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In the MPC literature, stability is usually assured under the assumption that the state is measured. Since
the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the sep-
aration principle to prove global stability for the output feedback case. It is well known that, a nonlinear
closed-loop system with the state estimated via an exponentially converging observer combined with a
state feedback controller can be unstable even when the controller is stable.
One alternative to overcome the state estimation problem is to adopt a non-minimal state space model,
in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L.
Wang, A. Chotai, Direct digital and adaptative control by input–output, state variable feedback pole
assignment, International Journal of Control 46 (1987) 1867–1881; C. Wang, P.C. Young, Direct digital
control by input–output, state variable feedback: theoretical background, International Journal of Control
47 (1988) 97–109]. In this case, no observer is needed since the state variables can be directly measured.
However, an important disadvantage of this approach is that the realigned model is not of minimal order,
which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose
a method to properly formulate an infinite horizon MPC based on the output-realigned model, which
avoids the use of an observer and guarantees the closed loop stability. The simulation results show that,
besides providing closed-loop stability for systems with integrating and stable modes, the proposed con-
troller may have a better performance than those MPC controllers that make use of an observer to esti-
mate the current states.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most of the initial versions of predictive control rely on a step
response model or (equivalently) an impulse response model.
These non-parsimonious representations yield a finite number of
terms only when the system is open-loop stable. On the other
hand, a significant part of the recent research literature on MPC
shows contributions based on state-space models. This tendency
has been stimulated by the connections found between the stan-
dard linear quadratic regulator (LQR) theory and MPC when pre-
diction and control horizon approaches infinity and there are no
constraints. In fact, an intensive effort has been based on state-
space representations, for instance, to develop the rigorous condi-
tions that guarantee a stable MPC, or to demonstrate recursive fea-
sibility of the sequence of optimal control solutions. Typical
developments using state space models to study the stability
and feasibility of MPC include Muske and Rawlings [8], Rawlings
and Muske [9], and Scokaert and Rawlings [11]. Mayne et al. [7]
ll rights reserved.
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and Rawlings [10] provide extensive reviews of the theory involved
in this formulation of model predictive control.

Some MPC designs based on state space models include a state
observer and exploit the separation principle to claim stability. In
other cases, the dynamics of the state estimates generated by the
state observer is assumed to be much faster than the dynamics
of the state feedback control law, and hence, the error signal be-
tween the observer and the actual system is assumed to converge
to zero at a much faster rate than the system converges to the de-
sired state. However, the presence of constraints in the MPC
scheme makes the closed loop non-linear. In other words, the state
feedback could be dominated (precisely, when the constraints be-
come active) by nonlinear properties. As a result, the separation
principle can no longer be applied to the closed loop system in or-
der to assure stability [15].

One alternative approach to overcome this problem is to in-
clude the observer behavior in the stability analysis. Zheng and
Morari [15] have developed stabilizing tuning relations for the
MPC with output feedback for the case where all the open loop
eigenvalues of the system are strictly inside the unit circle. More
recently, Mayne et al. [6], propose a robust output feedback MPC
that incorporates the error on the state estimation as an additional
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unknown (but bounded) uncertainty that can be accounted for in
the design of the controller. These authors define a ‘‘tube” of trajec-
tories based on a controlled invariant set, within which the true
state of the system is guaranteed to remain. Goulart and Kerrigan
[4] propose a robust output feedback MPC, where the observer
dynamics is included in the computation of the domain of attrac-
tion of the closed loop system. Ding et al. [2] adopt a dynamic out-
put feedback approach to propose a stable MPC. The method was
extended by Ding and Huang [1] to nonlinear systems that can
be represented by Hammerstein–Wiener models.

Here, it is proposed a different approach to overcome the output
feedback stability problem. The method uses a non-minimal state
space model that avoids the use of the state observer [17,14,12].
This type of model has been used by Wang and Young [14] to min-
imize the closed loop performance deterioration produced by the
observer in the presence of input disturbances, and when con-
straints become activated. This approach produces a simpler con-
trol algorithm (and more attractive from the application point of
view) in comparison with the one that includes the observer
dynamics in the formulation of the control law. However, the
non-minimal state space model introduces an additional difficulty
to the application of the usual approach to the design of a stable
controller, which is based on the adoption of an infinite prediction
horizon. This difficulty will be discussed in the next section of this
work.

González et al. [3] developed a stable infinite horizon MPC for
systems with stable and integrating modes. In their approach,
the model is written in such a way that the non-stable modes
are separated from the stable modes and, since an infinite horizon
cost is used, the non-stable modes are zeroed at the end of the con-
trol horizon (this is so, in order to prevent the cost from becoming
unbounded). When a non-minimal state space model is used, a di-
rect similarity transformation that produces the separation be-
tween the stable and non-stable modes cannot be found, since
the resulting transformation matrix is not invertible. As a result,
the terminal constraint needed to guarantee stability cannot be
written. In González et al. [3] stability is only assured for the case
where all the states are measured, which does not usually happen
in practice. In this work, this limitation is eliminated through the
adoption of a non-minimal state space model in which the state
variables correspond to the measured past outputs and inputs. Sta-
ble and integrating systems are considered.

The paper is organized as follows: Section 2 describes the non-
minimal state space model used for predictions, and the problems
that arise when a similarity transformation is needed. This section
also shows some model and transformation properties, useful for
the formulation of output feedback infinite horizon MPC. Section
3 presents the proposed controller and shows how the infinite cost
is bounded for the general case of non-stable systems. Section 4
presents the details of the stable MPC with output feedback for
the case of stable and integrating systems. Section 5 shows the
simulation analysis of an ethylene oxide reactor system. A compar-
ison between an output feedback controller based on a state obser-
ver and the proposed controller is also presented in order to expose
the advantages of the new controller. Finally, Section 6 concludes
the paper.
2. The non-minimal state space model

The state space model considered here is based on the following
difference equation model:

yðkÞ ¼ �
Xna

i¼1

Aiyðk� iÞ þ
Xnb

i¼1

Biuðk� iÞ; ð1Þ
where na is the number of poles of the system, nb is the number of
zeros of the system, and the system is assumed to have nu inputs
and ny outputs.

Model (1) corresponds to the following state space model in the
output realigned form [16,13,5]:

xðkþ 1Þ ¼ AxðkÞ þ BDuðkÞ;
yðkÞ ¼ CxðkÞ;

ð2Þ

where

A ¼
Ay ADu

0 I

� �
; B ¼

BDu

I

� �
; C ¼ Cy CDu½ �;

Ay ¼

Iny � A1 A1 � A2 � � � Ana�1 � Ana Ana

Iny 0 � � � 0 0
0 Iny � � � 0 0

..

. ..
. . .

. ..
. ..

.

0 0 � � � Iny 0

266666664

377777775 2 Rðnaþ1Þny�ðnaþ1Þny;

ADu ¼

B2 � � � Bnb�1 Bnb

0 � � � 0 0
0 � � � 0 0

0 . .
.

0 0
0 � � � 0 0

26666664

37777775 2 Rðnaþ1Þny�ðnb�1Þnu;

I ¼

0 � � � 0 0
Inu � � � 0 0

..

. . .
. ..

. ..
.

0 � � � Inu 0

266664
377775 2 Rðnb�1Þnu�ðnb�1Þnu; BDu ¼

B1

0
0
..
.

0

26666664

37777775;

I ¼

Inu

0
..
.

0

266664
377775; Cy ¼ Iny 0 � � � 0 0½ � Cy 2 Rðnaþ1Þny;

CDu ¼ 0 � � � 0 0½ �; CDu 2 Rðnb�1Þnu:

Iny and Inu are identity matrices of dimension ny and nu,
respectively.

Furthermore, the state x is given by

xðkÞ ¼
xyðkÞ
xDuðkÞ

� �
2 Rnx;

where

xyðkÞ ¼ yðkÞT yðk� 1ÞT � � � yðk� naþ 1ÞT yðk� naÞT
� �T

2 Rðnaþ1Þny;

xDuðkÞ ¼ Duðk� 1ÞT Duðk� 2ÞT � � � Duðk� nbþ 1ÞT
� �T

2 Rðnb�1Þnu;

nx ¼ ðnaþ 1Þnyþ ðnb� 1Þnu:

The partition of the state is convenient in order to separate the state
components related to the system output at past sampling steps,
from the state components related to the input at past sampling
steps. Also, since the model is written in terms of the input incre-
ment (velocity model), model (2) contains the modes of model (1)
plus ny integrating modes. Here, we assume that the system repre-
sented in (1) has non-repeated stable and integrating modes.

The state matrix A, in model (2), has the following property:

Property 1. Matrix A is rank deficient. Furthermore

rankðAnÞ ¼ nx� ðnÞnu; 1 6 n 6 nb� 1 and

rankðAnÞ ¼ nx� ðnb� 1Þnu ¼ ðnaþ 1Þny; n P nb� 1:
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The last equality implies: An = An�nb+1Anb�1 for n P nb � 1, where

A ¼ Ay 0
0 0

� �
.

Proof. It is easy to prove this property if we observe that matrix I
has nu null rows, I2 has 2nu null rows, . . . , Inb�1 has (nb � 1)nu rows
and consequently is a null matrix. h

It is well known that any integrating mode cannot be allowed to
proceed over an unbounded time interval without control action.
Therefore, in order to implement a MPC based on model (2) with
infinite prediction horizon, we need first to find a state transforma-
tion that makes explicit the stable and integrating parts of the
plant. One straightforward alternative is to adopt the eigenvalue–
eigenvector Jordan decomposition:

AVcom ¼ V comAd; ð3Þ

where Ad is a block diagonal matrix (Jordan canonical form) that
makes explicit the different dynamic modes of the system, and
the columns of Vcom are the eigenvectors, or generalized eigenvec-
tors, of A.

An unsolved problem related to the transformation defined in
(3) is that, since the realigned model defined in (2) is not of mini-
mal order, matrix Vcom is not invertible. As a result, it is not possi-
ble to recover the original states from the transformed states and
the main advantage of model (2) (i.e., the avoidance of an observer)
is lost. Nevertheless, we can still find states along the prediction
horizon where a similarity transformation can be performed (i.e.,
Vcom is invertible). To define these states, let us consider the follow-
ing sequence of input moves:

DuðkÞ; � � � ;Duðkþm� 1Þ;0; . . . ð4Þ

Then, taking into account Property 1, and considering the sequence
defined in (4), the open-loop state predictions at time instants be-
yond the control horizon m, and computed at time k, can be written
as follows:
xðkþmjkÞ

¼
xyðkþmÞT Duðkþm� 1ÞT � � � Duðkþm� nbþ 1ÞT

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{xDuðkþmÞT
" #T

xðkþmþ 1jkÞ ¼ AxðkþmjkÞ

¼
xyðkþmþ 1ÞT 0 Duðkþm� 1ÞT � � � Duðkþm� nbþ 2ÞT

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{xDuðkþmþ1ÞT
" #T

..

.

xðkþm0 þ jjkÞ ¼ Anb�1þjxðkþmjkÞ ¼ AjAnb�1xðkþmjkÞ

¼
xyðkþm0 þ jÞT 0 � � � 0

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{xDuðkþm0þjÞT
" #

; j P 1;
where m0 = m + nb � 1. This means that beyond time step k + m0, the
predictions of the last (nb � 1)nu state components will be null. In
other words, at time steps beyond k + m0, the state predictions
evolve according to matrix A, and the input matrix B does not affect
the evolution of the state as the input moves are assumed to be null
beyond time k + m0. In this scenario, we may consider the following
transformation:

AyV ¼ VAd;

where the similarity transformation matrix V 2 Rðnaþ1Þny�ðnaþ1Þny is
now full rank since the modeled system is supposed to have
(na + 1)ny poles. Matrix Ad is again a block diagonal matrix. Con-
sider now the following augmented matrices:
V ¼
V
0

� �
; V 2 Rnx�ðnaþ1Þny; V in ¼ V�1 0

� �
; V 2 Rðnaþ1Þny�nx:

Then, the following equality holds:

A ¼ VAdV in ¼ Vnst V st½ � Fnst 0
0 Fst

" # eV nsteV st

" #
; ð5Þ

where the columns of Vnst and Vst span the non-stable (integrating)
and stable subspaces of the system, respectively. Also, Fnst 2 Rnns�nns

is the state block diagonal matrix corresponding to the integrating
modes and Fst 2 Rns�ns is the block diagonal matrix corresponding
to the stable modes (nns is the total number of integrating modes
and ns is the number of stable modes).

The transformation defined in (5) has the following property re-
lated to the state matrix A of the model defined in (2):

Property 2. V inAn ¼ An�nbþ1
d V inAnb�1; for n P nb � 1.

Proof. From (5), we have VinA = AdVin, which implies VinAAnb�1 =
AdVinAnb�1. Then, from Property 1, VinAnb = AdVinAnb�1. Multiplying
both sides by A, we have

V inAnbþ1 ¼ AdV inAnb
;

V inAnbþ1 ¼ AdðAdV inÞAnb�1 ¼ A2
dV inAnb�1

:

Thus, by induction, we can obtain V inAn ¼ An�nbþ1
d V inAnb�1 for

n P nb � 1. h

Remark 1. For the predicted states where the similarity transfor-
mation is possible, the two system representations: z(k + 1) =
Adz(k) and x(k + 1) = Ax(k) are equivalent. In fact, for any time
instant (k + m0 + j), we have
xðkþm0 þ jjkÞ ¼ Ajxðkþm0jkÞ

and, using (5), we can write

xðkþm0 þ jjkÞ ¼ VAj
dV inxðkþm0jkÞ;

zðkþm0 þ jjkÞ ¼ Aj
dzðkþm0jkÞ;

where z(k) = Vinx(k), zðkÞ 2 Rnz and nz = (na + 1)ny.
Now, the integrating and stable states of the transformed model

that is equivalent to model (2) can be computed as

zðkÞ ¼
znstðkÞ
zstðkÞ

� �
¼ V inxðkÞ ¼

eV nsteV st

" #
xðkÞ: ð6Þ
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Furthermore, the system output can be expressed as

yðkÞ ¼ Cd
znstðkÞ
zstðkÞ

� �
;

where Cd = CV, znst 2 Rnns, zst 2 Rns, nz = nns + ns.

Model z(k + 1) = Adz(k) may have a different structure depend-
ing on the nature of the system. In the case of systems with nun
non-repeated integrating modes (nun poles equal to one), matrix
Fnst can be written as

Fnst ¼
Iny D

0 Inun

� �
2 Rnns�nns; ð7Þ

where nns = nun + ny, Iny and Inun are identity matrices, and
D 2 Rny�nun with elements dj,k is a particular matrix, where dj,k = 1
for j = k, and dj,k = 0 for j – k. We may assume, for the sake of sim-
plicity, that nun 6max(ny,nu).

In addition, the state component znst can be decomposed as

znst ¼ ziðkÞ
zunðkÞ

� �
, and the transformation matrix eV nst, as eV nst ¼eV ieV un

� �
. The state zi 2 Rny corresponds to the integrating states re-

lated to the velocity form of the model, and zun 2 Rnun corresponds
to the integrating states of the system.

Now, for the system structure discussed above, similarity trans-
formation (5) has the following properties:

Property 3.

eV nstA
n ¼ ðFnstÞn�nbþ1 eV nstA

nb�1 and eV stA
n

¼ ðFstÞn�nbþ1 eV stA
nb�1 for n P nb� 1:

Proof. The proof is directly obtained from Property 2. h

Property 4.

eV unAn ¼ eV unAnb�1 for all n P nb� 1:

Proof. The proof is directly derived from Property 3. h

Property 5. Output set-point transformation If we define an output
set-point ysp, then, the set-point of the state of the system represented
in (2) can be defined as xsp ¼ yspT � � � yspT 0 � � � 0

� �T
. Further-

more, we can also define a set-point to the transformed state as
zsp = Vinxsp, which satisfies

zsp ¼
zi;sp

zun;sp

zst;sp

264
375 ¼ eV ixsp

0
0

264
375 and zi;sp ¼ Ci�1

d ysp:

Proof. Since xsp corresponds to an equilibrium point, it has to sat-
isfy (A � Inx)xsp = 0. Then, the z-set-point is obtained by means of
the similarity transformation matrix Vin, as zsp = Vinxsp, satisfies
(Ad � Inz)zsp = 0.

Then; as ðAd � InzÞ ¼
0 D 0
0 0 0
0 0 Fst � Ins

264
375;

where D is assumed of full rank, and given that, Fst � Ins is diagonal
full rank matrix, it is easy to show that
zsp ¼
zi;sp

zun;sp

zst;sp

264
375 ¼ eV ixsp

0
0

264
375:

This means that the output set-point for the z-state is concentrated
in the first ny components. In addition, we have

Cxsp ¼ ysp and Cxsp ¼ CVzsp ¼ Cdzsp ¼ Cd

zi;sp

0
0

264
375 ¼ Ci

dzi;sp;

where Cd ¼ Ci
d Cun

d Cst
d

h i
, Ci

d is associated with the integrating
states related to the velocity form of the model, Cun

d is associated
with the integrating states of the system, and Cst

d is associated with
the stable states of the system.

Therefore, zi;sp ¼ ðCi
dÞ
�1ysp, and the property is proved. h
3. MPC with output feedback

Now, we may formulate an infinite horizon MPC with output
feedback based on model (2). The MPC cost is written as

V1;k ¼
X1
j¼0

ðCxðkþ jjkÞ � yspÞTQðCxðkþ jjkÞ � yspÞ

þ
Xm�1

j¼0

Duðkþ jjkÞTRDuðkþ jjkÞ: ð8Þ

As usual in the receding horizon strategy, it is assumed that
Du(k + jjk) = 0 for j P m. The cost defined in (8) will be unbounded
unless the integrating states are zeroed at a suitable time step in the
prediction horizon. Here, we propose to include in the control prob-
lem, the following constraint:

znstðkþm0Þ � znst;sp ¼ 0; m0 ¼ mþ nb� 1; ð9Þ

where znst;sp ¼ zi;sp

0

� �
, and zi,sp is defined as in Property 5. Constraint

(9) can be expressed in terms of the current (and measured) state x,
as follows:

eV nstA
m0xðkÞ þ eV nstBaugDuk � znst;sp ¼ 0; ð10Þ

where

eV nst ¼
eV ieV un

" #
; Baug ¼ Am0�1B Am0�2B � � � B

� �
and

Duk ¼ DuðkjkÞT � � � Duðkþm� 1jkÞT 0 � � �0|fflfflffl{zfflfflffl}
m0�m

� �T

:

Observe that to satisfy constraint (10) we need at least one degree
of freedom per integrating state (m�nu P nns). In addition, we
must add to the optimization problem the constraints related to
the input and input increment:

Duðkþ jjkÞ 2 U; j ¼ 1; . . . ;m� 1; ð11Þ

where

U ¼ Duðkþ jÞ
�Dumax

6 Duðkþ jÞ 6 Dumax

umin
6 uðk� 1Þ þ

Pj

i¼0
Duðkþ iÞ 6 umax

�������
8><>:

9>=>;
The cost defined in (8) can also be written as
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V1;k ¼
Xm0
j¼0

ðCxðkþ jjkÞ � yspÞTQðCxðkþ jjkÞ � yspÞ

þ
X1
j¼m0
ðCxðkþ jjkÞ � yspÞTQðCxðkþ jjkÞ � yspÞ

þ
Xm�1

j¼0

Duðkþ jjkÞTRDuðkþ jjkÞ:

Now, taking into account constraint (9), the infinite sum of the
above cost can be developed as follows:X1

j¼m0
ðVzðkþ jjkÞ � xspÞTCTQCðVzðkþ jjkÞ � xspÞ

¼
X1
j¼m0
ðzðkþ jjkÞ � zspÞTVTCTQCVðzðkþ jjkÞ � zspÞ

¼
X1
i¼0

ðFnstÞiðznstðkþm0jkÞ � znst;spÞ
ðFstÞizstðkþm0jkÞ

" # !T

� VTCTQCV
ðFnstÞiðznstðkþm0jkÞ � znst;spÞ

ðFstÞizstðkþm0jkÞ

" # !

¼
X1
i¼0

zstðkþm0jkÞTðFstÞi
T

VT
stC

TQCV stðFstÞizstðkþm0jkÞ;

where xsp and zsp are defined as in Property 5.
This means that the infinite sum of the control cost can be writ-

ten as follows:X1
j¼m0
ðCxðkþ jjkÞ � yspÞTQðCxðkþ jjkÞ � yspÞ

¼ xðkþm0jkÞT eV T
st

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{zstðkþm0 jkÞT

P eV stxðkþm0jkÞ
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{zst kþm0 jkð Þ

;

where P is computed through the solution to the following Lyapu-
nov equation:

P ¼ VT
stC

TQCV st þ FstT
PFst:

It can be shown that if the optimization problem that minimizes (8)
subject to constraints (10) and (11) is feasible at time step k, it will
remain feasible at any subsequent time step k + j, and the control
law resulting from the solution to this optimization problem stabi-
lizes the closed loop system. However, the domain of attraction of
this controller is usually too small for practical applications, as
the control horizon m is small to reduce the computation effort. This
implies that constraints (10) and (11) may become infeasible for
disturbances of moderate size in the integrating states. Following
González et al. [3], one alternative to enlarge the region where
the controller is feasible is to include slack variables into the control
problem. Thus, we propose to extend the cost defined in (8) as
follows:

V2;k ¼
X1
j¼0

ðCxðkþ jjkÞ � ysp � CVdðk; jÞÞTQðCxðkþ jjkÞ � ysp

� CVdðk; jÞÞ þ
Xm�1

j¼0

Duðkþ jjkÞTRDuðkþ jjkÞ þ dnstT

k Sdnst
k ; ð12Þ

wheredðk; jÞ ¼ dnstðk; jÞ
0

� �
¼ Aj

d
dnst

k
0

� �
2 Rnz; dnst

k is a vector of slack

variables that is introduced in the control problem to enlarge the
domain of attraction of the proposed controller and S is a positive
matrix of appropriate dimension. As a result of this modification,
the terminal constraint defined in (10) becomes

znstðkþm0Þ � znst;sp � dnstðk;m0Þ ¼ 0 ð13Þ

that can be expressed in terms of the current (and measured) state
x, as follows:
eV nstA
m0xðkÞ þ eV nstBaugDuk � znst;sp þ ðFnstÞm

0
dnst

k ¼ 0: ð14Þ

Then, cost V2,k can be written as

V2;k ¼
Xm0�1

j¼0

ðCxðkþ jjkÞ � ysp � CVdðk; jÞÞTQðCxðkþ jjkÞ � ysp

� CVdðk; jÞÞ þ
X1
j¼m0
ðCxðkþ jjkÞ � ysp � CVdðk; jÞÞTQðCxðkþ jjkÞ

� ysp � CVdðk; jÞÞ þ
Xm�1

j¼0

Duðkþ jjkÞTRDuðkþ jjkÞ þ dnstT

k Sdnst
k :

Now, since at time (k + m0) there is a one to one correspondence be-
tween states x and z, the infinite sum term of the cost can be written
as

X1
j¼m0
ðVzðkþ jjkÞ � Vzsp

z}|{xsp

þVdðk; jÞÞTCTQCðVzðkþ jjkÞ � Vzsp
z}|{xsp

þVdðk; jÞÞ

¼
X1
i¼0

ðFnstÞiðznstðkþm0jkÞ � znst;sp þ dnstðk;m0ÞÞ

ðFstÞizstðkþm0jkÞ

" # !T

� VTCTQCV
ðFnstÞiðznstðkþm0jkÞ � znst;sp þ dnstðk;m0ÞÞ

ðFstÞizstðkþm0jkÞ

" # !

¼
X1
i¼0

zstðkþm0jkÞTðFstÞi
T

VT
stC

TQCV stðFstÞizstðkþm0jkÞ

¼ xðkþm0jkÞT eV T
stPeV stxðkþm0jkÞ;

which represents a bounded quantity.
Making use of the results above, the extended infinite horizon

MPC is obtained from the solution to the following optimization
problem:

Problem P1

min
Duk ;d

nst
k

V2;k

subject to ð11Þ and ð14Þ:

Although Problem P1 is well posed and we can prove that the
cost is always bounded, the control law resulting from the solution
to P1 does not necessarily produce an asymptotic converging
closed loop system. In order to obtain a stable closed-loop system,
we may split Problem P1 into two sub-problems [3], as it is shown
in the next section.

Remark 2. Note that in the control cost defined in (12), the infinite
sum term has no real physical meaning, as it contains the slack
CVd(k, j) that is only included to make the cost bounded. However,
once the slack d(k, j) is zeroed, this infinite sum term penalizes the
output error, as usual. This fact justifies the strategy of splitting the
control problem in two separate problems: one that assures that
the slack dnst

k converges to zero in finite time, and the other that
guarantees that the output error, without the slack, converges to
zero asymptotically.
4. A stable MPC with output feedback

To obtain an optimization problem that is equivalent to Prob-
lem P1, while producing a controller with guaranteed stability,
we first perform the following partition of the vector of slack
variables:

dnst
k ¼

di
k

dun
k

" #
;
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where di
k 2 Rny is the vector of slack variables corresponding to the

integrating states related to the velocity form of the model, and
dun

k 2 Rnun is the vector of slack variables corresponding to the inte-
grating states of the system. Analogously, the slack penalization

matrix can be written as Snst ¼ Si 0
0 Sun

� �
. Then, the proposed stable

MPC with output feedback results from the solution to the two fol-
lowing optimization problems:

Problem 2a

min
Dua;k ;d

un
k

Va;k ¼ dunT

k Sundun
k

subject to
Duaðkþ jjkÞ 2 U; j ¼ 0;1; . . . ;m� 1;eV unAm0xðkÞ þ eV unBaugDua;k � zun;sp þ ðFunÞm

0
dun

k ¼ 0 ð15Þ

(Notice that, following the definition given in Property 5, zun,sp = 0.
In addition, notice that Eq. (15) is equivalent to
zunðkþm0jkÞ þ ðFunÞm

0
dun

k ¼ 0Þ.
Problem 2b

min
Dub;k ;d

nst
k

Vb;k ¼
Xm0�1

j¼0

ðCxðkþ jjkÞ � ysp

� CVdðk; jÞÞTQðCxðkþ jjkÞ � ysp � CVdðk; jÞÞ
þ xðkþm0jkÞT eV T

stPeV stxðkþm0jkÞ

þ
Xm�1

j¼0

Dubðkþ jjkÞTRDubðkþ jjkÞ þ diT
k Sidi

k

subject to
Dubðkþ jjkÞ 2 U; j ¼ 0;1; . . . ;m� 1;eV nstA

m0xðkÞ þ eV nstBaugDub;k � znst;sp þ ðFnstÞm
0
dnst

k ¼ 0;ð16Þ
dun

k ¼ dun�
k : ð17Þ

where dun�
k corresponds to the optimal slack of the integrating states

obtained from the solution to Problem 2a. These two optimization
problems are solved sequentially at the same time step.

Now, assuming that the system remains controllable at the de-
sired steady-state, the solution to problems 2a and 2b produces a
controller that is capable of driving the cost defined in (12) to zero,
as shown in the theorems below.

Theorem 1. For systems with stable and integrating modes, the
sequential solution to problems 2a and 2b is always feasible; and the
optimal cost is decreasing and converges to stationary point.

Proof. The proof of this theorem follows almost the same steps as
the proof of Theorem 1 in González et al. [3]. Assume that at time
step k, the control sequence:

Dub;k ¼
DubðkjkÞ�T � � � Dubðkþm� 1jkÞ�T 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

m0�m

" #T

;

dnst�
k ¼ di�

k

dun�
k

" #
represent a feasible solution to Problem 2b. This solution satisfies
constraint (15) that using Property 4, becomes

eV unAnb�1xðkÞ þ eV unAnb�1B
Xm�1

j¼0

Dubðkþ jjkÞ�T
 !

þ dun�
k ¼ 0: ð18Þ

Then, at time step k + 1

Dua;kþ1 ¼
Dubðkþ 1jkÞ�T � � � Dubðkþm� 1jkÞ�T 0 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

m0�m

" #T

;

dun
kþ1 ¼ dun�

k ð19Þ
is a feasible solution to Problem 2a, and the corresponding cost is
given by Va;kþ1 ¼ V �a;k ¼ dun�T

k Sundun�
k . To prove this assertion, note

that the solution defined in (19) satisfies

eV unAnb�1xðkþ 1Þ þ eV unAnb�1B
Xm

j¼1

Dubðkþ jjkÞ�T
 !

þ dun
kþ1 ¼ 0:

ð20Þ

Also, for the undisturbed system, we have

eV unAnb�1xðkþ 1Þ ¼ eV unAnb�1xðkÞ þ eV unAnb�1BDubðkjkÞ�

then, Eq. (20) is exactly the same as (18), which means that the con-
trol sequence defined in (19) is feasible and dun

kþ1 ¼ dun�
k .

Now, if the input increment is not constrained, dun
kþ1 can be

made equal to zero by considering the following control sequence:

Dua;kþ1 ¼
Dubðkþ 1jkÞ�T � � � Dubðkþm� 1jkÞ�T D�u 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

m0�m

" #T

;

where

D�u ¼ �ðeV unAnb�1BÞ�1dun�
k

where matrix eV unAnb�1B is assumed to be full rank.
If the input is constrained, then it is easy to show that dun

kþ1 can
be reduced to zero in a number of time steps not larger than
maxj

jD�uj j
Duj;max

where index j designates the components of D�u and
Dumax. This proves that the cost Va,k will converge to zero in a finite
number of time steps.

After convergence of Va,k to zero, solving problem 2a becomes
equivalent to include in the control problem the following
constraint:

eV unAnb�1xðkÞ þ eV unAnb�1B
Xm�1

j¼0

Duðkþ jjkÞT
 !

¼ 0: ð21Þ

Consequently, the solution obtained by solving problems 2a and 2b
sequentially becomes equivalent to solving the following problem:

Problem P3

min
Duk ;d

nst
k

V3;k ¼
Xm0�1

j¼0

ðCxðkþ jjkÞ � ysp � CVidi
kÞ

T

� QðCxðkþ jjkÞ � ysp � CVidi
kÞ

þ xðkþm0jkÞT eV T
stPeV stxðkþm0jkÞ

þ
Xm�1

j¼0

Duðkþ jjkÞTRDuðkþ jjkÞ þ diT
k Sidi

k ð22Þ

subject to ð16Þ and ð11Þ and
dun

k ¼ 0; ð23Þ

where V ¼ Vi Vun V st
� �

. It is easy to show that the cost defined in
(22) is decreasing and converges to a bounded value [3]. Also, it is
straightforward to show that if Va,k converges to zero and V3,k con-
verges to a bounded value, then, V2,k will also converge to a
bounded value and the theorem is proved. h

Observe that the inclusion of slack di
k in the control problem

may allow the term in V3,k related to the error on the output to con-
verge to a stationary value where the slack is not equal to zero. This
situation corresponds to the convergence of the closed loop system
to a steady state with offset in the output. This may happen when
the stable modes are no longer controllable (e.g. the input becomes
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saturated) or parameter Si is not properly selected. Now, we show
how to select Si in order to prevent the output offset.

Theorem 2. For systems with stable and integrating modes that
remain controllable at the steady state corresponding to the desired
output reference, if weight Si is sufficiently large, then the control
sequence obtained from the solution to problems 2a and 2b at
successive time steps drives the output of the closed loop system
asymptotically to the reference value and the control cost to zero.

Proof. Suppose that when k! �k (large enough) the state tends to
the steady state defined by xð�kÞ. In addition, the solution of the
optimisation problem (22) at steady state produces Du�k ¼ 0 which,
together with (16) and (23), implieseV unAm0xð�kÞ ¼ eV unAnb�1xð�kÞ ¼ 0;eV iA

m0xð�kÞ � zi;sp ¼ �di
�k:

Also, the stable part of the state will tend to zero at this steady state,
or zð�kþm0j�kÞ ¼ eV stA

m0x �k
� 	
¼ 0. Thus, at this steady state, the cost

will be given by V3;�k ¼ diT
�k Sidi

�k. Now, lets us find a control sequence
that corresponds to a value of the cost that is smaller than V3;�k.
For this purpose, assume that m = 2, which is the minimum control
horizon to produce an offset free controller, and assume also that
none of input constraints is active. Then, let the solution to problem
(22) at �k be given by the sequence

D�u�k ¼
D�uð�kj�kÞT D�uð�kþ 1j�kÞT 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

m0�m¼nb�1

" #T

that has to satisfy the constraints represented in (16), or

eV unAm0xð�kÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{¼0

þeV unAnbþ1BðD�uð�kj�kÞ þ D�uð�kþ 1j�kÞÞ ¼ 0 ð24Þ

and

� di
�k

z}|{eV iA
m0 xð�kÞ�zi;sp

þeV iBaugD�u�k þ �di
�k ¼ 0: ð25Þ

Now, let us find a control sequence that satisfies (25) and makes
�di

�k
¼ 0. Provided that we have assumed that eV unAnb�1B is full rank,

Eq. (24) implies

D�uð�kj�kÞ ¼ �D�uð�kþ 1j�kÞ:

For this case, Eq. (25) becomeseV iðAnbþ1 � AnbÞBD�uð�kj�kÞ ¼ di
�k

or, taking into account the structure of Fnst for integrating systems,
the above equation becomes

DeV unAnbþ1BD�uð�kj�kÞT ¼ di
�k:

Consequently, assuming that DeV unAnbþ1B is not singular (provided
that eV unAnbþ1B is assumed to be full rank, if rank(D) = nun, then
DeV unAnbþ1B is also full rank), a possible control sequence is given by

D�u�k ¼ Mdi
�k; ð26Þ

where M ¼

ðDeV unAnbþ1BÞ�1

�ðDeV unAnbþ1BÞ�1

0
..
.

0

9>=>;nb� 1

266666664

377777775:

For this control sequence, the value of the cost is given by

V3;�k ¼ diT
�k ½ðAextM

�1
ss Id þ BextMÞTCTQCðAextM

�1
ss Id þ BextMÞ

þ ðeV stBaugMÞTPðeV stBaugMÞ þMTRM�di
�k;
where

Mss ¼
V inAm0

IDu

" #
2 Rnx�nx; IDu ¼ 0 Iðnb�1Þnu

� �
2 Rðnb�1Þnu�nx;

Id ¼
Iny

0

� �
2 Rnx�ny; Aext ¼

A

..

.

Anb�1

264
375; Bext ¼

B � � � 0
..
. . .

. ..
.

AnbB � � � B

264
375

and
R ¼ diag R R 0 � � � 0½ �ð Þ

Consequently, V3;k will be smaller than V3;k if

Si > ðAextM
�1
ss Id þ BextMÞTCTQCðAextM

�1
ss Id þ BextMÞ

h
þ eV stBaugMÞTPðeV stBaugMÞ þMTRM

 i

:

Analogously, for other values of m, a similar procedure can be
used to define a sufficiently large value of Si, such that the conver-
gence of the output of the closed loop system to the reference is
guaranteed. h
5. Simulation results

The system adopted as an example to test the performance of
the controller presented here is part of the ethylene oxide reactor
system studied by González et al. [3]. This is a typical example of
the chemical process industry that exhibits stable and integrating
poles. For a sampling period DT = 1 min, the simulated system
can be represented by the following difference equation model:

yðkÞ ¼ �
�1:8787 0

0 �1:8964

� �
yðk� 1Þ

�
0:8787 0

0 0:8964

� �
yðk� 2Þ

þ
�0:3800 �0:5679
�0:2176 0:4700

� �
uðk� 1Þ

þ
0:3339 0:5679
0:2176 �0:4213

� �
uðk� 2Þ

This system has two stable and two integrating modes. The model
defined in (2) introduces two additional integrating modes related
to the velocity form of the model. Then, the minimal number of
(––).
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states of the model of the ethylene oxide reactor is 6. The non-min-
imal model used here, as described in (2), has 16 states.

In all the cases considered here, the tuning parameters of
the controller are the following: m = 3, umax ¼ 0:75 0:75½ �,
umin ¼ �0:75 �0:75½ �, Dumax ¼ 0:05 0:05½ �, Q ¼ diag 1 1ð Þ,
R ¼ diag 75 75ð Þ, Si ¼ diag 1 1ð Þ � 102 and Sn ¼ diag 1 1ð Þ�
104. Let us designate Controller I the controller defined by the
sequential solution to problems 2a and 2b, and Controller II the
controller presented in González et al. [3], in its nominal version.
Controller II is a two-stage infinite horizon MPC controller that
computes the output predictions based on the current estimate of
the state and an output prediction oriented state space model
(OPOM). The observer used in this structure is a typical Luenber-
guer-like observer, with a gain matrix given by

L ¼

�0:1673 �0:0450
�0:1293 �1:1593
1:7059 0:0522
0:1394 2:6457
�2:0850 �0:0371
0:0552 1:7246

2666666664

3777777775
:

Fig. 2. Outputs for a change in the output set point. Controller I (—) and Controller II
(––).

Fig. 3. Costs Va,k (—) and Vb,k (––) of Controller I, for a change in the output set
point.
First, we simulate a change in the output set point. The system
starts from the origin and at time step 10 min, the desired output
values are changed to ysp ¼ 1 �1½ �T. We can see in Figs. 1 and 2
that the system inputs and outputs are almost coincident for the
two controllers. This is easy to justify: both controllers use a per-
fect model, and, since no disturbances enter the system, there is
no difference between the estimated and the real states.

Fig. 3 shows the cost functions corresponding to problems 2a
and 2b of Controller I. Cost Va,k is null during all the simulation be-
cause the system starts from a steady state in which zun(k + m0/
k) = 0 and, consequently, constraint (15) remains feasible with
dun

k ¼ 0. As established in the Theorems 1 and 2, cost Vb,k is asymp-
totically decreasing since the beginning of the simulation period
and converges to zero.

The same controllers were also tested for the regulator case by
simulating the closed loop system with an unmeasured distur-
bance in the system input. This disturbance corresponds to the
control move Du ¼ 0:4 �0:4½ �. The desired output values are kept
at ðysp

1 ; y
sp
2 Þ ¼ 0 0½ � during all the simulation time. Figs. 4 and 5

describe the inputs and outputs of the system, respectively. It is
clear that with both controllers, the outputs tend to the desired
values while the inputs converge to new steady state values that
Fig. 4. Inputs for an input disturbance. Controller I (—) and Controller II (––).

Fig. 5. Outputs for an input disturbance. Controller I (—) and Controller II (––).



Fig. 6. Costs Va,k (solid line) and Vb,k (dashed line) corresponding to problems 2a
and 2b of Controller I, for a disturbance in the input.
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are not equal to zero. This is so because the inputs need to compen-
sate the effect of the disturbance that is introduced in the input.
However, Controller I shows a better performance since the state
estimation adds an additional dynamics to the closed loop with
Controller II. This effect can be clearly seen in Fig. 4 where the con-
trol action applied by Controller II to reject the disturbance is sig-
nificantly slower than the one applied by Controller I. As a result of
the disturbance in the integrating states, Fig. 6 shows that, as
established in the Theorem 1, cost Vb,k of Controller I is not strictly
decreasing until cost Va,k is zeroed (that is, until the slack variable
dun

k is zeroed). In this case, the convergence of cost Va,k to zero can
only be reached after eighteen time steps.

6. Conclusions

In this work it was addressed the problem of designing an infi-
nite horizon MPC with output feedback for systems with stable and
integrating poles, and constraints in the inputs and input incre-
ments. The proposed controller is based on a non-minimal state
space model in which the states represent the measured past in-
puts and outputs and no state observer is needed. No system-mod-
el mismatch is considered in the present version of the controller.
By means of an appropriate similarity transformation, a terminal
constraint is developed and recursive feasibility of the control
problem as well as output convergence are obtained. This work
presents a contribution towards the practical implementation of
the stable MPC with output feedback. The available solutions to
this problem that include state observers need additional hypoth-
eses concerning fast observer dynamics and the separation princi-
ple to achieve stability; hypotheses that may well not be justified
in practical applications. Also, the proposed controller showed an
improved performance in comparison with an observer-based
MPC, in the simulation study of an industrial reactor system with
stable and integrating modes.
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