.
Based on the previous classification, tasks to be involved in the rescheduling process
are identified. Thus, tRT is the set of tasks that needs to be considered due to the
unexpected event taking place at time t. The remaining tasks are those not involved in
the reactive process, referred as .tNT
 Identification of the disruptive event type and its specific characteristics. The

categorization and modeling of events is also another critical aspect of the problem.
The problem characterization module uses information from the object instances
pertaining to the sets previously described and from the entity representing the
UnexpectedEvent in order to determine: (i) the updated equipment ready times, (ii) the
earliest start times of those tasks that pertain to in-progress batches. This information is
also employed to properly specify the reactive scheduling problem, as discussed below.

4 Juan M. Novas, Gabriela P. Henning

2.1.1. Rescheduling Problem Specification
For each task belonging to RTt its associated rescheduling action type has to be decided.
By means of the proposed methodology, each task does not have a specific and pre-
defined rescheduling operation related to it; instead, it has a type of rescheduling action.
Each action type prescribes a category of rescheduling operation and a range of
possibilities to apply it. In this framework, the following types have been considered up
to now: a) Shift, which simply “pushes” the task start time forward (right-shift) or
backwards (left-shift) on the current unit. To apply such action on a task, or set of tasks,
allowed left shift (lsv) and right shift values (rsv) are defined to specify a time window
for the new start time. b) Reassign, which allows tasks to be allocated to a unit
belonging to a set of feasible ones. c) Freeze, which is not a scheduling action itself, but
is required for tasks that must keep their timings as well as equipment assignments.
In order to define the rescheduling action type to be associated with each task, they are
previously classified into: (i) directly affected ones, comprising set DA

tRT , (ii) indirectly
affected tasks, represented by set IA

tRT , and (iii) non-affected tasks, which are included
in set NA

tRT . The way tasks are categorized depends on the event type and to the extend
tasks are disrupted by it. Directly and indirectly affected tasks are linked to specific
revision actions, which depend on the event type. On the contrary, action types
associated with non-affected tasks are defined employing domain knowledge of each
specific problem. To illustrate these ideas, sets DA

tRT , IA

tRT and NA

tRT are defined for a unit
failure event and their associated rescheduling actions are discussed. Similar definitions
can be made for a batch cancellation (not shown due to lack of space) or other
disruptions.
Task Classification for a Unit Failure Event

.DA

tRT Tasks in ,NE

tT are the ones assigned to the broken-down unit, which start later than
t and earlier than the unit recovery time. Besides, if a task is interrupted by the unit
failure and cannot be recovered, its batch is canceled and all the associated tasks are
inserted as a new batch (NewBatchArrival event) to be included in the rescheduling
process.

IA

tRT . These indirectly affected tasks are linked with, at least, one of the directly
affected activities. They are the ones located downstream in those batches associated
with the directly disrupted tasks. Activities located upstream can be considered as
indirectly affected too (as seen in the example presented in the next section).

.NA

tRT Includes tasks which are not affected, neither directly nor indirectly, by the unit
breakdown.
Rescheduling Action Types for Tasks Associated with a Unit Breakdown
Tasks in DA

tRT are associated with a reassign action type that forces them to find another
processing unit. Similarly, members of IA

tRT are associated with a reassign action type
that allows them to retain their current unit allocations (with a possible change in
timings) or to choose different ones. Finally, different criteria were established to define
the rescheduling action types associated with those tasks included in set .NA

tRT In this
contribution, both a scheduling horizon-based (SHB) and a batch information-based
(BIB) criteria are briefly discussed.
SHB criterion: It takes into account the moment the disruptive event takes place in
relation to the length of the whole scheduling horizon. Depending on the scheduling
scenario and the costs of changing the current task allocations, it can be decided to: (i)
freeze tasks, belonging to set ,NA

tRT whose current start times are very close to the

A Reactive Scheduling Approach Based on Domain-Knowledge 5

rescheduling point, (ii) enable shift movements over those tasks from set NA

tRT having a
start time not as close to the rescheduling point, but not located at the end of the
horizon, (iii) enable reassign action types over those tasks placed at the end of the
scheduling horizon. A parameter V is employed to identify these intervals.
BIB criterion: The status of the current schedule information is employed to define the
rescheduling action types over those tasks in set .NA

tRT For instance, batches having a
high processing progress at the rescheduling point are not allowed to have their non-
executed tasks reassigned, (ii) tasks associated with batches having small positive or
negative values of their slack times are allowed to be reallocated to avoid violating their
due dates.
In this way, a rescheduling problem specification gives rise to a set of rescheduling
alternatives to every task, and many solutions to the problem could exist. Then, the
second step of this approach relies on the generation of a constraint programming (CP)
model to address the rescheduling problem just specified. To create such model each
rescheduling action type is automatically transformed into different constraints.
2.2. Model Generation
In order to create a repaired schedule, the model generation module is in charge of
setting up a constraint programming (CP) model, complying with the syntax of the OPL
language, the underlying language of ILOG OPL Studio (ILOG, 2002). This model
(not shown due to space limitations) comprises: (i) the set of basic constraints
(assignment, precedence, timing constraints, etc.), which are part of any batch
scheduling problem, and are generated for all tasks in tRT and (ii) the set of event-
dependent constraints. These last ones depend on the disrupting situation been faced,
and on the adopted action types for tasks included in sets DA

tRT , IA

tRT and NA

tRT .

3. Example
This proposal was tested with various case studies. One of them, introduced by Pinto
and Grossmann (1997), is presented in this section. The plant involves 4 processing
stages and 10 units. During the scheduling horizon, 20 orders have to be processed. Fig.
3.a shows an in-progress schedule, with tasks labeled by batch name. Let us assume that
unit u4 shuts down at t = 31.00 h and it will be unavailable till a recovery time = 134 h.
The problem was solved employing three different approaches in order to compare
results: by resorting to a full-scale rescheduling (FSR) and to two partial ones. In the
first case all tasks involved in the rescheduling process were allowed to be reassigned.
The second approach was a partial reschedule, identified as PR_1, which employed the
SHB criterion to classify tasks (see Fig. 3.a). Tasks in sets DA

tRT and IA

tRT were
associated with a reassign rescheduling action type. For tasks in set NA

tRT , a value of 24
h was given to parameter V, meaning that tasks having their planned start time within
the rescheduling point, and 24 h after it, were associated with freeze action type. Tasks
in NA

tRT , starting at least 24 h after the rescheduling point, were associated with a shift
action type. The new schedule, obtained under these conditions, which is not shown due
to lack of space, was not a good quality one due to the topological constraints that had
to be considered. Because of them, batches assigned to units u1 and u2 in the first stage,
which were in set NA

tRT , could not be assigned to unit u5 in the second stage and had to
wait for the recovery of u4. On the contrary, the other partial reschedule approach
(PR_2) employed topological knowledge. The criterion used was also SHB, but now
upstream tasks were considered in ,IA

tRT too. So, in order to give more flexibility to tasks

6 Juan M. Novas, Gabriela P. Henning

assigned to units u1 and u2, they were associated with reassign action types. The
solution that was obtained is shown in Fig. 3.b. This new schedule is of better quality
than those obtained with the PR_1 and FSR strategies. Schedules were assessed by
means of a makespan performance measure, plus equipment and temporal stability
functions that allow quantifying a smooth plant operation, among others.

Fig.3. a) In-progress schedule (UIS policy). Classification of tasks for PR-1 is depicted with grey

shades. b) New schedule obtained after applying the PR_2 approach.

References
S. Ferrer-Nadal, C. A. Méndez, M. Graells, L. Puigjaner, 2007, Optimal Reactive Scheduling of

Manufacturing Plants with Flexible Bath Recipes, Ind. Eng. Chem. Res., 46, 6273-6283.
ILOG: ILOG OPL Studio 3.5. User’s Manual, France, 2002.
S.A. Janak, C.A. Floudas, J. Kallrath, N. Vormbrock, 2006, Production Scheduling of a Large-

Scale Industrial Batch Plant. II. Reactive Scheduling. Ind. Eng. Chem. Res., 45, 8253-8269.
J. M. Pinto, I. E. Grossmann, 1997, A logic-based approach to scheduling problems with resource

constraints, Comp. Chem. Eng., 21, 801-818.
G. Vieira, J. Herrmann, E. Lin, 2003, Rescheduling Manufacturing Systems: A Framework of

Strategies, Policies, and Methods, J. Sched., 6, 39-62.

