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Abstract 
We discuss the process of equilibrium’s attainment in an interacting many- 
fermions system linked to a heat reservoir, whose temperature T is subject to 
a short-time disturbance of total duration 2τ . In this time-interval, its tem-
perature increases up to a maximum value MT , cooling off afterward (also 
gradually) to its original value. The process is described by a typical master 
equation that leads eventually to equilibration. We discuss how the equilibra-
tion process depends upon 1) the system’s fermion-number, 2) the fermion- 
fermion interaction’s strength V, 3) the disturbance duration 2τ , and finally 
4) the maximum number of equations N of the master equation. 
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1. Introduction 
1.1. Preliminaries 

People use master equations (ME) to obtain equations of motion for a reduced 
density operator or for the probability distribution (PD) of a subsystem of inter-
est   in interaction with (a usually much larger) heath bath. The key topic is 
that  , our system at hand, is in an out of equilibrium state. Master equations 
are standard tools in statistical physics and related areas. See for instance [1] and 
references therein. The core issue is how to gather relevant information on   
from the concomitant out of equilibrium dynamics. Thus, our goal is to describe 
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the time evolution of the PD for the system  . This should be done by recourse 
to a master equation complying with some basic requirements. First, the conco-
mitant dynamics guarantees positivity and normalization of the time-dependent 
PD. Second, for a constant heat-bath temperature, the PD satisfies an appropri-
ate H-theorem consistent with the PD’s relaxation towards equilibrium. Last, for 
a constant heat-bath temperature, the associated Gibbs’ distribution is a statio-
nary solution of the master equation. The solution to this problem is found by 
recourse to an appropriate master equation (ME) [1]. A nice instantiation of the 
ME-procedure is presented by Takada, Conradt, and Richet (TCR) in [2], that 
we discuss below for didactic purposes. 

1.2. TCR Approach 

Contemplate a two-levels (1 and 2) model (system  ) in contact with a heath 
bath B of temperature T. If the population 2  of the excited state is calculated, 
then 1  becomes automatically determined. The inter-level transition rate is 
the critical parameter ruling the degree of non-equilibrium. We call 1p  and 

2p  the two occupation probabilities.  
Now imagine a heating and cooling operation in which the reservoir’s tem-

perature varies as with time in this manner: 1) T first grows, reaches a maximum 
value MT  (arbitrary units (AU)), and then 2) diminishes, returning to its initial 
value 0 1T =  (AU). TCR interpret this environment as describing a particle 
movable in an asymmetric double-well potential. Site 1 is the bottom of the first 
well (of energy is 1E ). Analogously, site 2 is the bottom of a second well, of a 
higher energy 2E . Thus, 1E  is a potential energy barrier between states 1 and 2 
to be overcome. System S evolves after wards with an energy decrease to 2E , 
leading to the second state. The temperature describes an isosceles time-triangle 
of apex MT  and base 2τ . Takada, Conradt, and Richet concoct the concomi-
tant master equation (ME) as 

1 1 1 2 2 1 2d d ; 1,p t a p a p p p= − + + =                 (1) 

with 

[ ]exp , 1, 2,i i ba E k T i= − =                     (2) 

where Bk  is Boltzmann’s constant, to be set equal to unity here from. 

1.3. Present Objectives 

Inspired by [2], we will tackle a different problem. We focus attention on a quan-
tum many-body system   of interacting fermions, proposed in [3], whose in-
teraction is governed by an SU2 algebra.   is first heated and then cooled in 
the time-triangle fashion described above. We will deal with a master coupled 
system of N equations (not just two as in [2]). The heating-cooling operation 
competes with the fermion-fermion interaction. A Gibbs’ canonical ensemble 
treatment of the model advanced in [3] is detailed in [4]. At the same time, for 
each distinct temperature T we contemplate a fictional coupled system  -heat 
bath in thermal equilibrium at any extant T-value [this is called the quasi-static 
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approximation (qsa)]. Of course, at that time t at which the solutions of our 
master equation coincide with those of the qsa we will have reached equilibrium.  

Our main research tools will be suitable information theory quantifiers. With 
them we will assess “distances” between the “ME probability distribution” (MEPD) 
and the “quasi-static” PD. The ensuing numerical values will indicate just dif-
ferent the two treatments MEPD and qsa are. This yields a quantitative measure 
of how far on is from equilibrium. To objectively measure this is our central goal 
here. Epistemology teaches classification is an essential ingredient of Science [5]. 
Classification entails numbers, and the distances that we are seeking do supply 
such numbers in the present context. 

1.4. Paper’s Organization 

Section 2 describes our master equation. Suitable details of our exactly solvable 
quantum many-body system, (the laboratory to test our thermal distances be-
tween off equilibrium and equilibrium) are the subject of Section 3. Section 4 
discusses features about thermal quantifiers that will serve as “distances”. The 
main present results are displayed exhibited and talked through in Section 5 and, 
finally, some conclusions are elaborated in Section 6. 

2. Fully Interacting Master Equation 

We advance here our master equation (ME). In it, all energy states j of probabil-
ity jp  interact with each other, so that the ensuing differential equation be-
comes, for 0, , 1j N= −� , 

( ) ( )
1

0;

d
exp exp ,

d

N
i

ij j i i j
j j i

p
c p E p E

t
β β

−

= ≠

 = − − − ∑            (3) 

where the energy spectrum is given by the { }iE i=  and 1 Bk Tβ = . The matrix 
C of the ijc  is symmetric with non-negative elements. 0iic =  for all diagonal 
elements. The initial conditions are ( ) ( )0 expi ip t E kT Z= = − . for all i. This 
ME has nice properties. 

• If at 0t t=  we have ( )0 0ip t = , then 
( )0d

0
d
ip t

t
≥ . 

• The Gibbs distribution ( )expG
i ip E Zβ= − , with  

( )
1

0
exp ,

N

i
i

E Zβ
−

=

− =∑                       (4) 

is a stationary solution of our ME. 
• Normalization is preserved because 

1

0

d
0

d

N
i

i

p
t

−

=

=∑                           (5) 

as we prove below.  

2.1. Normalization Proof 

Introduce first an antisymmetric matrix A whose elements ijA  have the fol-
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lowing properties:  

( ) ( )
, 1

exp exp ,
N

ij j i i j
i j

A p E p Eβ β
=

 = − − − ∑               (6) 

so that ij jiA A= − . Then, 

( )1

, 1 , 1;
0,

d

N N N
ii

ij ij ij ij ji
i j i j i lej

p
c A c A A

t
=

= =

= = + =∑ ∑ ∑              (7) 

q.e.d.  

2.2. A Simplified Master Equation 

A much simpler ME was recently studied in Ref. [6]. Here we permit interaction 
only between neighbor levels (with one exception demanded by normalization). 
This entails some sort of selection rules that allow for only certain kinds of tran-
sitions. The simplified ME reads 

( ) ( )1 1
d

exp exp ,
d

k
k k k k

p
p E p E

t
β β− −= − − −               (8) 

and we continue in this manner till we encounter 

( ) ( )

( ) ( )

0
1 1

0 1 1 0

d
exp exp

d
exp exp ,

n n n n
p

p E p E
t

p E p E

β β

β β

− − = − − − − − 

 − − − − 

�
 

where the last relation guarantees normalization. The initial conditions are  
( ) ( )0 expi ip E kT Z= − . for all i. β  depends upon time in the peculiar tri-

angular way described above. We set  

( ) ( )1 ,t T tβ =  

together with 

; all .jE j j=  

If β  were constant, then the time-dependent probabilities ( )ip t  would re-
lax to stationary Gibbs-distributions. We will compare below results, in particu-
lar equilibrium attainment, for this simpler ME with those yielded by the more 
complete ME described above. 

3. M-Fermions’ Exactly Solvable Model 

We contemplate M fermions distributed amongst (2M)-fold degenerate sin-
gle-particle (sp) levels, separated by a sp energy gap   [3] [4]. Two quantum 
numbers µ  and p are affixed to a generic single particle state. We have the 
values 1µ = −  (lower level) and 1µ = +  (upper level). The quantum number p, 
denominated quasi-spin, selects a state out of the M-fold degeneracy. The pair 

,p µ  can also be regarded as a “site” that is either occupied or empty. We have 

2 ,M J=                           (9) 

where J denotes an “angular momentum”. One needs the quasi-spin operators 
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†
, ,

ˆ ,p p
p

J C C+ + −= ∑                        (10) 

†
, ,

ˆ ,p p
p

J C C− − += ∑                        (11) 

†
, ,

,

ˆ ,z p p
p

J C Cµ µ
µ
µ= ∑                       (12) 

( )2 2 1ˆ ˆ ˆ ˆ ˆ ˆ ,
2zJ J J J J J+ − − += + +                   (13) 

where the eigenvalues of 2Ĵ  are ( )1J J + . The Hamiltonian of [3] is a spin- 
flip one that reads 

( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
2z sH J V J J J J J+ − − +

 = − + − 
 

                (14) 

or, with sV V=   (take 1= ), 

( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆ .
2zH J V J J J J J+ − − +

 = − + − 
 

                (15) 

Thus, the unperturbed ground state (ugs) ( 0V = ) becomes, in accordance 
with Equation (9), 

, , 2 ,zJ J J M= −                     (16) 

of energys  

2.oE M= −                        (17) 

Doubly inhabited p-sites are not permitted. Ĥ  commutes with 2Ĵ  and ˆ
zJ . 

This implies that the exact solution will belong to the J-multiplet of the ugs. The 
multiplet’s states are designated as ,J m . Necessarily, one of them will minim-
ize the energy. The pertinent m value for this state depends on the interaction’s 
coupling constant V. We just mentioned that for the ugs we have  

2m J M= − = − . Obviously, the interaction-operator ( )ˆ ˆ ˆ ˆJ J J J+ − − ++  is a qua-
si-spin flipping one. Accordingly, this operator becomes the more “efficacious” 
the more similar the populations of the two-levels are. 

3.1. Phase Transitions (PT) 

As V increases from zero, the ugs energy oE  is not affected at once. It keeps its 
value till a critical V-specific value is reached, of ( )1 1M − . At this stage, the 
interacting gs instantaneously becomes , 2 1J M− + . If V continues growing, 
additional new phase transitions (PT) occur. The PT between zJ k= −  and  

1zJ k= − +  tales place at ( )1 2 1V k= − . The successive PT’s end up when we 
reach either 0zJ =  ( 1critV =  for integer J), or 1 2zJ = −  ( 1 2critV =  for odd 
J). Accordingly, at such stage we have, independently of J [3]: 

1 2 for half-integer or 1 for integer .crit critV J V J= =        (18) 

3.2. Treatment at Finite Temperatures T 

Let us insist: double inhabiting a p-site is not allowed. As a consequence, the 
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Hamiltonian matrix’ size becomes ( ) ( )2 1 2 1J J+ × + . Remark that the only man- 
ner to get different J values is to have such double occupancy [4]. Following [4], 
the 2J N=  multiplet is the only one is to consider. 

The free energy F and the partition function Z, with β  the inverse tempera-
ture, and 1Bk =  (Boltzmann) are expressed in the fashion 

( )( )ˆln ln exp .F T Z T Trace Hβ= − = − −                 (19) 

Of course, in the Trace we sum over the zJ  quantum number m. Since H 
commutes with both J and zJ  we have a partition function Z 

( )exp ,
m J

m
m J

Z Eβ
=

=−

= −∑                      (20) 

where the energies mE  are 

( )( )21 .mE m V J J m J= − + − −                   (21) 

The associated probabilities mP  read [4] 

( )exp
,m

m

E
P

Z
β−

=                       (22) 

for all , 1, , 1,m J J J J= − − + −� . The entropy S is written as 

ln .
m J

m m
m J

S P P
=

=−

= − ∑                      (23) 

3.3. Statistical Complexity Measure 

The authors of Ref. [7] concocted a rather adequate functional [ ]F P  of the 
probability distribution able to apprehend correlations in the manner of Shan-
non’s entropy grasping of randomness. This fact constituted a breakthrough, 
conceptualized with the help of the definition of López-Ruiz, Mancini, and Cal-
bet (LMC) [7] of what became called since then the statistical complexity C, that 
individualized and quantified the relative contributions of entropy and structure 
to the new quantifier. The structural ingredient was described by a quantity they 
denominated disequilibrium D. This statistical complexity C has many applica-
tions today (for a small sample we mention Refs. [6]-[25]) C is zero in the two 
scenarios of perfect order and maximum disorder. LMC defined C as the prod-
uct of Shannon’s entropy S and the disequilibrium D. D is a measure in proba-
bility space of the distance between the PD at hand and the uniform one. One 
has 

.C SD=                            (24) 

For our model, according to (23)), the uniform probabilities are  
( ) ( )1 2 1uP J= +  for all m between −J and J, so that for us here 

( )( )2
,

m J
u

m
m J

D P P
=

=−

= −∑                      (25) 

while  
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ln .
m J

m m
m J

S P P
=

=−

= − ∑                       (26) 

For more details regarding C we recommend Refs. [7]. With regards to this 
model, we always deal with a number of energy levels 2 1N J= + . 

3.4. Distance from Equilibrium Quantifiers 

We deal with the results for the present two master equations (ME) above, that 
are to be compared to the quasi-static (st) results that arise out of considering, 
always, Boltzmann-Gibbs equilibrium-situations at the temperature ( )T t  for 
all t. As distance quantifiers we will employ two of them  
• the Kullback-Leibler divergence KLD  between two distinct probability den-

sities (pertaining to the ME and the st treatments, respectively, and  
• the entropy S.  

If we generically call Q to any of these two quantifiers, the distances ME-st we 
are talking about here are of the form 

( )
( ) ( )

( )

2

2 ,ME st
Q

ME

Q t Q t
d t

Q t

−  =                  (27) 

( )20

0
d ,Q QD td t

τ
= ∫                      (28) 

where, obviously, the sub-index ME (or just “M”) refers to master equations re-
sults, and the sub-index “st” (or just “s”) to quasi-static ones. 

We expect the distances from equilibrium to be sensitive to  
1) Changes in the behavior of T with t and 
2) Structural system’s changes with the coupling constant V, 
3) The speed of the heating-up and cooling-off process, regulated by the pa-

rameter τ . The shorter τ , the faster the speed. 

4. Main Present Results 

We will compare three treatments in his work, for 5N = .  
• the full master equation, whose results are denoted with a super-script GM or, 

at times, simply G,  
• the simplified master equation, whose results are denoted with a super-script 

M  
• the quasi-static approach, the entails equilibrium with the reservoir at any 

time t or temperature T, whose results are denoted with a super-script “stat”, 
or S.  

4.1. Time Evolution 

In Figure 1 we compare the time-evolution of the occupation probability 0P  
(whose values are indicated in the y-axis), of the lowest lying level ‘‘0’’ in our 
three theoretical treatments, that we call, in abbreviate fashion, as Stat, ME, and 
GME. [Our probabilities are 0 1 4, , ,P P P� ] The coupling constant is 2V = . Ar-
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tifacts of the temperature-time triangle of apex MT  are clearly noticeable for 
0 2t τ< < , the triangle time-basis. For greater times rapid equilibration takes 
place, but in noticeably quicker fashion for GM than for M. Note the peak of 0P  
in the ME treatment at 2t τ= , where the temperature ceases changing. 

Figure 2 is identical to Figure 1 save for the fact that here 0V =  (interac-
tion-less system). The appearances are different, but still rapid equilibration takes 
place, but in quicker fashion for GM than for M. Of course, in an interaction- 
less system, added heat makes 0P  to diminish, while the fermion-fermion inte-
raction in Figure 1 makes it to grow. The couple of Figure 1, Figure 2 beauti-
fully illustrate the competition heat-interaction. 

4.2. Distance Quantifiers 
4.2.1. Kullback-Leibler Divergence DKL 
We consider now the KLD  divergence. We consider both the interaction and in-
teraction-less situations, in Figure 3 and Figure 4, respectively. We contemplate 
three divergence types between  

1) M and S  
2) G and S  
3) G and M and vice versa.  
 

 
Figure 1. 2V = . Time evolution of 0P  in 
our 3 treatments. 

 

 

Figure 2. 0V = . Time evolution of 0P  in 
our 3 treatments. 
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Figure 3. 2V = . KLD  distances.  
 

 

Figure 4. 0V = . KLD  distances. 

 
Consider the case 2V =  (Figure 3). We see again that G reaches equilibrium 

quicker than M. One can not distinguish, though, between the GM or the MG 
divergences, a fact that must be discussed in conjunction with its Figure 4 
counterpart. There, the same happens for 0V =  in (1) and (2), but the differ-
ence are larger here. The G-M and M-G divergences noticeably differ now, while 
they were indistinguishable for the interacting system (Figure 3). We see that 
the competition heat-fermion-fermion interaction makes the different types of 
description more distinguishable when 0V = . To repeat, we conclude that the 
differences between the full master equation and the reduced one are smaller 
when the fermions interact among themselves than when they are free. 
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4.2.2. Entropies and Entropic Distances (28) 
Our quantifiers are entropic now. We will again encounter that the differences 
between the full master equation and the reduced one are smaller when the fer-
mions interact among themselves than when they are free.  

We consider here, for 5N = , the interaction 2V =  and interaction-less 
0V =  scenarios in, respectively, Figure 5 and Figure 6. Entropies behave in 

rather similar fashion in our three treatments. Not so the entropic distances. In 
particular for free fermions the differences persists long after the thermal dis-
turbance has ceased to exist. The full master equation leads to more rapid equi-
libration than the incomplete one. 

 

 

Figure 5. 2V = . Three entropies and 
entropic distances.  

 

 

Figure 6. 0V = . Three entropies and 
entropic distances.  
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4.2.3. τ-Dependence 
We study here some facets of our results’ dependence on the duration 2τ  of 
our triangular temperature disturbance for distinct N-values. Take a glance now 
at Figure 7. We use there three different τ -values and look at the entropic dis-
tances M-S and G-S for 1V = . While the M-S distances behave rather erratically, 
the G-S ones tend to rapidly converge, in faster fashion the larger the τ -value 
(here, our largest value equals five). The reason for this behavior is clear. The 
largest τ  corresponds to the smoother temperature change. Note also that, the 
larger N becomes, the more noticeable the manner in which the entropic dis-
tances diminish.  

4.2.4. N-Dependence 
We look in Figure 8 at the N-dependence of the two master equations G (com-
plete) and M (operating selection rules that forbid most possible transitions). 
More precisely, at the dependence on the number of fermions 2 1N= +  The 
G and M treatments behave in quite different fashion, with regards to both  

1) difference between the interaction and interaction-less scenarios,  
2) difference between the M and G master equations deportment.  
We clearly notice that  

• for interacting fermions the entropic distance to the equilibrium instance ra-
pidly decreases as N grows,  

• The G master equations leads to equilibrium much more rapidly than the 
incomplete M one.  

• Equilibration proceeds more rapidly for the interacction that for the interac-
tion-less system.  

 

 

Figure 7. Behavior of the entropic distances for three 
different τ  values. 
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Figure 8. Behavior of the entropic distances for 
different numbers of fermions N. 

5. Conclusions 

Our central issue in this effort was the investigation of just how a master equa-
tion leads to an equilibrium scenario, with reference to a set of mutually inte-
racting fermions. They are subjected here to a spin-flip interaction. Two fer-
mions enter the Feynman diagram, interact (coupling constant V), and come out 
with their spins reversed. This problem can be tackled in analytic fashion. 

The fermionic system is in thermal contact with a heath-bath at a moveable 
temperature T. The reservoir first heats up from an initial temperature =T , reaches 
a maximum temperature MT , and then cools-off, returning to its initial state of 
temperature 0T . An appropriate master equation describes the process. Some 
time after the T-disturbance has ceased the system reaches equilibrium with the 
reservoir.  

Three ways of tackling the description were used. 
1) A quasi-static approach in which we contemplate at all times a canonical 

equilibrium Gibbs-density distribution at the extant temperature T, whatever it 
may be. 

2) A complete master equation (ME) in which all possible fermion-energy le-
vels’ populations interact amonst themselves. 

3) A reduced ME in which suitable selection rules only permit a population 
level to interact only with a few others.  

We compare the three description manners both for the interacting system 
and for the free one of 0V = . We concoct some distances’ measure between the 
three different ensuing time-dependent probability densities. Our main observa-
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tions are: 
• The T change’s effects are significantly diminished by the fermion-fermion 

interaction. 
• The time-evolution of the distance between the two pertinent probability 

distributions is rather sensitive to the details of the heating-cooling process. 
• The larger the number of interacting fermions, the sooner the system reaches 

equilibrium. This is for us a rather surprising finding that we regard as our 
main one here. 

• The fermion-fermion interaction always favors a more rapid equilibration.  
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