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Abstract
Precision medicine promises to overcome the constraints of the traditional “one-for-all” healthcare approach through a clear 
understanding of the molecular features of a disease, allowing for innovative and tailored treatments. State-of-the-art prot-
eomics has the potential to accurately explore the human proteome to identify, quantify, and characterize proteins associated 
with disease progression. There is a pressing need for informative biomarkers to diagnose liver disease early in its course to 
prevent severe disease for which no efficient treatment is yet available. Here, we propose the concept of a cellular pathway 
as a functional biomarker, whose monitorization may inform normal and pathological status. We have developed a standard-
ized targeted selected-reaction monitoring assay to detect and quantify 13 enzymes of one-carbon metabolism (1CM). The 
assay is compliant with Clinical Proteomics Tumor Analysis Consortium (CPTAC) guidelines and has been included in the 
protein quantification assays that can be accessed through the assay portal at the CPTAC web page. To test the feasibility of 
the assay, we conducted a retrospective, proof-of-concept study on a collection of liver samples from healthy controls and 
from patients with cirrhosis or hepatocellular carcinoma (HCC). Our results indicate a significant reconfiguration of 1CM 
upon HCC development resulting from a process that can already be identified in cirrhosis. Our findings indicate that the 
systematic and integrated quantification of 1CM enzymes is a promising cell function-based biomarker for patient stratifica-
tion, although further experiments with larger cohorts are needed to confirm these findings.

Keywords Targeted proteomics · SRM · CPTAC  · Biology and Disease Human Proteome Project (B/D-HPP) · Liver 
cancer · Liver injury · One-carbon metabolism

Introduction

Hepatocellular carcinoma (HCC) is among the most com-
mon malignancies worldwide, imposing a heavy burden on 
society and health systems [8] and with a steady increase 
in incidence and mortality [25]. Indeed, liver tumors are 
the sixth most frequent cancer type and second-leading 
cancer-associated death [10]. HCC accounts for ~ 90% of 
liver tumors [29] and is considered as a late complication 
of chronic liver disease that associates with liver cirrhosis 
in as much as 80% of cases [9]. The development of HCC 
is a multistep process, from pre-cancerous, low-grade dys-
plastic nodules to advanced (stages B and C) HCC (Bar-
celona Clinic Liver Cancer staging) (reviewed in [14]). 
Although many genetic and environmental risk factors of 
HCC are now known [35], clinical outcomes remain dis-
mal as most patients are diagnosed at advanced stages and 
have poor prognosis (5-year survival rates < 20%) [1]. While 
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preventive strategies such as new-generation antiviral thera-
pies are reducing some of the main risk factors associated 
with HCC (e.g., HBV and HCV infections), other etiologies 
are emerging such as non-alcoholic steatohepatitis, which is 
often linked to obesity and diabetes [36]. The lack of robust 
methods for the early detection and treatment of HCC that 
can be tolerated by patients with advanced chronic liver dis-
ease raises an urgent need to investigate the molecular basis 
of the disease [23].

The progression of HCC is complex and is based on two 
main factors: (1) Progression of chronic tissular damage 
induced by viral infections, metabolic alterations or tox-
ins [3, 29]. This process involves liver inflammation and 
regeneration that must be finely tuned, as their deregulation 
leads to fibrosis, cirrhosis and, ultimately, HCC. (2) Genetic 
alterations involving oncogenes and/or tumor suppressors 
that lead to the impairment of central cellular pathways such 
as Wnt, β-catenin, VEGFR/EGFR, PI3K/Akt/mTOR, JAK/
STAT, or MAPK [14]. This knowledge has spurred research-
ers to explore potential HCC oncogenic drivers [28], but 
unfortunately, this scientific progress has not yet translated 
into better management of liver cancer [15]. Several prom-
ising HCC biomarkers are under investigation [5], but the 
molecular hallmarks and mediators of HCC progression 
remain to be identified to fulfill some of the unmet needs, 
including a better understanding of tumor heterogeneity, 
integration of molecular subtypes into clinical staging, and 
clinical indicators to predict treatment response and for early 
detection/surveillance.

Metabolic remodeling is a common feature of most 
liver ailments, from steatosis to HCC, in which trans-
formed hepatocytes re-shape their metabolism according to 
their specific proliferative requirements––a condition first 
described by Warburg [32]. One-carbon metabolism (1CM) 
is widely recognized as a key metabolic regulatory node to 
preserve the quiescent and differentiated state of hepatocytes 
[19] (Fig. 1). Based on its principal role in the regulation 
of the methylation capacity of the cell, 1CM is considered 
as a link between intermediate metabolism and epigenetic 
regulation [20], and its dysregulation is a common finding in 
many HCC targeted and proteome-wide analyses [11, 26]. In 
addition to the growing evidence associating the impairment 
in methionine adenosyltransferase (MAT) enzymes with 
liver carcinogenesis [17, 26], other 1CM enzymes, including 
methylthioadenosine phosphorylase (MTAP) might also par-
ticipate in the progression of HCC [2]. Given the relevance 
of 1CM to the maintenance of hepatocyte homeostasis, the 
systematic measurement of participating enzymes has been 
proposed as a good multi-parameter test for liver function 
and differentiation assessment.

The identification of biological landmarks to assess the 
health status of individuals forms the basis of modern preci-
sion medicine efforts, providing molecular evidence of the 

onset and progression of a disease or pharmacological sus-
ceptibility, thus allowing for tailored healthcare approaches. 
Against this background, proteomics is providing new 
insights into proteins associated with disease that can be 
systematically measured to guide patient stratification [31]. 
Multiple-reaction monitoring (MRM)-based strategies are an 
attractive alternative to more established methods commonly 
based on the use of affinity reagents (i.e., western blotting 
or ELISA), and offer a fast and easy methodology that is not 
limited by the availability of specific antibodies. Addition-
ally, its multiplexing capacity allows for monitoring multiple 
target proteins in a single liquid chromatography coupled 
to mass spectrometry (LC–MS) run in a large number of 
samples, making it the method of choice in biomarker veri-
fication and validation pipelines [7]. Indeed, liver research 
has greatly benefited from large-scale proteome studies, 
which have aided in the discovery of proteins relevant for 
the development of innovative clinical strategies [20]. Along 
this line, our group recently introduced the concept of func-
tional biomarkers, defined here as a panel of functionally 
related proteins that, for instance, integrate into a metabolic 
or signaling pathway, adding a second level of information 
to complement the up- or downregulation of individual pro-
teins. Based on this concept, we have shown that the system-
atic measurement of 1CM enzymes using selected-reaction 
monitoring (SRM)/MRM targeted proteomics provides 
precise information about the specific configuration of this 
metabolic pathway in liver diseases and HCC in mice [21].

In the present study, as part of the liver team of the Biol-
ogy and Disease Human Proteome Project (https:// www. 
hupo. org/ human- prote ome- proje ct), we developed a stand-
ardized SRM assay to detect and quantify 13 1CM enzymes 
in human liver. The assays are compliant with Clinical Pro-
teomics Tumor Analysis Consortium (CPTAC) guidelines 
and can be accessed through the assay portal at the CPTAC 
web page. We also conducted a retrospective, proof-of-
concept study on a collection of human liver samples from 
healthy controls and from patients with cirrhosis or HCC 
to test the clinical use of the assay. Our results indicate a 
significant reconfiguration of 1CM upon HCC development 
resulting from a process that can already be identified in cir-
rhosis. These findings suggest that the systematic and inte-
grated quantification of 1CM enzymes is a valuable resource 
for the prognosis and follow-up of HCC and of patients with 
chronic liver disease at risk of HCC.

Materials and methods

Biological specimens

Liver samples were collected from patients with liver dis-
ease and from asymptomatic (control) patients. Control 
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liver samples (n = 28) were obtained from patients with 
a hydatid cyst, with no additional manifestations of func-
tional or morphological alterations in the liver. Cirrhotic 
liver samples (n = 15) and liver tumors (n = 19) were 
obtained at the time of liver transplantation or tumor resec-
tion, respectively. Upon extraction, samples were flash fro-
zen in liquid nitrogen and stored at − 80 °C until use. The 
present study was approved by the human research review 
committee of the University Hospital of Navarra, and 
informed consent was obtained from all patients enrolled 
in the study. The study was conducted in compliance with 
the ethical standards formulated in the Helsinki Declara-
tion of 1996 (revised in 2000).

Sample preparation

Liver specimens were thawed and disrupted mechani-
cally using a Potter–Elvehjem homogenizer in 7 M urea, 
2  M thiourea, 4% CHAPS (3-[(3-cholamidopropyl) 
dimethylammonio]-1-propanesulfonate), 40 mM dithio-
threitol (DTT) at pH 7.7. After centrifugation at 10,000 × g 
for 5 min, the protein concentration of the saved superna-
tant was measured using the Pierce 660-nm Protein Assay 
(ThermoFisher Scientific). Proteins were precipitated with 
methanol/chloroform/water (4:1:3 vol.), and the resulting 
pellet was precipitated again with methanol (4 vol.). Sam-
ples were centrifuged, and the precipitated proteins were 

Fig. 1  Schematic representation 
of one-carbon metabolism. The 
enzymes quantified in this study 
are highlighted. The arrows 
represent the significant changes 
observed (q < 0.05) in cirrho-
sis (blue) and hepatocellualr 
carconoma (HCC) (red)
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evaporated to dryness in a Speed Vac concentrator. Proteins 
were resuspended and reduced in 8 M urea, 100 mM ammo-
nium bicarbonate, 10 mM DTT, pH 8, for 1 h at 37 °C. Free 
reduced cysteine thiols were alkylated with 50 mM iodoacet-
amide for 45 min at room temperature in the dark. Subse-
quently, samples were diluted fourfold with water to reduce 
the urea concentration to 2 M. Trypsin was then added to 
a final ratio of 1:25 (trypsin/protein), and the proteolytic 
reaction was incubated overnight at 37 °C. Tryptic peptides 
were evaporated in a Speed Vac concentrator, resuspended 
in 1% trifluoroacetic acid (TFA) and desalted on C18 Stage 
Tips (ZipTip, Merck-Millipore). Peptide concentration was 
determined using a Qubit 2.0 fluorometer (ThermoFisher 
Scientific).

Definition of the MRM method

To study 1CM in human liver, the abundance of 13 par-
ticipating enzymes was initially selected: GNMT, AHCY, 
CBS, CGL, DHFR, MAT1A, MAT2A, MAT2B, MTAP, 
BHMT, SHMT1, SHMT2, and METH. The selection of 
proteotypic peptides for inclusion in the MRM devel-
opment combined in-house shotgun proteomics-based 
experimental data with public information from the 
Human Proteome Project at SRMAtlas (http:// www. srmat 
las. org) [13] and PeptideAtlas (http:// www. pepti deatl as. 
org) [6] (Supplementary Table 1). In-house data were gen-
erated combining shotgun analysis of human liver samples 
and of recombinant versions of 10 of the 13 1CM enzymes 
(recombinant SHMT1 and 2 and METH were not avail-
able). In the second case, tryptic digests were spiked into a 
complex matrix (trypsin-digested Xanthophyllomyces den-
drorhous proteome) before LC–MS/MS analysis. Detected 
peptides were then combined with the SRMAtlas and 
PeptideAtlas candidates, and 45 peptides were selected 
according to the following criteria: (1) maximum of 4 pep-
tides/protein; (2) common candidates from experimental 
data and databases; (3) detection Mascot score above 28 
for experimental candidates; (4) candidates from databases 
only, if no peptide was detected by MS; (5) peptide length 
8–25 residues; (6) no missed cleavages; and (7) peptides 
with Met, Trp, or other amino acids that might be modified 
either in the cellular environment or during the analysis 
were avoided if alternative peptides were available. To 
monitor the selected peptide panel, parameters were set on 
a preliminary MRM analysis, resulting in 40 of 45 positive 
detections. It is worth noting the complementarity of the 
different sources of information used: while 21 peptides 
were common, 14 and 5 peptides were contributed solely 
by experimental and public data, respectively, to the final 
method (Supplementary Fig. 1), which increases the like-
lihood of detection of the selected proteins. Despite the 
high degree of correlation found between our experimental 

data and data from the SRMAtlas and PeptideAtlas, we 
observed several inconsistencies when comparing the tran-
sition intensities for a given peptide, likely due to the use 
of different mass spectrometers used.

To generate the experimental peptide library, 20 pmol 
of each recombinant protein was incubated in 8 M urea, 
100  mM ammonium bicarbonate, 10  mM DTT, pH 8, 
alkylated with 50 mM iodoacetamide for 45 min, diluted 
with water to 2 M urea, and digested with trypsin (1/25 
ratio trypsin/protein) at 37 °C for 12 h. Tryptic peptides 
were dried in a Speed Vac, resuspended in 0.1% formic 
acid in water and desalted on C18 Stage Tips. Subse-
quently, 100 fmol of the peptides was mixed with 1 μg of a 
complex peptide background (a digested proteome obtained 
from Xantophyllomyces dendrorhous) for analysis using 
a quadrupole-time-of-flight mass spectrometer (SCIEX 
Triple-TOF 5600) coupled to a liquid nanochromatogra-
phy system (Eksigent Technologies nanoLC Ultra 1D plus). 
Peptides were resolved on a reversed phase C18 column 
(1.7- μm particle size, 130 Å pore size, 75 μm I.D. × 15 cm) 
in a 250-min gradient at a flow rate of 250 nL/min. Gradi-
ent conditions were as follows: from 5 to 30% of acetoni-
trile (ACN) in 180 min, 60% of ACN in 20 min, then 95% 
of ACN was achieved in 15 min and maintained during 
10 min before restoring initial conditions (5% ACN). MS1 
and MS2 spectra were acquired in data-dependent acqui-
sition mode. MS1 scan acquisition time was 250 ms, and 
25 precursors per spectrum were automatically selected 
according to the signal intensity, isolated and fragmented 
for 100 ms/precursor. Total cycle time was 2.8 s. Raw 
data were processed, and mgf files were generated with 
PeakView v1.1. MS1 and MS2 spectral data were used to 
launch a database search using Mascot v2.5.0 (MatrixSci-
ence) as the search engine against the UniprotKB human 
reference proteome database (UP000000589 reviewed, 
2019, with 20,239 entries), concatenated to the correspond-
ing decoy version. Static modification was C carbamido-
methylation (+ 57.021464) and for stable isotope-labeled 
(SIL) peptides K + 8.014199 and R + 10.008269. Results 
were filtered with a false discovery rate (FDR) < 1% at pep-
tide and protein level.

Peptide synthesis and purification

Light and heavy versions of the selected peptides were syn-
thetized using standard F-moc chemistry. We used 13C and 
15 N lysine and arginine for SIL heavy peptides, resulting 
in an 8- and 10-Da mass shift, respectively, compared with 
their light counterparts. Cys residues were blocked with 
50 mM iodoacetamide for 1 h at 37 °C. Synthesized pep-
tides were purified on a C18 reversed phase column with 
a 0–65% ACN gradient at 2 ml/min (JASCO Pu-2089 Plus 
pump coupled to a JASCO UV-2077 detector). The UV 
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detector was set at 214 and 280 nm to monitor eluting pep-
tides. Main chromatographic peaks were collected and re-
analyzed for purity assessment by high resolution analytical 
LC on a Scharlau C18 column (5- μm particle size, 2 mm 
I.D. × 25 cm) using a 40-min 0–70% ACN gradient at 250 μl/
min at 40 °C (Ultimate 3000 HPLC). The minimal purity of 
all peptide preparations was set as > 90% pure. Molecular 
weight and peptide purity were further assessed by MALDI 
TOF/TOF analysis (SCIEX 4800). Peptide quantification 
was done by amino acid analysis at the Protein Chemistry 
core facility of the Biological Research Center (CIB-CSIC; 
Madrid, Spain).

nLC‑MS/MS analysis

MRM analyses were performed with 1 μg total peptide 
amount as determined on a Qubit 2.0 fluorimeter. Pep-
tides were loaded into a C18 PepMap trapping column 
(5-μm particle size, 100 μm I.D. × 5 cm; ThermoFisher 
Scientific) at 2 μL/min f low rate of 0.1% FA and then 
separated on a C18 column (3-μm particle size 120 Å 
pore size, 75 μm I.D. × 15.2  cm) (Nanoseparations, 
Nieuwkoop, The Netherlands). Elution was achieved 
with a 60-min stepwise gradient of ACN in 0.1% FA: 
from 2 to 40% ACN in 42  min, 40 to 95% ACN in 
7 min, and 3 min in 95% ACN before re-equilibration 
in 2% ACN. Peptide separation was performed at 300 
nL/min and 40 °C. MS/MS analyses were done on a 
5500 QTRAP triple-quadrupole mass spectrometer set-
ting a dwell time of 20 ms (for non-scheduled meth-
ods) and a declustering potential of 80 V. Optimization 
of additional settings as well as the standardization 
of the method are described in detail in the Results 
section.

Data processing

Raw SRM data files were analyzed with Skyline software 
(v20.1.0.31), and the peak selection in the chromatograms 
for each peptide was manually curated [22]. Transitions 
showing some interference in peak area were excluded. The 
intensity area of each peak was automatically calculated by 
the software considering the value as the ratio unlabeled/
SIL precursors.

Statistics

Raw peak area measurements were log2-transformed, nor-
malized using linear models accounting for heavy peptide 
area measurements, and aggregated at each sample into 
protein abundance estimators using weighted sums. Linear 
modeling on normalized protein log abundance values was 
used to assess the significance of clinical condition effects 

while correcting for subject effects. p values were computed 
using F tests, and FDR control was used for multiple test-
ing corrections. Protein abundance estimators were centered 
and scaled before cluster analysis and principal component 
analysis (PCA). Hierarchical clustering of protein abundance 
profiles was conducted using Ward’s method on a Euclid-
ean distance matrix. The number of protein clusters was 
selected by manual inspection of the resulting dendrogram. 
Four machine learning algorithms for which a multiclass 
supervised classification implementation is available were 
selected: linear discriminant analysis (LDA), quadratic dis-
criminant analysis (QDA), multinomial logistic regression, 
and random forests. Given the limitations imposed by size 
of the data set, all algorithms were run with sensible defaults 
and no metaparameter tuning, and model complexity con-
trol was preferred over regularization. Proteins were ranked 
by ANOVA p value, and panels of increasing complexity 
containing data from 1 to 13 of the 1CM proteins were used 
to build models. Out-of-sample error estimates for each 
panel size and algorithm were obtained by leave-one-out 
cross-validation.

Results and discussion

Standardization of the MRM quantification method

Once experimental parameters for peptide isolation and 
analysis were fixed, we sought to optimize and standardize 
the method to ensure assay accuracy, reliability, and repro-
ducibility. To this end, we followed the Clinical Proteomics 
Tumor Analysis Consortium (CPTAC) guidelines [4]. First, 
several collision energy (CE) values were tested to improve 
the sensitivity by optimizing the transition intensities of each 
peptide. This process significantly increased the required 
number of MS/MS scans per precursor and, therefore, the 
selected proteins were assayed individually to prevent long 
duty cycles. The analysis was performed using 250 fmol 
of each synthetic peptide spiked into a 1-μg Escherichia 
coli extract digested with trypsin, resulting in optimal CE 
values (Supplementary Table 2). Furthermore, a scheduled 
method (± 2.5 min window) was set with Skyline using data 
from the analysis of 100 fmol of light and SIL synthetic 
peptides spiked into a 1-μg E. coli digest as background. 
Scanning each precursor in a narrow (300 s) window around 
the expected elution time optimized the shape of the chro-
matographic peak and its quantification by increasing the 
signal/noise ratio. To evaluate the specificity of the method 
and to rule out the effect of electronic or biological inter-
ference from the matrix, we used a tryptic digest of Huh7 
cells as background––a complex matrix that resembles the 
proteome of liver samples that will be used during the actual 
experiments, but in which the expression of the monitored 
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proteins is negligible [21]. A Huh7 extract (1 μg) contain-
ing 100 fmol of the mixture of light and SIL synthetic pep-
tides was analyzed. As expected, no detection or very weak 
signals for all precursors was observed in the non-spiked 
Huh7 sample, whereas signals for the co-eluting pairs of 

Fig. 2  Linearity of one-carbon metabolism (enzymes quantification 
by multiple-reaction monitoring. An estimation of the linear range 
of one-carbon metabolism enzyme quantification was determined by 
averaging the ratio values of the peptides monitored for each protein

◂

Fig. 3  Reproducibility of the 
quantitation assay for one-
carbon metabolism enzymes. 
Variability of the LC–MS/
MS experiment was assessed 
by measuring the intra- and 
inter-assay variability across 
five consecutive days. Intra-
assay variability was defined as 
the averages of the coefficient 
of variation (CV) of the three 
replicates on each of the 5 days. 
The inter-assay variability was 
calculated at each concentration 
as the average of the CV of the 
first injection across the 5 days, 
the CV of the second injection 
across the 5 days, and the CV 
of the third injection across the 
5 days. Peptides were accepted 
when the total CV was < 20%. 
To estimate the reproducibil-
ity of the quantification at the 
protein level, the total CVs of 
the corresponding peptides at 
each concentration were aver-
aged and were always lower 
than 20%
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light and light-SIL peptides were unequivocally detected in 
the equivalent spiked samples (Supplementary Fig. 2). The 
results of the interference assay indicated that the observed 
signals can be reliably assigned to the expected precursors.

The next goal was to define the linear range, the 
lower limit of detection (LLOD), and the lower limit of 
quantification (LLOQ) of the assay. Serial dilutions of 
the SIL peptide panel spanning more than three-orders 
of magnitude (0.5–1000 fmol) were spiked into the 
Huh7 digest together with a fixed concentration of the 
unlabeled synthetic peptides (100 fmol); the area ratio 
SIL/light peptide was then calculated. The LLOD was 
determined from three independent blank matrix sample 
runs as the average plus three times the standard devia-
tion of the blank signal (n = 3). When no signal was 
detected in the blanks, the LLOD was estimated using 
the standard deviation of the signal detected in the low-
est spiked sample. The LLOQ was defined as the lowest 
concentration of peptide at which the coefficient of var-
iation (CV) of the measured signal was < 20%. For most 
precursors the LLOD ranged between 0.5 and 4 fmol 
and LLOQ between 0.5 and 1 fmol (Supplementary 
Table 3). In some cases, the LLOQ, although very close 
to, was lower than the LLOD, likely resulting from the 
different arithmetic measures used for their calculation. 
The LLOD and LLOQ of a given protein will be that 
of the corresponding monitored peptide with higher 
LLOD and LLOQ values. Linearity across concentra-
tions spanning four-orders of magnitude was assessed 
for the 40 monitored peptides (R2 < 0.9) (Supplementary 
Fig. 3). Quantification linearity at the protein level was 
determined by averaging the ratio values of the peptides 
monitored for each protein. The linear fitting of the 
experimental results was done according to CPTAC rec-
ommendations and yielded R2 values > 0.96 in almost 
all cases (with the exception of 2 peptides, as indicated 
in Supplementary Table 3), indicating the suitability of 
the quantification method across the assayed concentra-
tion range (Fig. 2).

To estimate the total variability of the LC–MS/MS 
experiment, intra- and inter-assay variabilities were 
measured across five consecutive days. The sample used 
was a Huh7 digest spiked with three different concentra-
tions of each heavy synthetic peptide at low (5 fmol), 
medium (50 fmol), and high (500 fmol) concentration. 
Light synthetic peptides were added at a fixed amount 

(30 fmol). The analysis was done in triplicate. Intra-assay 
variability was defined as the average of the CV of the 
three replicates on each of the 5 days. Inter-assay vari-
ability was calculated at each concentration as the aver-
age of the CV of the first injection across the 5 days, the 
CV of the second injection across the 5 days, and the CV 
of the third injection across the 5 days. The total CV was 
calculated as follows:

Peptides were accepted when the intra-, inter-assay, 
and total CVs were below 20%. For the 23 peptides that 
met these criteria, the CV value ranges were 0.23–12.86, 
1.04–18.27, and 1.77–18.35 for intra-, inter-assay, and 
total CV, respectively (Supplementary Fig.  4), with 
larger CV values at lower concentrations. To estimate 
the reproducibility of the quantification at the protein 
level, the total CVs of the corresponding peptides at each 
concentration were averaged (Fig. 3). CVs were consist-
ently below 20%, and the ratio values were the expected 
ones at each concentration except for DHFR, which was 
always higher than expected likely because of deviations 
in the quantification of the standard peptides. In sum-
mary, the transitions included in the final method were 
those allowing protein linear quantifications across more 
than three-orders of magnitude (0.5–1000 fmol), with 
LLOD = 0.5–4 fmol, LLOQ = 0.5–1 fmol, and CV val-
ues < 20% (Table 1).

To test the performance of the MRM method using 
real-world samples, we conducted a pilot study of human 
liver samples from control (healthy) individuals and 
from patients with cirrhosis or HCC. We also aimed to 
assess the applicability of the method by defining the 
specific 1CM pathway profile in liver disorders based 
on the abundance changes of the participating enzymes 
and, ultimately, to demonstrate the proof-of-principle of 
the stratification capacity of 1CM as a functional bio-
marker. All proteins were detected in liver extracts, and 
the relative abundances were in good agreement with 
those published in PaxDB [33] and the Human Protein-
Atlas [30] resources. Protein detection was directly cor-
related with the reported values of cellular abundance, 
suggesting low levels for DHFR and METH and even 
less for MTAP, which was close to the LLOD, likely 
explaining their non-detection in some samples (Supple-
mentary Fig. 5). Significant differences were observed 
for GNMT, MAT2B, MTAP, DHFR, CGL, SHMT1, 
and BHMT; specifically, changes (q < 0.05) in GNMT, 
MAT2B, MTAP, DHFR, and SHMT1 were observed in 
HCC versus control; MTAP, CGL, MAT2B, and GNMT 
in cirrhosis versus control; and DHFR in HCC versus 
cirrhosis (Fig. 4). Of note, for most proteins even if no 

CVt =

√

(average intra − assayCV)2 + (average inter − assay CV)2

Fig. 4  Quantification of one-carbon metabolism enzymes in human 
liver diseases. The multiple-reaction monitoring method allowing 
quantitation of 13 one-carbon metabolism enzymes was tested on a 
panel of human liver samples including healthy (control), cirrhosis, 
and HCC cases. All proteins were detected across the analyzed sam-
ples, and significant differences were observed in some cases (indi-
cated by *p < 0.05, **p < 0.01, ***p < 0.001)

◂
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statistical significance was achieved, the expected dif-
ferential trend was observed across normal, cirrhosis, 
and tumor groups. Supporting these observations, PCA 
analysis revealed that HCC and controls could be differ-
entiated by monitoring 1CM enzymes, whereas cirrhosis 
appeared to represent an intermediate condition, as might 
be expected from a pretumoral stage (Fig. 5A). The moni-
tored proteins grouped into two clusters with well-differ-
entiated behavior across samples: cluster 1 (GNMT, CBS, 
CGL, MAT1, BHMT1, SHMT1, and SHMT2) was over-
represented in normal liver, and cluster 2 (AHCY, DHFR, 
MAT2A, MAT2B, MTAP, and METH) was upregulated in 
HCC (Fig. 5B, C). Of note, cluster 1 comprised proteins 
with enhanced expression in the liver whereas cluster 2 
integrated enzymes with ubiquitous tissue expression 
according to Protein Atlas. This distribution suggested 
1CM reprogramming from a normal liver-specific phe-
notype to a survival configuration similar to that found in 
other tissues, which may indicate the loss of hepatocyte 
differentiation. For instance, it is known that MAT1A 
is almost exclusively expressed in adult liver, whereas 
MAT2A and the regulatory MAT2B subunit catalyze the 
synthesis of adenosylmethionine (AdoMet) in fetal liver 
and non-hepatic tissues. However, MAT1A is downregu-
lated and progressively replaced by MAT2A in advanced 
cirrhosis and HCC. AdoMet homeostasis must be finely 
tuned as any imbalance in its metabolic flux leads to liver 
proliferation and cancer [16]. In addition to the regulation 
of the methyl group balance, folate metabolism is also 
important in cancer cell biology. It is well recognized that 
tetrahydrofolate has a central role as a coenzyme in dif-
ferent transmethylation reactions (including the recycling 
of homocysteine to methionine catalyzed by METH), as 
well as in purine and pyrimidine nucleotide synthesis 
pathways, which are essential in the synthesis, repair, 
and replication of DNA. Accordingly, folate metabolism 
is needed to maintain normal cell growth, especially in 
highly proliferative cells such as tumoral cells. It is worth 
noting that one of the most widely used anticancer drugs 
is methotrexate, which is polyglutamylated inside the cell 
and becomes a competitive inhibitor of DHFR and other 
enzymes involved in purine and pyrimidine nucleotide 
synthesis. Changes in the levels of DHFR and SHMT1 
reported here suggest different susceptibilities to MTX 
therapy, and might provide an index to follow-up patient 
response after treatment [12].

Quantification of 1CM enzymes in liver samples 
from cirrhotic and HCC cases

Given the important role of 1CM in liver differentiation and 
the capacity of our method to measure its impairment, we 
next questioned whether the quantification of 1CM enzymes 

may have diagnostic and/or prognostic capacity in monitor-
ing liver function and disease. Supporting this idea, GNMT, 
CGL, BHMT, and SHMT1 have been considered as favora-
ble prognostic factors for HCC in the Human Protein Atlas, 
based on transcriptomic and proteomic profiling of control 
and diseases tissue samples and of cell lines. By contrast, 
MAT2A and MTAP are considered unfavorable prognos-
tic factors for HCC, in good agreement with our findings. 
We used a predictive modeling approach to more carefully 
assess the potential of this metabolic pathway for discerning 
clinical conditions using protein abundance measurements. 
Panels of increasing numbers of protein biomarkers with 
decreasing significance were used to build models using four 
different prediction methods (see Methods). Limiting the 
panel size was important to avoid overfitting. The best per-
formance (Fig. 6A) was obtained using a QDA model with 
a panel comprising six proteins (GNMT, MAT2B, MTAP, 
DYR, CGL, GLYC). A confusion table for the selected 
model is shown in Fig. 6B. Estimates of classification accu-
racy were 83.5% (in-sample) and 74.6% (out-of-sample). 
Interestingly, the classification accuracy was fairly homo-
geneous across all clinical conditions, suggesting that no 
clinical condition is particularly likely to be confounded 
with another specific condition. Receiver operating charac-
teristic curve analysis showed very good sensitivity/speci-
ficity tradeoff, with area under the curve values of 0.9664, 
0.9864, and 0.9664 for control, cirrhosis, and HCC respec-
tively (Fig. 6C).

Conclusions

We have developed and standardized an MRM method 
to quantify 1CM enzymes in human samples and tested 
it in a proof-of-concept experiment that illustrates 
the reconfiguration of 1CM in human cirrhosis and 
HCC. Our data suggest that methionine is mainly used 
in transformed hepatocytes for protein synthesis as a 
requirement for cell growth and proliferation [34]. This 
hypothesis is supported by studies showing that modu-
lation of protein synthesis is central for HCC response 
to treatment with the multikinase inhibitor sorafenib 
[27]. Moreover, the upregulation of methionyl-tRNA-
synthetase is considered as an unfavorable prognostic 
factor for HCC in the Human Protein Atlas. By contrast, 
the synthetic capacity of AdoMet is decreased, ensuring 
the maintenance of a basal flux to allow cell survival 
and preventing excessive ATP expense (the three phos-
phate groups of an ATP are needed to synthesize a sin-
gle AdoMet molecule). Regulation of ATP utilization in 
hepatocytes would prevent nicotinamide adenine dinu-
cleotide depletion and mitochondrial de-energization 
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Fig. 5  Analysis of one-carbon 
metabolism allows for liver 
disease stratification. Princi-
pal component analysis of the 
grouping of control and hepa-
tocellular carcinoma (HCC) 
samples and the intermediate 
position of cirrhosis samples 
(A). The monitored proteins 
grouped into two well-differ-
entiated clusters (B) according 
to their abundance in the set of 
samples analyzed here. Cluster 
1 tended to show higher expres-
sion in controls whereas cluster 
2 was over-represented in HCC 
and intermediate profiles were 
found in cirrhosis (C)
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Fig. 6  Machine learning-based 
predictive modeling. Different 
prediction methods were tested: 
linear discriminant analysis 
(LDA), multinomial logistics, 
quadratic discriminant analysis 
(QDA), and random forest. 
The optimal discrimination 
across the different clinical 
conditions included in the study 
was achieved with a panel of 
six one-carbon metabolism 
enzymes (GNMT, MAT2B, 
MTAP, DYR, CGL, GLYC) 
(A). In-sample and out-of-
sample accuracies were 83.05% 
and 74.60% respectively (B). 
Receiver operating character-
istic curves showed very good 
sensitivity/specificity tradeoff 
with area under the curve values 
of 0.9664, 0.9864, and 0.9664 
for control, cirrhosis (cirr), 
and hepatocellular carcinoma 
(tumor), respectively (C)

QUADRATIC DISCRIMINANTS (Top 6) group label
control cirr Tumor

control 24 3 3 30
predicted label cirr 1 12 1 14

Tumor 2 0 13 15
27 15 17 59

correct 49
incorrect 10

in-sample Accuracy 83.05%
out-of-sample Accuracy 74.60%

A

B

C
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[24]. Thus, the participating enzymes of 1CM can be 
considered as a cell function-based biomarker with 
potential for liver disease stratification, although fur-
ther experiments including larger cohorts are needed to 
confirm our preliminary findings.
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Table 1  MRM transitions 
monitored to quantify one-
carbon metabolism enzymes

Protein Gene Code Peptide Transitions

Glycine-N-

Methtyltransferase 

GNMT Q14749 AWLLGLLR ++

AGGLLVIDHR ++

y6+, y5+, y4+ b2+

y6+, y5+, y4+, y2+

S-adenosyl

homocysteinase

AHCY P23526 VPAINVNDSVTK ++

VAVVAGYGDVGK ++

y9+, y8+, y6+

y9+, y8+, y7+, b3+

Cystathionine beta 

synthase 

CBS P35520 ALGAEIVR ++

SNDEEAFTFAR ++

y6+, y5+, y4+

y7+, y6+, y5+

Cystathionine gamma-

lyase

CGL P32929 ISFVDCSK ++ y7+, y6+, y5+, y4+

Dihydrofolate 

Reductase 

DHFR P00374 INLVLSR ++

LTEQPELANK ++

y5+, y4+, y3+, b2+

y8+, y7+, y6+

S-adenosylmethionine

synthase I

MAT1A Q00266 FVIGGPQGDAGVTGR ++ y12+, y10+, y8+

S-adenosylmethionine 

synthase II 

MAT2A P31153 GAVLPIR ++

FVIGGPQGDAGLTGR ++

y5+, y4+, y3+

y12+, y10+, y8+

Methionine 

Adenosyltransferase II

beta 

MAT2B Q9NZL9 AVLENNLGAAVLR ++ y10+, y9+, y7+, y6+

Methyilthioadenosine 

phosphorylase 

MTAP Q13126 EVLIETAK ++ y6+, y5+, y4+, 

Betaine homocysteine

methyltransferase

BHMT Q93088 EAYNLGVR ++

AIAEELAPER ++

y5+, y4+, y3+

y8+, y4+, y3+

Serine hydroxymethyl

transferase I

GLYC P34896 AVLEALGSCLNNK ++

LGTPALTSR ++

y9+, y8+, y7+

y6+, y5, y4+

Serine hydroxymethyl

transferase II

GLYM P34897 SAITPGGLR ++ y7+, y6+, y5+

Methionine synthase METH Q99707 AAEEVTLQTGIK ++

YSAPVIHVLDASK ++

LAEAFAEELHER ++

y9+, y8+, y7+, y6+

y8+, y7+, y6+

y8+, y7+, y6+
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