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a b s t r a c t

This work presents an alternative way to formulate the stable Model Predictive Control (MPC)
optimization problem that allows the enlargement of the domain of attraction, while preserving the
controller performance. Based on the dualMPC that uses the null local controller, it proposed the inclusion
of an appropriate set of slacked terminal constraints into the control problem. As a result, the domain of
attraction is unlimited for the stable modes of the system, and the largest possible for the non-stable
modes. Although this controller does not achieve local optimality, simulations show that the input and
output performances may be comparable to the ones obtained with the dual MPC that uses the LQR as a
local controller.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The usual way of guaranteeing stability of linear MPC is
by means of an appropriate selection of three components: a
terminal cost which is an associated Lyapunov function, a terminal
constraint that forces the terminal states to belong to a positively
invariant set for the system, and a local unconstrained controller
for predictions beyond the control horizon (dual control). For
stable systems, the simplest choice for the local controller is the
null controllerK(x) = 0 (Rawlings &Muske, 1993)which produces
a bounded terminal cost when the infinite horizon value function
is used. Adopting such a control strategy, the terminal region is
limited only by the input definition set, at least for the regulator
case. For unstable systems, however, the control optimization
problem needs to include a terminal constraint that zeros the
unstable modes, as they cannot be steered to the origin by the
proposed local null controller, reducing in this way the original
terminal set. Another choice for both, stable and unstable systems
consists in using a Linear Quadratic Regulator (LQR) as a local
controller (Scokaert & Rawlings, 1998). In this case, the controller
presents a local optimality, i.e., inside the terminal set, the control
action obtained by means of the MPC optimization is the same
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as that of the LQR. However, since the terminal LQR control does
not consider the constraints, the terminal set, and then, the whole
domain of attraction may be rather small.
De Doná, Seron, Mayne, and Goodwing (2002), Magni, De

Nicolao, Magnani, and Scattolini (2001) and Limon, Alamo, and
Camacho (2005), have presented different methods of enlarging
the domain of attraction. In the first two cases, the authors used
a saturated local control law in order to enlarge the terminal
region. In Magni et al. (2001), the enlargement of the domain of
attraction (for nonlinear systems) is obtained by considering a
prediction horizon larger than the control horizon. On the other
hand, Limon et al. (2005) proposed a contractive terminal set given
by a sequence of reachable sets.
Mhaskar, El-Farra, and Christofides (2004), have presented a

hybrid control scheme, combining by means of an appropriate
switching law a bounded control, for which the region of
constrained closed-loop stability is explicitly characterized, with
MPC (that minimizes a given objective subject to constraints). The
scheme reconciles the stability and optimality of both controllers,
and Mhaskar, El-Farra, and Christofides (2005) extended the
approach to the case of model uncertainty.
This paper presents a different method to enlarge the domain

of attraction of the stable MPC, preserving, whenever possible, the
performance properties of the standard dual controller (i.e. the
dual MPC that uses a LQR as terminal controller). The main
idea consists of including an appropriate set of slacked terminal
constraints into the optimization problem of the dual MPC that
uses a null local controller.

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:alejgon@santafe-conicet.gov.ar
mailto:odloak@usp.br
http://dx.doi.org/10.1016/j.automatica.2008.11.015
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2. System description

Let us consider the (controllable and stabilizable) system[
xnst (k+ 1)
xst (k+ 1)

]
=

[
F nst 0
0 F st

] [
xnst (k)
xst (k)

]
+

[
Bnst

Bst

]
1u (k) , (1)

y(k) =
[
Iny Ψ

] [xnst (k)
xst (k)

]
,

where

xnst ∈ Xnst ⊆ Rnns, xst ∈ X st ⊆ Rns,

1u (k) = u (k)− u (k− 1) ∈ Rnu.

The block diagonal form of model (1) can be obtained from the
step response of the transfer functionmodel (seeGonzález, Odloak,
and Marchetti (2007) and Rodrigues and Odloak (2003)), or by an
appropriate similarity transformation of a given state spacemodel.
The state component xst represents the stable modes, while xnst
represents the non-stable modes of the system, containing both
the integrating modes induced by the incremental form of the
model, and the original unstable modes of the system. In this way,
one can define

Bnst =
[
Bi
T
Bun

T
]T
, F nst = diag

(
Iny F un

)
,

xnst =
[
xi
T
xun

T
]T
,

where Iny is the identity matrix of dimension ny, xi ∈ X i ⊆ Rny are
the integrating states, xun ∈ Xun ⊆ Rnun are the original unstable
modes of the system, and Xnst = X i × Xun. For systems with non-
repeated poles F nst and F st are diagonal matrices with components
of the form eriT where ri is a pole of the continuous system, and
T is the sampling period. The system has nns and ns non-stable
and stables poles, respectively. In addition, nns = nun + ny,
where nun is the number of unstable modes, and ny is the number
of integrating modes (introduced by the incremental form of the
model) that is equal to the number of system outputs. Matrix Ψ
accommodates the states into the output. The input setU is defined
as follows:

U = {1u : −1umax ≤ 1u ≤ 1umax and

umin ≤ u (k− 1)+1u ≤ umax} ,

where u (k− 1) is the past value of the input u. In addition, it is
assumed that the states are constrained to belong to a set X , given
by X = X st×Xnst . Here, this set is defined by the operatingwindow
of the process. Set X i must satisfy the input constraints, as follows:
Biumin ≤ xi ≤ Biumax.

3. Stabilizable sets for the non-stable states

Consider the following j-steps stabilizable set to the setΩ:

Stnstj
(
Xnst ,Ω

)
=
{
xnst (0) ∈ Xnst : for all k = 0, . . . , j− 1,

∃1u (k) ∈ Usuch that xnst (k) ∈ Xnst and xnst (j) ∈ Ω
}
,

whereΩ (the equilibrium set) is given by

Ω =
{
xnst ∈ Xnst : xi ∈ X i and xun ∈ {0}

}
.

Lemma 1. Set Stnstj
(
Xnst ,Ω

)
is a control invariant set for states xnst ,

for all j ≥ 1.
Proof of Lemma 1. Since for any xnst ∈ Ω , we have xun ≡ {0},
then, if we chose the feasible input increment 1u = 0, the
integrating state xi will remain unmodified, which implies that the
state xnst will remain inside Ω . Then, Ω is a control invariant set,
which implies that Stnstj

(
Xnst ,Ω

)
is a control invariant set for all

j ≥ 1. This is so because the stabilizable sets have the following
property: Stnstj

(
Xnst ,Ω

)
⊆ Stnstj+1

(
Xnst ,Ω

)
for all j ≥ 1 (see

(Kerrigan & Maciejowski, 2000)). �

Remark 1. Since we are explicitly considering both input and
input increment constraints, then there exists a limited set of ‘‘non-
stable’’ states that can be steered to the equilibrium set by means
of a ‘‘feasible’’ sequence of control actions (see Hu, Miller, and Qiu
(2002) and Zhao and Xue (2006)). This is so, since large initial
non-stable states require large control actions, or large control
moves, to be stabilized. Notice that this is not true for the pure
stable modes, that can be steered to the equilibrium by the null
control law 1u = 0. Observe that any non-stable state in Ω is
an equilibrium state (since xnst = F nstxnst ). Thus, by the definition
of the j-step stabilizable set, the set of non-stable states that can
be steered to the equilibrium set by means of a feasible (arbitrary
large) sequence of control actions can be called Stnst

∞

(
Xnst ,Ω

)
.

Given that Stnst
∞

(
Xnst ,Ω

)
⊆ Xnst and it is limited, one way to

explicitly find this set is by increasing the index j of Stnstj
(
Xnst ,Ω

)
up to N , such that StnstN+1

(
Xnst ,Ω

)
≈ StnstN

(
Xnst ,Ω

)
. Then, the

so defined largest possible domain of attraction for the non-stable
states,Θ , is given by:Θ = StnstN

(
Xnst ,Ω

)
= Stnst

∞

(
Xnst ,Ω

)
.

Note that the set Θ (it will be shown later that this set defines
the domain of attraction of the non-stable states of the proposed
controller) does not depend on the selected control law, but on
the nature of the system and the states, as well as on the input
constraints. In addition, in the case of box constraints, that is, upper
and lower bounds, the set Stnstj

(
Xnst ,Ω

)
can be easily computed

(a priori) using available tools (e.g. set invariance toolbox for LTI
systems, (Kerrigan, 2000)), and it has the form: Vx ≤ v.

4. MPC controller

Rodrigues and Odloak (2003) proposed an infinite horizonMPC
explicitly designed for model (1). They define an appropriate set of
slacked terminal constraints that assure stability while preserving
recursive feasibility. To extend the method to an unstable system,
consider the problem:

Problem 1.

min
1uk,δnstk

Vk =
∞∑
j=0

(
x (k+ j|k)+ δ̄ (k, j)

)T
Q
(
x (k+ j|k)+ δ̄ (k, j)

)
+

m−1∑
j=0

1u (k+ j|k)T R1u (k+ j|k)+ δnst
T

k Snstδnstk (2)

subject to:

1u (k+ j|k) ∈ U, j = 1, . . . ,m− 1, (input const.) (3)

F nst
m (
xnst(k)− xsp

)
+ Cnst1uk + F nst

m
δnstk = 0

(term. constr.) (4)

where

x (k+ j|k) =
[(
xnst (k+ j|k)− xsp

)T xst (k+ j|k)T]T ,
xsp =

[
ysp
T
0
]T
, x (k|k) = x (k) ,1u(k+ j|k)
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is the controlmove computed at time k to be applied at time k+j,m
is the control horizon,Q , R and Snst are positiveweightingmatrices
of appropriate dimension, ysp is the output reference,

1uk =
[
1u(k|k)T · · · 1u(k+m− 1|k)T

]T
,

Cnst =
[
F nstm−1Bnst F nstm−2Bnst · · · Bnst

]
,

δ̄ (k, j) =
[(
F nst jδnstk

)T
0
]T
, and δnstk =

[
δi
T

k δun
T

k

]T
∈ Rnns

is a vector of slack variables. The corresponding penalization can
be written as Snst = diag

(
S i Sun

)
. The inclusion of the slack

variables enlarges the domain of attraction, but it may deteriorate
the convergence of the cost (with the slack variables, the unstable
states do not necessarily go to zero).

Remark 2. It can be shown that for a positive matrix Sun, the slack
δunk resulting from the solution to Problem 1 will be different from
zero only if xnst (k) 6∈ Stnstm

(
Xnst ,Ω

)
. This means that if the initial

states are such that xnst (k) ∈ Stnstm
(
Xnst ,Ω

)
, then the solution to

Problem 1 will produce the same control action as when the slack
vector δunk is not included in the control problem.

4.1. The stable MPC

Now, assume that the initial non-stable state is such that
xnst (k) ∈

(
Stnstj

(
Xnst ,Ω

)
\ Stnstj−1

(
Xnst ,Ω

))
, for some 1 ≤ j ≤

N , where N represents an integer such that StnstN+1
(
Xnst ,Ω

)
≈

StnstN
(
Xnst ,Ω

)
. Then, one may define the optimization problem

that produces the stable MPC as:

Problem 2.
min

1uk,δnstk

Vk

subject to: (3), (4) and

xnst (k+ 1|k) ∈ Stnstindex
(
Xnst ,Ω

)
, index = max (j− 1,m) . (5)

Remark 3. Constraint (5) forces the non-stable state to go from
one stabilizable set to the next one, until the state reaches
Stnstm

(
Xnst ,Ω

)
. Once this set is reached, the slack corresponding to

the unstable states, δunk , will be zeroed.

Remark 4. Given that the effect of the (slacked) non-stable modes
on the cost is zeroed at the end of the control horizon (by imposing
constraint (4)), the cost defined in (2) can be simplified. First,
consider the error on the non-stable state predictions beyond the
control horizon:

xnst (k+m+ j|k)− xsp + F nst
(m+j)

δnstk

= F nst
j
(
xnst (k+m|k)− xsp + F nst

m
δnstk

)
= 0, j = 1, . . . .

Then, the cost can be written as follows:

Vk =
m−1∑
j=0

(
x (k+ j|k)+ δ̄ (k, j)

)T
Q
(
x (k+ j|k)+ δ̄ (k, j)

)
+ δnst

T

k Snstδnstk +
m−1∑
j=0

1u (k+ j|k)T R1u (k+ j|k)

+ xst (k+m|k)T Pxst (k+m|k)

where matrix P is computed using the following Lyapunov
equation: P = Q + F st

T
PF st .

The convergence of the closed loop system with the controller
defined by Problem 2 is assured by the theorem:
Theorem 1. For systems with stable and non-stable modes that
remain controllable at the steady state corresponding to the desired
output reference, Problem 2 is always feasible with a domain of
attraction given by Xat =

{
x ∈ X : xnst ∈ Θ

}
, where Θ is obtained,

as in Remark 1. Also, if weight S i is sufficiently large, then the control
sequence obtained from the solution to Problem 2 at successive time
steps drives the output of the closed loop system asymptotically to the
reference value.

Proof. Since the slack corresponding to the non-stable state is
unbounded, in Problem 2, constraint (4) together with constraint
(3), are always feasible (independent of other constraints). Then,
assume first that the initial state is such that xnst (k) ∈

Stnstm
(
Xnst ,Ω

)
, which means that δunk = 0. Then, since St

nst
m (X

nst ,
Ω) is a control invariant set (Lemma 1), there exists a control
action such that xnst (k+ 1|k) ∈ Stnstm

(
Xnst ,Ω

)
. Therefore, for

the undisturbed nominal system, it results that xnst (k+ 1) ∈
Stnstm

(
Xnst ,Ω

)
, which means that constraint (5) will be feasible at

k+1. Then, by induction, constraint (5)will be feasible at any future
time step.
On the other hand, if the initial state is such that xnst (k) 6∈

Stnstm
(
Xnst ,Ω

)
, the slacks corresponding to the non-stable states

will be necessarily different from zero. Since we assume that
the initial non-stable state, xnst (k), is such that xnst (k) ∈

Stnstj
(
Xnst ,Ω

)
for a finite j ≤ N , then, there exists a feasible input

increment such that xnst (k+ 1|k) ∈ Stnstj−1
(
Xnst ,Ω

)
. Therefore,

for the undisturbed nominal system xnst (k+ 1) ∈ Stnstj−1
(
Xnst ,Ω

)
.

Then, there exists a feasible input increment such that xnst(k + 2|
k + 1) ∈ Stnstj−2

(
Xnst ,Ω

)
, which means that constraint (5) will be

feasible at k+ 1. Then, by induction, constraint (5) will be feasible
at any future time step, up to k+ j−m, where the non-stable state
reaches Stnstm

(
Xnst ,Ω

)
. This means that Problem 2 has recursive

feasibility.
Because of the recursive feasibility of Problem 2, slack variables

δunk will be null after j time steps. Once the unstable slack variables
are zeroed, the controller becomes equivalent to the one presented
in González et al. (2007), and the convergence of the states
(including the non-stable states), the input increment and the
integrating slacks δik to zero is assured (in that work is presented a
lower bound to S i, that assures the cost convergence). �

Remark 5. This controller is not optimal, in the sense that it does
not use an optimal controller as the terminal controller (even
for the unconstrained case). However, it will be shown in the
simulation section that the performance of the proposed controller
may be similar to the one of the standard MPC + LQR dual
controller.

4.2. Case where the system has only one unstable state per input
(nun ≤ nu)

Consider now the case that does occur in most real continuous
process systems, where each input affects at most only one
unstable state xun. For this case, the slack reduction operated
by constraint (5) can be obtained by means of a simple norm
minimization. For the one-dimensional case, the successive non-
stable stabilizable sets can be associated with the norm of the
slacks of the unstable states, and then, to minimize this norm is
equivalent to steering the non-stable states from one stabilizable
set to the next one. Then, consider the following two-stage
problem:

Problem 3a.

min
1ua,k,δunk

Va,k = δun
T

k S
unδunk
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subject to

1ua(k+ j|k) ∈ U, j = 0, 1, . . . ,m− 1

F un
m
xun(k)+ Cun1ua,k + F un

m
δunk = 0.

Problem 3b.

min
1ub,k,δunk ,δ

i
k

Vb,k =
∞∑
j=0

(
x (k+ j|k)+ δ̄ (k, j)

)T
Q (x (k+ j|k)

+ δ̄ (k, j)
)
+

m−1∑
j=0

1ub (k+ j|k)T R1ub (k+ j|k)+ δi
T

k S
iδik

subject to

1ub(k+ j|k) ∈ U, j = 0, 1, . . . ,m− 1
xi(k)− ysp + C i1ub,k + δik = 0

F un
m
xun(k)+ Cun1ub,k + F un

m
δunk = 0, δunk = δ

un∗
k .

where δun
∗

k is the optimal slack of the unstable state obtained in
Problem 3a,

Cun =
[
F un

m−1
Bun F un

m−2
Bun · · · Bun

]
,

C i =
[
Bi Bi · · · Bi

]
.

The sequential solution of Problems 3a and 3b produces a
controller that drives the system output to the desired reference
value, as shown in the following theorem:

Theorem 2. For systems with stable and non-stable modes in which
each input affects at most only one unstable state xun, the sequential
solution of Problems 3a and 3b is always feasible with a domain of
attraction given by Xat =

{
x ∈ X : xnst ∈ Θ

}
, where Θ is obtained

as in Remark 1. Also, if the weight S i is sufficiently large, then the
control sequence obtained from the solution to Problems 3a and 3b
at successive time steps drives the output of the closed loop system
asymptotically to the reference value.

Proof. Since we are assuming that each input affects at most one
unstable state xun, we can develop the proof for the SISO case,
without loss of generality. Consider that at time step k xnst ∈
Stnstm

(
Xnst ,Ω

)
. The orthogonal projection of this stabilizable set

onto the xun subspace, originates the stabilizable set Stunm (X
un, {0}),

which represents the m-step stabilizable set to the origin for
the unstable states xun. If each (scalar) unstable state, xun (k),
is inside the set Stunm (X

un, {0}) then the slack corresponding to
this unstable state will be null and the sequence of problems
3a and 3b is equivalent to Problem 2 with δunk = 0. On the
other hand, if the non-stable state xnst (k) is outside Stnstm

(
Xnst ,Ω

)
,

then, the slack will be different from zero. In this case, the
corresponding optimal input increment will necessarily saturate
one or more of the constraints defined by set U , which implies
that 1ub,k = 1ua,k. If the initial non-stable state xnst belongs
to Stnstj

(
Xnst ,Ω

)
, for a finite integer j such that m < j ≤ N ,

then, the unstable state xun (k) belongs to Stunj (X
un, {0}). This

means that there exists a feasible sequence of j input increments
1ũ (k+ i|k) ∈ U , for i = 0, . . . , j, such that xun (k+ i|k) ∈
Stunj−i (X

un, {0}). Consider now the firstm elements of this sequence,[
1ũ (k|k) · · · 1ũ (k+m− 1|k)

]T, and the corresponding final
unstable state xun (k+m|k) = F un

m
δunk . Since |x

un (k+m|k)| will
be the smallest possible taking into account the input constraints
(i.e. xun (k+m|k) ∈ Stunj−m (X

un, {0}) ⊂ Stunj−m+1 (X
un, {0}) ⊂

· · · ⊂ Stunj (X
un, {0})), then

∣∣δunk ∣∣will also be as small as possible,
which implies that the optimal solution to Problem 3a will be
1u∗a (k+ i|k) = 1ũ (k+ i|k) (the solution will be such that
the successive states go from one stabilizable set to the next
one). Following the receding horizon policy, the control action
1u∗b (k|k) = 1u

∗
a (k|k) is applied to the system. At time step k+ 1,

and provided that no mismatch exists between the nominal and
the real system, we have xun (k+ 1|k+ 1) ∈ Stunj−1 (X

un, {0}), and

then
[
1ũ (k+ 1/k) · · · 1ũ (k+m/k)

]T constitutes a feasible
solution to Problem 3a. Furthermore, a sequence with the
same characteristics as the latter one will be the optimal one,
since it produces the smallest slack satisfying F un

m
δunk+1 =

xun (k+m+ 1|k+ 1) ∈ Stunj−1−m (X
un, {0}). Then, by induction,

we have that xun (k+ j−m|k+ j−m) ∈ Stunm (X
un, {0}), which

implies that the slack variable corresponding to the unstable state
goes to zero in j−m time steps. Once the slack variables are zeroed,
Problems 3a and 3b become equivalent to Problem 2with δunk = 0,
and the convergence is assured. �

Remark 6. The reasoning adopted in the proof above can be
followed whenever the successive non-stable stabilizable sets can
be associated with a level curve of the norm of the slacks of the
unstable state. In this case, it is not necessary to know in which set
the initial state is located.

5. Domain of attraction of the proposed controller

As stated in Theorems 1 and 2, the domain of attraction of the
proposed controller is given by Xat =

{
x ∈ X : xnst ∈ Θ

}
. This

set, which represents the largest domain of attraction (for stable
and non-stable states) that the system together with the state
and input constraints permits, does not depend on the control
horizonm. Furthermore, an a priori explicit characterization of the
set of feasible initial conditions starting from where closed-loop
stability is guaranteed is provided. On the other hand, the domain
of attraction of the standard dual MPC (considering a velocity
model) is given by the m-stabilizable set to the terminal set OK

∞
,

that is, Stm
(
X,OK

∞

)
, where

OK
∞
=
{
x (0) ∈ X : (A− BK)j x (0) ∈ X, K (A− BK)j x (0) ∈ U

j = 0, 1, . . .
}

and K (terminal controller) is obtained from the solution to the
algebraic Riccati equation. It can be shown that Stnst

∞

(
Xnst ,Ω

)
⊇

Stnstm
(
Xnst ,OK

∞

)
, where Stnstm

(
Xnst ,OK

∞

)
is the orthogonal projection

of Stm
(
X,OK

∞

)
into the non-stable states space. Also, and opposite

to the proposed controller, the standard dual MPC presents a
limited domain of attraction for the stable modes xst , even if X st
is unlimited.
In order tomake a comparison between the proposed controller

and the dual MPC–LQR, let us consider the following model:

A =

[1 0 0
0 1.649 0
0 0 0.607

]
, B =

[ 1
0.083
−0.03

]
,

C =
[
10.204 −101.534 101.534

]
,

which corresponds to an inverted pendulum,with sampling period
T = 0.05 s (Lundberg & Roberge, 2003). The output represents the
angle position from the vertical (deg), and the input represents the
cart position (cm). The input constraints are: 1umax = 0.25 (cm),
umin = −1 (cm), umax = 1 (cm). The parameters corresponding to
the dual MPC–LQR (which determine its domain of attraction) are:
Q = 0.1, R = 1, m = 2. The LQR (terminal) controller is given by:
K =

[
−0.164 17.82 0

]
. Fig. 1 shows the domain of attraction

of the dual MPC–LQR corresponding to: Q = 10, Q = 0.1 and
Q = 0.0001, and maintaining R = 1 and m = 2. It can be shown
that, for the case Q = 0.0001, which shows the largest domain
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Fig. 1. Domain of attraction of the proposed MPC (solid line), and of the dual MPC
with Q = 0.0001, Q = 0.1 and Q = 10.

of attraction, the closed-loop performance is extremely slow, and
then unacceptable. On the other hand, the largest possible domain
of attraction for the non-stable states is given, in this case, by:
Θ = StnstN

(
Xnst ,Ω

)
= Stnst

∞

(
Xnst ,Ω

)
⊆ Xnst , with N = 8 (that is,

Stnst8+1
(
Xnst ,Ω

)
≈ Stnst8

(
Xnst ,Ω

)
), and is also shown in Fig. 1 (solid

line). This set represents the domain of attraction of the proposed
controller.

6. Simulation results

The performance of the controller proposed here is tested in a
styrene reactor. The system is operated in an unstable steady state
(Hidalgo & Brosilow, 1990). The inputs are the flow rate of initiator
(u1) and the flow rate of the cooling fluid (u2). The controlled
outputs are the viscosity (y1) and the temperature (y2). The linear
discrete time model is the following:

x (k+ 1) = Ax (k)+ B1u (k) , y (k) = Cx (k)

where A, B and C are given in Box I.
Matrix A has two integrating modes produced by the velocity

form of the input, and one unstable mode. The tuning parameters
of the proposed controller are: T = 1, Q = 1, R = 1, m = 2,
S i = 102 and Sun = 102. Parameters m, Q and R play the same
role as in the conventional MPC. S i should be selected to be larger
than the lower limit given in González et al. (2007), (usually, one
or two orders of magnitude larger than Q ). Finally, Sun can be any
positive weight matrix. The tuning parameters of the dual MPC
are: T = 1, Q = 1, R = 1, m = 2. The input constraints
are u1,max = 34.4 (L h−1), u1,min = −34.4 (L h−1), 1u1,max =
5 (L h−1), u2,max = 141.48 (L h−1), u2,min = −141.48 (L h−1),
1u2,max = 10 (L h−1).
For the dualMPC, each time anewoutput set point is introduced

into the system, the terminal set must be re-computed in order
to update the input constraints. Then, the optimization problem
of the dual MPC may become infeasible, even for a feasible steady
state. The sequence of changes in the set points considered in this
example is as follows: at t = 10 h, ysp1 =

[
−0.08 −1

]T; at
t = 50 h, ysp2 =

[
0 0

]T; at t = 100 h, ysp3 = [0.02 2.14
]T and at

t = 150 h, ysp4 =
[
−0.18 −0.39

]T. These set-points correspond
to the following input values: uss1 =

[
30 20

]T, uss2 = [
0 0

]T,
uss3 =

[
−34.4 120

]T and uss4 = [
40 160

]T. Note that the
third change saturates the first input, while the last one forces
both inputs outside the feasible range. This simulation shows
Fig. 2. Input responses. Proposed MPC (solid line), dual MPC (dashed line) and
periods of infeasibility of dual MPC (asterisks).

Fig. 3. Output responses. Proposed MPC (solid line), dual MPC (dashed line).

how the two controllers perform when the desired input steady
state is close to the bounds. Fig. 2 shows the input responses and
constraints, and Fig. 3 shows the output responses and the output
set point. For the set point changes introduced at t = 10 h and t =
50 h, both controllers preserve their feasibility and show similar
performances (because of the local optimality, the dual MPC has
a slightly better performance). However, for the set-point change
introduced at t = 100 h, the corresponding terminal set makes the
optimization problemof the standard dualMPC infeasible. This can
be seen in Fig. 2where input u2 tends to surpass the upper bound at
timenear t = 100h, for about 5 h. In the real system, themaximum
value is implemented.
The input increment constraints were not included as they

would turn the dual MPC infeasible and would make the
comparison impossible. Since the desired steady state is feasible,
both controllers are able to stabilize the system at the set point.
Finally, for the set point change introduced at time t = 150 h,
the dual MPC becomes infeasible throughout the subsequent time
period (since the unstable modes cannot be canceled), while the
proposed MPC remains feasible and steers both inputs to their
bounds. As expected, for the proposed MPC, the outputs show
offset at steady state, because the inputs corresponding to desired
steady state lie outside their feasible ranges. However, the loop
remains stable throughout the whole time period. This property
of the proposed controller is obtained through the use of the slack
variables, which can assume non-null values (from time t = 150
until t = 200 h, in this case). When this happens, the control cost
converges to a non-null value.
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A = diag
([
0.73 0.73 3.83 0.59 0.77+ 0.02i 0.77− 0.02i 1 1

])
B =

[
0 0.32 0.08 0.03 −0.07+ 0.14i −0.07− 0.14i 1.03 0

−0.0001 0 −0.0081 0 −0.03+ 0.23i −0.03− 0.23i 0 1.003

]T
C =

[
−68.2546 0.0046 −0.0027 −0.0466 −0.0281+ 0.0141i −0.0281− 0.0141i −0.0023 −0.0005

0 0 0.3656 0.7458 0.0397+ 0.0059i 0.0397− 0.0059i −0.0367 0.0070

]
Box I.
7. Conclusion

In this paper, a different formulation of the stable MPC is
presented,which includes an appropriate set of slack variables. The
main benefits of the proposed approach become more effective in
the application stage: a larger domain of attraction in comparison
with a standard dual MPC, guarantee of recursive feasibility when
the system is guided to a point in which the input saturates, or
even, the desired operating point surpasses the bounds, and offset
free (whenever the inputs do not saturate) without the necessity
of a target calculation stage. In addition, despite the proposed
controller not having local optimality, it shows a relatively good
performance, similar in many cases to the standard dual MPC that
uses a LQR as a local controller.
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