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Pairs on the Ferroelectric-Relaxor Transition in

Nano-Ordered Pb(Sc1/2Nb1/2)O3
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of Standards and Technology, Gaithersburg, MD 20899-8520, USA
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ABSTRACT

Molecular dynamics simulations were performed on a first-principles-based effective
Hamiltonians for chemically short-range ordered Pb(Sc1/2Nb1/2) O3 with nearest neigh-
bor [Pb O] divacancy pairs. The divacancy-concentration (X[Pb−O]) vs. temperature
phase diagram was calculated, and it is topologically equivalent to the hydrostatic pres-
sure (P) vs. temperature diagram: a ferroelectric ground-state phase at low X[Pb−O] (P);
that transforms to a relaxor paraelectric phase at moderate X[Pb−O] (P); followed by a
crossover to a normal paraelectric phase at high X[Pb−O](P).

Keywords: PSN, relaxor ferroelectric, lead vacancies, oxygen vacancies, phase transi-
tions, random fields

INTRODUCTION

Chemically disordered Pb(Sc1/2Nb1/2)O3 (PSN) exhibits a relaxor ferroelec-
tric (RFE [1, 2]) to normal ferroelectric (FE) transition; and Chu et al. [3]
demonstrated that the addition of 1.7 atomic percent [Pb O] divacancy pairs
depresses the FE transition temperature (TFE) of chemically disordered PSN
from ∼373 K to ∼338 K. Chu et al. also reported similar and more complete
results for isostructural Pb(Sc1/2Ta1/2)O3 (PST) [4–6]. These results suggest
that a sufficient concentration of divacancy pairs, X[Pb−O], will drive the sys-
tem to a fully relaxor state, that has no FE ground-state phase. Introducing
Pb-vacancies [7], or [Pb O] divacancy pairs [8] (Fig. 1) increases the average
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38 B. P. Burton et al.

Figure 1. Representation of the 2 × 2 × 2 perovskite supercell for chemically or-
dered Pb8(Sc4Nb4)O24 and the Pb7(Sc4Nb4)O23supercells with nearest- and next-nearest
neighbor divacancy pairs. Atoms are only shown in 1/8 of the supercell. (See Color Plate
V)

strength of local “random fields” <hi>, (< · · · > indicates spatial statistical
averaging) [9,10] that, at sufficient X[Pb−O] yield a fully relaxor state. Thus,
<hi> can be regarded as a nonordering field [11] that tunes the proportions of
RFE and FE character in the system.

Increasing hydrostatic pressure (P, Fig. 2a) drives chemically disordered
PSN into a fully relaxor state [12] and the results of previous simulations
by Tinte et al. [9] convincingly explain this as follows: 1) P has a negligible
effect on <hi>; 2) P smoothly and monotonically reduces FE well depths
[13–15] and thus destabilizes the FE phase relative to the RFE state of the
paraelectric (PE) phase; 3) Keeping <hi> constant while reducing FE well
depth corresponds to an indirect relative increase in <hi >. Because P indirectly
increases <hi>, it will only induce a FE-RFE transition in a sample that has
some RFE character even at P = 0 (e.g. chemically disordered PSN). In a sample
without significant <hi> (e.g. PSN with perfect chemical order) moderate
pressure induces a FE-PE transition [16] without RFE character. Increasing
X[Pb−O], directly increases <hi>, and drives the system towards a FE-RFE
transition, even if <hi> = 0 initially (e.g. PSN with perfect chemical order has
<hi> = 0).

COMPUTATIONAL METHODS

Simulations were performed using the first-principle effective Hamiltonian,
Heff , which is described in detail in [10]; Heff is an expansion of the potential
energy of PSN in a Taylor series about a high-symmetry perovksite reference
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Figure 2. Predicted PSN phase diagrams: (a) pressure vs. reduced temperature [9];
(b) [Pb O] divacancy concentration vs. reduced temperature. Dashed lines indicate
ferroelectric-relaxor transitions. Dotted lines indicate Burns temperatures, TB [23].
Triangles indicate upper- and lower-bounds, u- and l- respectively. The diagrams are
topologically equivalent because both P and X[Pb−O] tune the delicate balance between
FE well depth (increasing P reduces well depths) and the spatial average strength of the
“random fields,” <hi>, that promote the relaxor state. (See Color Plate VI)

structure. It includes those degrees of freedom relevant to ferroelectric phase
transitions:

Heff = H({ }) + H(e ) + PV + H({ }, { },
{[Pb–O]}

where represents Pb-site centered local polar distortion variables; e is the
homogeneous strain term; H({ } ,e is a strain coupling term; and PV
the standard pressure-volume term. The first four terms are sufficient to model
pressure-dependent phase transitions in a normal FE perovskite [17]. The fifth
term, H({ }, { }, {[Pb O]} , represents coupling between polar variables
and “random” local fields, <hi> [10,18,19] from: 1) screened electric fields
from the quenched distribution of Sc3+ and Nb5+ ions ( ; and 2) randomly
distributed nearest neighbor (NN) Pb O divacancy pairs, [Pb O].

Further details of the simulations used to calculate Fig. 2 are given in: the
review by Burton et al. [10]; the study of P-effects [9]; and the first-principles
calculation of the dipole moment for a [Pb O] NN divacancy pair in PbTiO3 [8].
In Tinte et al. [9] the simulation supercell contained 40 × 40 × 40 Pb-site local
mode variables in a “nano-ordered” chemical configuration of 20 ordered 800-
site clusters, in a percolating random matrix which (for accounting purposes
only) was subdivided into 60 disordered clusters. The same simulation cell is
used here, except that (403)X[Pb−O] randomly selected local mode variables are
replaced by dipole moments corresponding to NN [Pb O] divacancy pairs. This
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Figure 3. Predicted cluster-cluster spin products for a nano-ordered system with (a)
X[Pb−O] = 0.02 and (b) X[Pb−O] = 0.03. Vertical lines indicate TFE and TB, the ferro-
electric transition temperature and the Burns temperature [20], respectively. Increasing
X[Pb−O]increases the relaxor interval and, drives the ferroelectric-relaxor transition to
lower temperature. (See Color Plate VII)

treatment is distinct from Bellaiche et al. [7] which considered [Pb]-vacancies
without charge-compensating [O]-vacancies; presumably the real system has
both [Pb]- and [O]-vacancies as reported by Chu et al. [3].

RESULTS AND DISCUSSION

The simulations predict a significantly steeper slope for the FE-RFE transition
than is observed experimentally. A possible explanation is that the populations
of second- and possibly farther- neighbor divacancy pairs are significant, and
that a realistic representation would include local electric fields induced by
[Pb]- and [O]-vacancies and by closely bound [Pb-O] divacancy pairs. In fact,
Vienna abinitio simulation package with projector aumented wave potentials
and a generalized gradient approximation for the exchange/correlation potential
[20] calculations for NN and next-NN (NNN) [Pb O] divacancy pairs in a 2×
2 × 2 supercell (40 atoms for PSN; 38 atoms with a divacancy) indicate that
NNN divacancies are actually ∼0.016 eV lower in energy than NN divacancies
(Fig. 1; Table 1).

There are two plausible relations from which to estimate formation energies
for the NN and NNN divacancy pairs:

1. Ef = E(Pb7Sc4Nb4O23) + E( -PbO) − E(Pb8Sc4Nb4O24).
2. Ef = E(Pb7Sc4Nb4O23) − (7/8)E(Pb8Sc4Nb4O24) − (1/2)E(ScNbO4)

Initial structures for -PbO and Wolframite-structure ScNbO4 were taken
from [21] and [22] respectively (the CdWO4 structure in their Table II).
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Table 1
Formation energies and formation volumes of nearest- and next-nearest-
neighbor [Pb-O] divacancy pairs in a chemically ordered Pb8Sc4Nb4O24

supercell.

Relation 1 Relation 2

System �Ef (eV) �Vf (A3) �Ef (eV) �Vf (A3)
NN [Pb-O] divacancy 1.54 37.6 1.51 43.6
NNN [Pb-O] divacancy 1.40 34.9 1.38 40.8

Munkhorst-Pack k-point meshes were used: 10 × 10 × 8 -PbO; 6 × 6
× 6 ScNbO4; 4 × 4 × 4 for Pb8Sc4Nb4O24 and Pb7Sc4Nb4O23 supercells.
All calculations were done with an energy cuttoff of 500 eV, and all were
fully relaxed. The (very similar) results from both are listed in Table 1 with
corresponding volumes of formation, Vf .

The results presented in Table 1 indicate that our NN divacancy approxima-
tion is an oversimplification, because Ef (NN) > Ef (NNN). Thus, a realistic
treatment would at least include about equal concentrations of NN- and NNN-
divacancies, and probably isolated [Pb] and [O] vacancies as well, with the
precise distribution depending on temperature. That said, there is no obvious
reason to believe that a more realistic model for the vacancy distribution would
yield qualitatively different results.

Calculated P vs. T/TFE and X[Pb−O]vs. T/TFE diagrams are plotted in Figs.
2a and 2b, respectively. Dashed lines indicate FE-RFE transitions, and dotted
lines indicate Burns temperatures, TB [20]. Qualitatively, the only apparent
(small) difference between Figures 2a and 2b is that the RFE-FE transition
in Fig. 2a is approximately linear, while in Fig. 2b it exhibits slight negative
curvature.

As in the P-dependent simulations, cluster-cluster spin products were cal-
culated for 800-site clusters (Figs. 3): O O are the products between average
spins on two chemically ordered clusters; O D are products between one chem-
ically ordered and one chemically disordered cluster; and D D the products
between two chemically disordered clusters. These results are analogous to
those from P-dependent simulations, in that they exhibit the same hierarchy of
correlations: O O > O D > D D. Also, as X[Pb−O], and therefore <hi>, is
increased, the RFE-state region grows, mostly at the expense of the FE-phase.

CONCLUSIONS

Directly increasing local “random fields”, <hi>, by increasing X[Pb−O], en-
larges the RFE-state region and ultimately drives the system into a fully relaxor
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state. This progression mirrors the phenomenology of PSN under increas-
ing hydrostatic pressure. The essential difference is that X[Pb−O] directly in-
creases <hi>, whereas increasing pressure makes FE well depths shallower,
which corresponds to an thus indirect increase in <hi>, relative to FE well
depth.
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