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Abstract: Exposure to sun radiation causes great oxidative stress and activates a numerous of defense
mechanisms in living systems, such as the synthesis of antioxidants. Resveratrol (RSV), a naturally
occurring stilbene molecule, has antioxidant properties and is synthesized in large amounts when
plants are under high oxidative stress. Likewise, under UV and visible radiation, biomolecules are
oxidized, losing their physiological properties and, therefore, avoiding the harmful effects of solar
radiation is crucial in order to preserve the functionality of cellular components. In proteins, one
essential component that is often susceptible to degradation is the amino acid histidine (His), which
can be modified via several oxidizing mechanisms. In this article, we evaluate the photoprotection
capacity of RSV in photosensitized oxidation of His, which is initiated with a one-electron transfer
reaction, yielding the His radical cation (His•+). The photoprotective properties of RSV are evaluated
using kinetics analysis during steady-state irradiation and laser flash photolysis experiments. The
experimental results reveal that the presence of RSV in the solution causes an evident decrease of
the His consumption initial rates as a result of a reaction between His•+ and RSV that recovers the
amino acid. In addition, we conclude that during its antioxidant action, RSV is consumed being a
sacrificial antioxidant.
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1. Introduction

Interest in resveratrol (RSV) has grown steadily for about five decades, since it was
discovered that it is synthesized in some plants in response to oxidative stress. In 1976,
it was found that RSV is accumulated in grapevines as a non-specific response to stress
situations, such as an infection or UV radiation exposure [1]. At that time, RSV was
classified as a phytoalexin, as it was evident that it is synthesized in response to stressful
situations. Phytoalexins are a family of chemically unrelated molecules, which are found
in plants and involved in their defense reactions during a variety of injuries [2]. When
classifying this family of compounds according to their chemical structure, a subgroup
of stilbenes was included, having a common structure of two aromatic rings joined by a
methylene bridge. RSV belongs to the stilbene subgroup and is found in plants as trans-
3,5,4′-trihydroxy-stilbene (Figure 1). RSV has been found in more than 70 plant species,
including edible fruits and vegetables (grapes, cranberries, peanuts, cocoa) [3].

Due to the high concentrations of RSV in wine, it plays a key role in the “French
paradox”, which relates an unhealthy diet including cheese and red wine with a low
incidence of cardiovascular events [4]. Recently, it was demonstrated that RSV prevents
guanine nucleotide (2′-deoxyguanosine 5′-monophosphate, dGMP) from one-electron
oxidation by giving an electron to the formed guanine radical (dGMP(−H)•), recovering
the nucleotide [5]. These results suggest that RSV may prevent oxidation of DNA molecules
and the associated consequences, such as mutations and carcinogenic lesions.
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Under exposure to UV-A and visible radiation, biomolecules are degraded by photo-
sensitized oxidations, by both type I and type II photosensitized mechanisms [6]. The type
I mechanism involves the initial formation of radicals from a given biomolecule, such as
amino acids, lipids, or nucleotides; however, in type II mechanism, singlet oxygen (1O2
(1∆g), denoted as 1O2) is formed by energy transfer from the sensitizer to molecular oxygen,
which readily oxidizes the biomolecules [6].
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Figure 1. Chemical structure of resveratrol (RSV), histidine (HisH+), and pterin (Ptr) at pH 4.5.

In biological systems, proteins constitute the majority component, and their exposure
to an oxidizing environment damages these biomolecules, causing alterations in their
structure and function. The oxidation of amino acids leads to modifications in proteins such
as unfolding, aggregation, fragmentation, and/or inactivation of enzymes, affecting a wide
range of cellular and biochemical physiological functions [7]. Preserving the integrity of
amino acids is essential for maintaining the structure and functionality of proteins. Serious
damage is caused by the cross-linking of proteins due to the formation of dimers between
two tyrosines (Tyr) or the formation of disulfide bridges between cysteines [7]. Previously,
it was observed that the presence of RSV prevents this oxidative modification of tyrosine
by inhibiting the formation of tyrosine dimers [8]. According to this observation, RSV is
likely to be able to protect proteins in other oxidative electron transfer processes. Histidine
(His) is one of the basic amino acids found in proteins, which plays a critical role in plant
growth and development [9]. His is extremely susceptible to oxidation and its degradation
causes severe modifications in proteins, often leading to the loss of their functionality due
to its presence in the catalytic sites of several enzymes, since it has been demonstrated that
His oxidation is essential for the active enzymatic protein conformation [10]. Furthermore,
at the reaction center of photosystem II, the enzyme that uses sunlight to oxidize water to
molecular oxygen, His is a crucial amino acid that is involved in a proton-coupled electron
transfer (PCET) with Tyr [11]. His is extremely sensitive to metal-catalyzed oxidation,
electrophilic modifications, and UV–visible radiation [12]. His is not significantly affected
directly by UV-A or visible radiation (sun exposure), although it is extremely reactive in the
presence of a suitable sensitizer (Sens), such as phthalocyanines, flavins, pterins [13–15].
The photodegradation of His is clearly pH-dependent, and the mechanisms involved in its
oxidation could be type I and/or type II [13,15,16]. At neutral and basic pH, the reaction
between 1O2 and His becomes relevant, since only the neutral and anionic forms of the
amino acid are significantly reactive and both mechanisms compete [15]; however, at
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pH below 6, the imidazole group is protonated and a PCET was reported as the main
mechanism (type I mechanism, reaction 1) [15].

3Sens∗ + HisH+ PCET−−−→ SensH• + His•+ (1)

The photosensitizing properties of pterin (Ptr, Figure 1) have been extensively reported,
namely the target biomolecules, nucleotides, and amino acids, [17] including His. Under
UV-A radiation, Ptr acts through both type I [18] and type II [19] photosensitized oxidation
mechanisms. Regarding His, it was previously demonstrated that Ptr-photosensitized
oxidation at pH < 6.0 occurs through a type I mechanism, while 1O2 does not contribute
appreciably to its degradation [15].

In the study reported here, we investigated the photoprotective effects of RSV on the
Ptr-photosensitized oxidation of His under UV-A irradiation (365 nm) in acidic aqueous
solution. At that wavelength, Ptr is the major absorbing species, since His does not absorb
and RSV poorly absorbs radiation (Figure 2). The experiments were performed at pH 4.5,
at which His is present mostly in its protonated form (HisH+, Figure 1). The photochemical
reactions were analyzed by laser flash photolysis (LFP), UV-visible spectrophotometry, and
chromatography (HPLC-UV). The mechanistic aspects of the antioxidant action of RSV on
His degradation are discussed.
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Figure 2. Absorption spectra of Ptr (blue line), His (red line), and RSV (green line) in air-equilibrated
aqueous solutions at pH 4.5.

The results are useful for clarifying the underlying action mechanism of the photopro-
tection effects of RSV and give evidence of the antioxidant mechanisms that involve this
plant-derived stilbene.

2. Materials and Methods

General. Pterin (Ptr) (purity > 99%, Schircks Laboratories, Bauma, Switzerland)
and histidine (His, >98%, Sigma Chemical Co., St. Louis, MI, USA) were used without
further purification after checking for impurities using HPLC. Formic acid (HCOOH) was
purchased from Sigma Chemical Co.; trans-3,5,4′-trihydroxy-stilbene (RSV, purity > 99%,
Shaanxi Berries Biochemical Co., Ltd., Beijing, China) was purchased from Elisium (Buenos
Aires, Argentina). Experiments were carried out in aqueous solutions prepared using
deionized water (specific electrical resistance of water was ~10 MΩ cm) further purified in
a Milli Q Reagent Water System apparatus. The pH measurements were performed with a
sensION+ pH31 GLP pH meter combined with a 5010T pH electrode (Hach Latam, México,
México). The final pH of the aqueous solutions (pH 4.5) was adjusted by adding very small
aliquots (few µL) of concentrated (0.1–2 M) HCl or NaOH solutions using a micropipette.
The ionic strength was ca. 10−3 M in all experiments.
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Steady-state irradiation. Aqueous solutions containing Ptr (~60 µM) and His (~100 µM
or 700 µM) were irradiated in 0.4 cm path length quartz cells at room temperature with
Rayonet RPR3500 lamps with emission centered at 365 nm (Southern N.E. Ultraviolet Co.,
Branford, CT, USA) at variable distances between 0 and 3 cm. The spectral discrimination
was achieved using filters with bandwidths (fwhm) of ~20 nm. The incident photon flux
density (q0,V

n,p ) at the excitation wavelength (365 nm) was 2.5 (± 0.2)× 10−5 Einstein L−1 s−1,
which was determined as previously described [20,21]. The experiments were performed in
aerated aqueous solutions at pH 4.5 and under conditions of reduced environmental light.

UV-Visible spectrophotometric analysis. UV-visible absorption spectra were registered
on a Shimadzu UV-1800 spectrophotometer. Measurements were made in quartz cells with
0.4 and 1 cm optical path lengths.

High-Performance Liquid Chromatography (HPLC). A Prominence equipment from
Shimadzu (Kyoto, Japan) containing a LC-20AT solvent delivery module, DGU-20A5 online
degasser, CBM-20communications bus module, SIL-20A HT auto sampler, CTO-10AS VP
oven, and SPD-M20A photodiode array detector, was used to monitor and quantify the
reactants and the photoproducts. Separation was performed on a Sinergy Polar-RP column
(150 × 4.6 mm, 5 µm; Phenomenex Inc., Torrance, CA, USA) using an aqueous solution
containing HCOOH (25 mM, pH 3.5± 0.1) as the mobile phase. HPLC runs were monitored
by UV/vis spectroscopy at different wavelengths.

Kinetic analysis. To determine the initial rates of His consumption ((−d[His]/dt)0)
or P production ((d[P]/dt)0), linear plots of the concentration vs. irradiation time were
used. Generally, this condition is satisfied only if the concentration of the reactant does not
decrease significantly (<15%); therefore, for each experiment we considered a period of
time that satisfied this condition.

Transient absorption experiments. Laser flash photolysis (LFP) experiments were
performed using a LP980 equipment. Briefly, Ptr excitation was performed with the third
harmonic at 355 nm of a Nd:YAG Surelite II-10 laser (6 ns fwhm, 10 mJ per pulse) (Contin-
uum, Milpitas, CA, USA). The transient absorption spectra and decays of aqueous solutions
of Ptr (~90 µM), His (0–1000 µM), and RSV (0–51 µM) previously saturated by bubbling Ar
were recorded with the LP980 laser flash photolysis apparatus (Edinburgh Instruments,
Livingston, England) linked to a 300 Mhz Tektronik TDS 3012C digital oscilloscope for
signal acquisition. Signal analysis was performed using the OriginPro 8.5 software from
OriginLab Corporation.

Fraction of the triplet excited state quenched by His, RSV, or O2 (fx). Taking into
account all the reactions involving 3Ptr*, the fraction of the triplet excited state quenched
by a given species (X) can be calculated as the rate of the reaction of 3Ptr* with X divided
into the overall rates of 3Ptr* consumption:

fx =
kX

q [X]
1

τ3Ptr∗
+ kO2

q [O2] + kX
q [X] + kY

q [Y]

In solutions containing Ptr, His, RSV, and/or O2, and considering the lifetime of the long-
lived 3Ptr* (τ3Ptr∗ = 6.2 (± 0.7) µs) and the corresponding bimolecular quenching rate constants
(kq) between 3Ptr* and O2, His, or RSV (1.6 × 109 M−1s−1 [22], 1.5 × 109 M−1s−1 [23], and
4.9 × 109 M−1s−1 [5], respectively), the fractions of 3Ptr* deactivated by O2 (f O2), His (f His),
or RSV (f RSV) can be calculated.

3. Results
3.1. Photosensitized Degradation of Histidine

Solutions containing Ptr (~60 µM) and His (~100 µM) were exposed to UV-A radiation
(365 nm) for different periods of time in the absence of RSV. The experiments were per-
formed in air-equilibrated aqueous solutions at pH 4.5 and concentrations of His and Ptr
were determined by HPLC at each irradiation time (experimental section). Kinetic analysis
of the remaining substrates was performed. As expected from previous results [15], a
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decrease of the His concentration was observed during the irradiation time, whereas the
Ptr concentration did not change (Figure 3) in the analyzed time window. HPLC chro-
matograms also showed a main product (P) at a retention time (tR) 3.6 min, the intensity of
which increased with irradiation time (Figure 3).
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Figure 3. Chromatograms obtained using HPLC, analyzed at 211 nm from irradiated solutions
containing Ptr (60 µM) and His (100 µM) at different irradiation times.

Similar experiments were performed in the presence of RSV at different concentra-
tions. The addition of RSV caused evident decreases in the rate of consumption of His
(Figure 4a) and in the rate of generation of the product (P) (Figure 4b), evidencing the
protective capacity of RSV. In all cases, the Ptr concentration remained constant within the
irradiation time, whereas the RSV concentration decreased, similarly to what was observed
for dGMP [15]. These results suggest that RSV regenerates His, providing photoprotection
by acting as a sacrificial antioxidant. The decreases in the initial rates of His consumption
and P production were directly proportional to RSV concentration.

As was previously mentioned, Ptr-photosensitized oxidation of His at pH < 6.0 starts
with a proton-coupled electron transfer (PCET) from the His-protonated form (HisH+,
pKa = 6.0) to Ptr triplet excited state (3Ptr*) to form the corresponding radical pair (reaction
2), a neutral Ptr radical (PtrH•) and a His radical cation (His•+). In the current experimental
conditions, PtrH• reacts with O2 (reaction 3) to recover Ptr and generate the superoxide
anion (O2

•−). His•+ undergoes further reactions to yield oxidation products (reaction 4).

3Ptr∗+ HisH+ PCET−−−→ PtrH• + His•+ (2)

PtrH• + O2 → Ptr + O•−2 + H+ (3)

His•+
O2/O•−2 /H2O2−−−−−−−−→ Products (4)

His, RSV, and O2 deactivate 3Ptr*, with rate constants in the diffusion control limits
(Section 2) [5,22,23]. Under the current experimental conditions, the fractions of 3Ptr*
deactivated by each quencher are listed in Table 1. The decreases in the initial consumption
relative rate (v/v0) of His were 0.19 and 0.46 due to the presence of 15 and 45 µM of RSV,
respectively, being much greater than the expected decrease due to the deactivation of 3Ptr*
by RSV, indicating that a faster deactivation of the excited state by the presence of a new
quencher is not the only mechanism that protects the amino acid from oxidation. Likewise,
the decreases in the initial formation relative rate of P were of the same magnitude (0.13
and 0.46 for 15 and 45 µM of RSV, respectively).
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Figure 4. Time evolution of (a) His concentration and (b) area of the peak corresponding to P
registered at 211 nm during Ptr-photosensitized oxidation in air-equilibrated aqueous solutions
(pH 4.5) in the absence and presence of RSV ((RSV) = 0, 15 µM, and 45 µM) as a function of irradiation
time. Note: λEXC = 365 nm; Ptr = 60 µM; His = 100 µM. Insets: Relative rates (v/v0) of (a) His
consumption and (b) P production at different RSV concentrations.

Table 1. Calculated fractions of 3Ptr* deactivated by His, RSV, and O2 (f His, f RSV, f O2, respectively)
at different His and RSV concentrations. Ptr = 60 µM.

[RSV] µM [His] µM f His f RSV f O2

– 100 0.21 0 0.56
15 µM 100 0.19 0.09 0.51
45 µM 100 0.16 0.24 0.43

– 700 0.65 0 0.25
5 µM 700 0.64 0.01 0.24

15 µM 700 0.62 0.04 0.24
30 µM 700 0.60 0.08 0.23

Similar experiments were performed both at higher His (7 × 10−4 M) and lower RSV
(0–30 × 10−6 M) concentrations, at which 3Ptr* is mainly deactivated by the amino acid
(f HIS > 0.6, Table 1). Under these experimental conditions, the photoprotective action of RSV
was observed (Figure 5), being the deactivation of 3Ptr* by RSV less than 10% (f RSV < 0.1,
Table 1). Decreases in initials rate of His consumption were higher than expected due to
the deactivation of 3Ptr* by RSV in conditions such as PCET from HisH+ to 3Ptr* (Reaction
2), forming the corresponding radical pair, which is the predominant reaction in which the
excited state participates; therefore, the concentrations of HisH+ is more or less similar for all
analyzed RSV concentrations. Furthermore, initial rates of His consumption were inversely
proportional to RSV concentrations (Figure 5, inset), being negative the individual order of
reaction for RSV in the overall mechanism, indicating more than an elementary reaction.
The inverse proportionality between the His consumption rate and the RSV concentration
indicates that RSV participates in a reverse reaction to recover the amino acid.
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Figure 5. Time evolution of His concentrations during Ptr-photosensitized oxidation in air-
equilibrated aqueous solutions (pH 4.5) in the absence and presence of RSV ((RSV) = 0, 5 µM,
15 µM, and 30 µM) as a function of irradiation time. Note: λEXC = 365 nm; Ptr = 60 µM; His = 700 µM.
Inset: Rates of His consumption at different RSV concentrations.

These results clearly reveal that photoprotection by RSV occurs at a step after the
reaction between 3Ptr* and HisH+ (Reaction 2). Considering the kinetics analysis performed
here and previous results for dGMP and Tyr oxidation [5,8], where prevention of one-
electron oxidation of the biomolecule by RSV was demonstrated, we can assume that His
is recovered from His•+ after receiving an electron from RSV.

3.2. Laser Flash Photolysis Experiments

The differential transient absorption spectra of solutions containing Ptr (93 µM) recorded
after the 355 nm laser pulse showed the typical band between 400 and 550 nm (Figure 6),
with a biexponential decay with lifetimes of 6.2 (±0.7) × 10−6 s and 0.5 (±0.2) × 10−6 s
corresponding to lactam and lactim tautomeric species of 3Ptr*, respectively, similar to
those previously reported [22]. Both tautomeric forms are deactivated by HisH+ with
bimolecular quenching rate constants in the range of the diffusion-controlled limit, being
1.5 (±0.2) × 109 M−1s−1 for the long-lived and 3 (±1) × 109 M−1s−1 for the short-lived
triplet excited states [23]. Additionally, it has been observed that only the Ptr long-lived
species (lactam tautomer) participates in photosensitized electron transfer reactions [22,23].

The differential transient absorption spectra of aqueous solutions containing Ptr
(93 µM) and His (1 × 10−3 M) were recorded between 300 and 600 nm in the absence
and the presence of RSV (Figure 7). In the absence of RSV, a weak wide absorption band
between 400 and 500 nm was observed (Figure 7, black dots), characteristic of the Ptr
radical anion (Ptr•−) [24], which is strong evidence of the participation of 3Ptr* in an
electron transfer reaction with HisH+ (Reaction 2). The 3Ptr* lifetime value obtained by
fitting the LFP signal at 430 nm (τ3Ptr∗

EXP ) was 0.40 (±0.04) × 10−6 s, similar to the expected
lifetime (τ3Ptr∗

CAL , 0.60 × 10−6 s). In this experimental condition, the calculated fraction of
3Ptr* quenched by His ( f 3Ptr∗

His ) is 0.90.
In the presence of RSV, a new long-lived absorption band with maxima at 400 nm

was observed (Figure 7, red triangles), similar to that reported for the RSV neutral radi-
cal (RSV(−H)•) [25], indicating an electron transfer step to an electron acceptor. Traces
recorded at 410 nm for different RSV concentrations followed first-order kinetics and
showed an increase in the absorbance at infinite time proportional to the RSV concentra-
tion, indicating a higher RSV(−H)• concentration (Figure 8). The corresponding RSV(−H)•

formation lifetimes (τRSV(H)•
EXP ) in solutions containing His (1 × 10−3 M) were calculated by

fitting the signal registered at 410 for each RSV concentration (0–51 × 10−6 M, Table 2),
being the formation lifetime one order of magnitude higher than the expected 3Ptr* lifetime
(τ3Ptr∗

CAL ). As expected for a bimolecular reaction, τRSV(H)•
EXP decreased with RSV concentration,
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but all values obtained were much higher than the 3Ptr* lifetime experimentally obtained
(τ3Ptr∗

EXP , 0.40 (±0.04) × 10−6 s, Figure 8, red trace) in the absence of the antioxidant. In the
observed range of formation lifetimes for RSV(−H)• (1.7 µs–3.0 µs), 3Ptr* was no longer
present in the solution so could not be responsible for its formation. These results clearly
exclude an electron transfer reaction between long-lived 3Ptr* and RSV.

Photochem 2021, 1, FOR PEER REVIEW 7 
 

 

 
Figure 5. Time evolution of His concentrations during Ptr-photosensitized oxidation in air-
equilibrated aqueous solutions (pH 4.5) in the absence and presence of RSV ((RSV) = 0, 5 μM, 15 
μM, and 30 μM) as a function of irradiation time. Note: λEXC = 365 nm; Ptr = 60 μM; His = 700 μM. 
Inset: Rates of His consumption at different RSV concentrations. 

These results clearly reveal that photoprotection by RSV occurs at a step after the 
reaction between 3Ptr* and HisH+ (Reaction 2). Considering the kinetics analysis 
performed here and previous results for dGMP and Tyr oxidation [5,8], where prevention 
of one-electron oxidation of the biomolecule by RSV was demonstrated, we can assume 
that His is recovered from His•+ after receiving an electron from RSV. 

3.2. Laser Flash Photolysis Experiments 
The differential transient absorption spectra of solutions containing Ptr (93 μM) 

recorded after the 355 nm laser pulse showed the typical band between 400 and 550 nm 
(Figure 6), with a biexponential decay with lifetimes of 6.2 (±0.7) × 10−6 s and 0.5 (±0.2) × 
10−6 s corresponding to lactam and lactim tautomeric species of 3Ptr*, respectively, similar 
to those previously reported [22]. Both tautomeric forms are deactivated by HisH+ with 
bimolecular quenching rate constants in the range of the diffusion-controlled limit, being 
1.5 (±0.2) × 109 M−1s−1 for the long-lived and 3 (±1) × 109 M−1s−1 for the short-lived triplet 
excited states [23]. Additionally, it has been observed that only the Ptr long-lived species 
(lactam tautomer) participates in photosensitized electron transfer reactions [22,23]. 

 

irradiation time (min)
0 2 4 6 8 10 12 14

[H
is]

 ( μ
M

)

500

550

600

650

700

[RSV] = 0
[RSV] = 5 μM
[RSV] = 15 μM
[RSV] = 30 μM

1/[RSV] (10-2 μM-1)
0 5 10 15 20 25-d

[H
is]

/d
t (

μM
/m

in
)

2

3

4

5

6

λ (nm)
300 350 400 450 500 550

ΔA
 (1

0-3
)

-5

0

5

10

15

0.27 μs-0.32 μs
5.00 μs-5.04 μs
8.90 μs-8.96 μs

t (μs)
0 10 20 30

ΔA
 (1

0-3
)

0

2

4

6

Figure 6. Differential transient absorption spectra registered at different range times after the laser
pulse of deaerated aqueous solution containing Ptr (93 µM) Inset: Time dependence of the absorbance
at 430 nm (λEXC = 355 nm; pH = 4.0).
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Table 2. Experimental RSV(−H)• formation lifetime (τRSV(H)•
EXP ) and calculated or experimental 3Ptr*

lifetime (and τ3Ptr∗
CAL or τ3Ptr∗

EXP , respectively) values from deaerated aqueous solutions of Ptr (93 µM)
and His (1000 µM) at different RSV concentrations.

[HisH+] = 1000 µM τRSV(H)•
EXP (µs) τ3Ptr*

CAL (µs) τ3Ptr*
EXP (µs)

[RSV] = 0 – 0.60 0.40
[RSV] = 30 µM 3.0 0.55 –
[RSV] = 35 µM 2.5 0.55 –
[RSV] = 40 µM 2.4 0.54 –
[RSV] = 45 µM 2.2 0.53 –
[RSV] = 51 µM 1.7 0.52 –

4. Discussion

As was previously reported, the initial step into Ptr-photosensitized degradation of
His at pH levels below 6 is a proton-coupled electron transfer (PCET) from HisH+ to 3Ptr*,
yielding the corresponding pair of radicals, a pterin neutral radical (PtrH•) and a histidine
radical cation (His•+) (reaction 2) [15]. This later radical undergoes further oxidation and a
main product can be observed (Figure 2). Under aerobic conditions, Ptr is not consumed
during His oxidation, since it is recovered in an electron transfer reaction from the Ptr
radical anion to O2, forming a superoxide anion (reaction 3) [15]. The elimination of
PtrH• by O2 avoids the recombination with His•+ and, in consequence, His is irreversibly
consumed (Scheme 1).

The addition of RSV to the solution clearly slowed down the rate of His consumption
(Figures 4 and 5), revealing the protective action of this compound. RSV deactivated 3Ptr*,
although the decrease in His consumption was greater than expected given the deactivation
of the excited state. Moreover, similar protection was observed in solutions containing
His at higher concentrations (7 × 10−4 M), whereby the triplet excited state was mainly
deactivated by His, proving that RSV photoprotection is not due to the deactivation of the
excited state of the sensitizer.
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Scheme 1. Mechanism of RSV antioxidant action on Ptr-photosensitized His degradation.

Under experimental conditions such as almost all 3Ptr* was deactivated by His, a char-
acteristic transient absorption spectra corresponding to RSV(−H)• was observed (Figure 7),
revealing that RSV participates in an electron transfer reaction. The formation lifetime
of RSV(−H)• (τRSV(H)•

EXP ) was found to be higher than that of 3Ptr* (Figure 8, Table 2), in-
dicating that the radical observed was not formed in a reaction with this excited species.
Furthermore, since His is consumed at a slower rate in the presence of RSV, and considering
that decreases in the His consumption rate are inversely proportional to RSV concentra-
tion, we can consider that RSV(−H)• is a product of the reaction between His•+ and RSV
(Reaction 5), whereby His is recovered.

His•+ + RSV → HisH+ + RSV(−H)• (5)

5. Conclusions

In this work, kinetic studies were carried out on the antioxidant capacity of resveratrol
(RSV) during the photosensitized oxidation of the amino acid histidine (His). Under
UV-A exposure (365 nm) and in the presence of pterin (Ptr), the mechanism involved in
the oxidation of His is a proton-coupled electron transfer (PCET) from HisH+ to the Ptr
triplet excited state (3Ptr*), yielding the corresponding pair of radical (His•+ and PtrH•,
respectively). When adding RSV to the solution, evident decreases in the consumption
initial rates of His were observed, and RSV radical (RSV(−H)•) was also detected. The
formation lifetime for RSV(−H)• exceeded the lifetime for 3Ptr*, indicating that it is not
a product of a reaction between RSV and 3Ptr*. Taking all of these experimental results
together, it is clear that the lower consumption rate of His is the result of a reaction between
His•+ and RSV that recovers the amino acid, and we can certainly conclude that RSV
provides protection against its oxidation.

All experimental evidence presented in this work indicates that RSV reduces the rate
of His consumption by acting as an electron donor, allowing the recovery of the amino acid
after it has been oxidized in a PCET reaction with Ptr in its triplet excited state. Elucidating
how RSV protects His from photosensitized oxidation, in addition to revealing its potential
antioxidant role in high oxidative stress environments, it provides a molecular basis for
understanding its mechanism of action. These results are of great relevance, since His
is a critical amino acid for the functionality of several enzymes and it is also extremely
susceptible to oxidation in electron transfer reactions. Since the most energetic component
of solar radiation is UV-A, the photoprotection that RSV provides to prevent the oxidation
of biomolecules under UV exposure should be considered in food technology, medicinal,
and cosmetic products.
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