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Bio-optical data for spring and summer phytoplankton blooms at 176 stations along the Patagonia Shelf break
and adjacent areas were collected from October 2006 to January 2009 during six cruises. Data included
chlorophyll-a concentration (Chla), coefficients of particulate absorption, ap(λ), phytoplankton absorption,
aph(λ), beam attenuation, cp(660), diffuse attenuation, Kd(λ), and hyperspectral remote sensing reflectance,
Rrs(λ). Surface Chla varied within a wide range from 0.10 to 18.87 mg m−3 (mean of 2.82 ± 3.35), reflecting
differences in both the timing of the blooms and the geographical sampling area. Considerable dispersion was
verified for ap(λ), cp(660), and Kbio(440) (Kd(440) minus diffuse attenuation for pure water) as a function of
Chla. A hierarchical cluster analysis (HCA) applied to the Rrs(λ) spectra (N = 116) resulted in three classes
ordered by spectral features that varied according to Chla. Class 1 (N = 22), Class 2 (N = 52), and Class 3
(N = 42) were grouped according to the Rrs(λ) associated with Chla average of 0.86 (±0.51), 2.42 (±1.62),
and 8.40 mg m−3 (±3.96), respectively. The estimation of Chla and aph(λ) by empirical and semi-analytical
algorithms was evaluated using satellite data. Errors in the Chla estimates from the empirical algorithm OC4v6
using in situ Rrs(λ) showed significant statistical relationships with Chla, aph(440) / Chla, and bp(660) / Chla
(where bp(660) = cp(660) − ap(660)). Although reasonable agreements were found between the measured
and satellite-estimated values, the dependence of the OC4v6 errors on the Chla-specific phytoplankton absorp-
tion and particulate scattering coefficients reinforces the need to regionally refine both empirical and semi-
analytical algorithms to improve satellite estimates of the bio-optical variables for the Patagonia region.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

At present, several bio-optical studies seek to reduce the oversim-
plification associated with models of optical properties that use
chlorophyll-a concentration as a proxy for phytoplankton and related
water constituents (Arnone et al., 2004; Mobley et al., 2004); however,
the classical bio-optical classification of waters as Case 1 or 2 is still use-
ful for modeling purposes. In Case 1 waters, phytoplankton and their
accompanying retinue of dissolved and particulate biological material
govern the water's bio-optical properties. The opposite is true of Case 2
waters, which are significantly influenced by non-algal constituents,
including mineral particles, Colored Dissolved Organic Matter (CDOM),
microbubbles, the concentrations of which do not vary with the phyto-
plankton concentration (Morel & Prieur, 1977).

Apparent and inherent optical properties, AOP and IOP, respectively
(sensu Preisendorfer, 1961), have been widely analyzed for Case 1
waters and are empirically correlated with chlorophyll-a concentration
(Chla). Indeed, the relationship between IOP and Chla shows robust
general trends over orders of magnitudes (e.g., Morel, 1988; Morel &
rights reserved.
Maritorena, 2001; Morel et al., 2007). For a given Chla, variations
in the AOP and IOP is expected because of possible fluctuations in (1)
the pigment composition and packaging effects within the phytoplank-
ton assemblages, (2) the proportion of algal and non-algal particles, and
(3) the proportion of particulate matter (algal plus non-algal) and
CDOM. In high-Chla Case 1 waters, bio-optical properties could be
even influenced by the age and nutrient status of the algal population
(Morel et al., 2006). Furthermore, due to lack of data for eutrophic
waters, the empirical relationships between Chla and AOP or IOP
seem to be less robust and noisier then in oligotrophic regions
(O'Reilly et al., 1998). In order to address the question of whether
there is a greater bio-optical variability in high-Chla (Case 1) waters,
the analysis of a more diversified dataset is required including data
from upwelling zones (Morel et al., 2006).

In general, phytoplankton absorption properties have been well
characterized through laboratory and field measurements. The relation-
ship between the phytoplankton absorption and Chla has shown high
variability (e.g., Bricaud et al., 1995; Dmitriev et al., 2009). Based on a
large dataset, Bricaud et al. (2004) examined the causes of phytoplankton
absorption variability by explicitly separating the impact of changes in
pigment composition from changes in pigment packaging, which are
due to intracellular pigment concentrations and variations in cell size
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(Kirk, 1975). The variation around the mean was systematic rather than
random and primarily resulted from variability in the packaging effect
associated with variations in the size structure of the algal community,
even within a given geographical area. This could be attributed to both
regional and seasonal changes in the phytoplankton communities.
Several approaches involving both in situ and satellite remote sensing
of phytoplankton absorption coefficients have been used to derive size
structure of algal communities (e.g., Aiken et al., 2006; Brewin et al.,
2010; Ciotti & Bricaud, 2006; Ciotti et al., 2002; Hirata et al., 2008).

Empirical relationships usingfield data have related Chla to the beam
attenuation coefficient (e.g., Loisel & Morel, 1998; Voss, 1992), the scat-
tering coefficient (Loisel & Morel, 1998), and the backscattering coeffi-
cient (Huot et al., 2008; Martinez-Vicente et al., 2010; Stramska et al.,
2006). Irrespective of the variability found in those relationships
among different studies, Behrenfeld and Boss (2006) noted that the
beam attenuation at 660 nm, cp(660), may be used as a viable index of
phytoplankton carbon biomass in ecosystems where phytoplankton
biomass and cp(660) are temporally stable and also as a phytoplankton
physiological index in changing growth conditions (Behrenfeld & Boss,
2003). Recently,Westberry et al. (2010) argued that both phytoplankton
biomass and physiological indices can be conceptually assessed by
analyzing the relationships between either cp(λ) or Chla:cp(λ) and the
particulate backscattering coefficient, bbp(λ).

Satellite estimates of Chla have been extensively based on empirical
algorithms derived from statistical relationships between Chla and the
normalized water leaving radiance, Lwn(λ), or remote sensing reflec-
tance, Rrs(λ) (the ratio of water leaving radiance to downwelled irradi-
ance), such as the OC4v6 model currently used to estimate Chla from
the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data (O'Reilly
et al., 1998, updated in http://oceancolor.gsfc.nasa.gov/REPROCESSING/
R2009/ocv6/). However, a new empirical approach that reduces the
bias of ocean chlorophyll estimates has been recently developed (Gregg
et al., 2009).

Rrs(λ) is not solely dependent on phytoplankton biomass (indexed
as Chla) but is directly proportional to the ratio of backscattering and
absorption coefficients for all components in thewater, bb(λ) / a(λ), in-
cluding the scattering and absorption of the water itself. Understanding
the processes that cause changes in the spectral behavior of the optical
components and quantifying the variability of their IOP should improve
the retrieval accuracy of individual parameters using remote-sensing
techniques (IOCCG, 2006; Lee et al., 2010). For instance, although
IOP-based algorithms are comparable in performance to the standard
empirical chlorophyll algorithms, the semi-analytical models also
allow studies of chlorophyll biomass variability as a function of phyto-
plankton and CDOMabsorption (Szeto et al., 2011 and references there-
in). Brown et al. (2008) have quantified the impact of optical anomalies
on the ocean color signal based on their optical sources (absorption and
backscattering coefficients). The authors have identified two sources of
secondary variability: 1) the amount of non-algal absorption, especially
due to CDOM and 2) the amplitude of the particle backscattering
coefficient.

During the austral spring and summer, satellite ocean color images
have revealed that high levels of phytoplankton biomass persistently
occur in the Patagonia inner shelf and shelf break region, which is con-
sidered one of the most globally productive ocean zones. The seasonal
cycle of phytoplankton biomass in the vicinity of the Patagonia Shelf
break front has been well described by remote sensing in recent years
(Garcia et al., 2004; Rivas et al., 2006; Romero et al., 2006; Signorini et
al., 2006).

The development and maintenance of these phytoplankton blooms
are associated with nutrient supply from Malvinas Current and the
water column stability along the shelf-break front (Garcia et al.,
2008). In fact, upwelling process at that front (Matano & Palma, 2008)
also contributes with deep nutrient supply for phytoplankton growth.
The Argentinean continental shelf has been recognized as a relevant re-
gion in terms of standing stocks of primary producers and contribution
to the global primary production (e.g., Gregg et al., 2005). High primary
productivity rates (1.9 to 7.8 mg C m−2 d−1) were measured in the
area during spring (Garcia et al., 2008) and the variability in photosyn-
thetic parameters was shown to be associated with the light absorption
properties of the phytoplankton composition (Lutz et al., 2010). Specif-
ically, Ferreira et al. (2009) described an important difference in
phytoplankton absorption coefficients between spring and late summer
periods that was attributed to differences in the phytoplankton size
structure.

The observed seasonality of phytoplankton aspects (composition,
light absorption, and photosynthetic parameters) has an important
implication for the regional ecology and carbon cycle, because the
efficiency of energy transfer throughout the trophic levels is related to
the phytoplankton cell size (Guidi et al., 2010; Kiørboe, 1993), and the
CO2 uptake by seawater is influenced by the phytoplankton composition
(Bopp et al., 2005; see revision by Le Quéré et al., 2005). For instance,
studies in the Argentinean continental shelf have shown that when
phytoplankton assemblages were dominated by large diatoms, both
phytoplankton biomass (Chla) and net community production were in-
versely proportional to ΔpCO2 and directly related to % O2 saturation
(Schloss et al., 2007). This was not the case when small (≤5 μm) flagel-
lates dominated. The region makes an important contribution to the
global oceanic CO2 uptake from the atmosphere (Bianchi et al., 2009).

Despite the ecological and biogeochemical relevance of the Patagonia
Shelf, in situ bio-optical measurements (IOP and AOP properties) are
scarce in the region and the lack of a comprehensive bio-optical study
is a major obstacle for better estimates of ocean color products such as
Chla. Regional particularities in the optical properties of the Patagonia
waters might impact the performance of bio-optical algorithms. More-
over, there is a lack of specific analyses of the performance of existing
algorithms for the region's satellite data. Dogliotti et al. (2009) reported
that NASA's operational algorithms generally overestimates at low Chla
(b1 mg m−3) and underestimates at high Chla (>1 mg m−3). This
was attributed to the lack of bio-optical measurements at high pigment
concentrations when the algorithm was generated in the late 1990s
(O'Reilly et al., 1998, 2000).

The Patagonia experiment (PATEX) is a research project conducted
under the Brazilian Antarctic Program. Within the project objectives are
the characterization of the phytoplankton assemblages, bio-optical prop-
erties, and primary production rates of the waters along the Argentinean
Shelf break and the environmental constraints associated with the
blooms during spring and summer. Seven cruises were conducted
between 2004 and 2009 in the Argentinean Patagonia Shelf break and
adjacent areas. In this study, we present results of the bio-optical data
from six cruises carried out in the region during spring and summer
phytoplankton blooms.

The presentwork aims to investigate the relationships betweenChla
and IOP (particulate absorption and attenuation coefficients) and AOP
(diffuse attenuation coefficient) within the phytoplankton blooms in
the Patagonia waters, contributing with data on bio-optical properties
of high-Chlawaters (Morel et al., 2006).We also describe the variability
in the spectra of hyperspectral remote sensing reflectance and evaluate
the retrieval of Chla and phytoplankton absorption coefficients through
current empirical and semi-analytical algorithms using both in situ and
satellite reflectance data. In addition, we investigate the relationship
between the variations in absorption and scattering coefficients
normalized by Chla and the errors associated with Chla estimates
from empirical algorithms.

2. Material and methods

2.1. Oceanographic cruises and sections

The Patagonia Shelf break and a portion of the inner shelfwere exten-
sively sampled (176 stations) by performing cross- and along-shelf tran-
sects during the PATEX cruises in the austral spring (October 2006, 2007,
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and 2008 and PATEX 2, 4 and 6, respectively) and summer (March 2007,
January 2008 and 2009 and PATEX 3, 5 and 7, respectively). The geo-
graphical positions of the sampling stations (Fig. 1) spanned from the
northern portion of the Argentinean Shelf (PATEX 6) through the highly
productive waters along both the Patagonia Shelf break (PATEX 2 to 4)
and the southern inner shelf (PATEX 5) to the southern end of the
Malvinas (Falkland) Islands (PATEX 7).

The following measurements were made at all the 176 stations:
(i) total Chla, (ii) particulate (phytoplankton and detritus) absorp-
tion, and (iii) beam attenuation coefficient at 660 nm. The (iv) diffuse
attenuation coefficient and (v) hyperspectral remote sensing reflec-
tance were measured at 116 stations during daylight hours and are
indicated in Fig. 1 as filled markers.

2.2. Chlorophyll-a concentration

Discrete samples for Chla were collected at the surface and
selected depths along the water column (N = 790) based on the
chlorophyll fluorescence profile and filtered onto 25 mm glass fiber
filters (Whatman® GF/F). After filtration, the filters were wrapped in
aluminum foil and transferred to liquid nitrogen for later analysis. At
the laboratory, the pigment was extracted in 90% acetone and the fluo-
rescence was determined with a Turner Designs TD-700 fluorometer
(previously calibrated with Sigma® chlorophyll-a standard) following
the non-acidification method from Welschmeyer (1994).

2.3. Particulate absorption coefficient

The spectra of the particulate absorption coefficient, ap(λ) in m−1,
were obtained with the quantitative filter pad technique (Kishino et
Fig. 1. Locations of the 176 oceanographic stations where measurements and sample
collections were taken during the PATEX cruises along the Patagonian Shelf break
and adjacent areas. Filled symbols indicate the stations where data collection was
carried out during the daylight hours and Kd(λ) and Rrs(λ) data are available.
al., 1985) using water samples (0.5–2 L) collected at the surface, the
depths of maximum chlorophyll fluorescence (MCF), and bottom of
the peak of chlorophyll fluorescence (BMCF) (N = 356). These sam-
ples were filtered onto 25-mm Whatman GF/F filters. Immediately
after filtration, the GF/F filters were wrapped in aluminum foil and
placed in liquid nitrogen for storage. The ap(λ) measurements were
made in the 300–750 nm spectral range at 1-nm intervals with a
dual beam spectrophotometer (Cary Model 1E). Immediately after
the ap(λ) measurements, the sample filters were subjected to metha-
nol extraction (for the PATEX 2 and 3 cruises) and bleaching with so-
dium hypochlorite (PATEX 4, 5, 6 and 7 cruises) and then re-scanned
to obtain estimates of the non-algal particle (detritus) absorption
coefficient, ad(λ) (Kishino et al., 1985; Mitchell et al., 2000; Tassan
& Ferrari, 1995). The bleaching method was applied in the last cruises
because of its advantages over the extraction method, as it is faster and
more efficient in bleaching water-soluble pigments (Tassan & Ferrari,
1995). Since the contribution of cyanobacteria (the main water-soluble
pigments containing species) is very low in our samples (M. Souza,
personal communication), any difference in phytoplankton absorption
between cruises is unlikely to be due to different methods of pigments
extraction. For the calculations of the ap(λ) and ad(λ) coefficients, the
amplification factor β given by Ferreira et al. (2009) was used. The spec-
tral absorption coefficient of phytoplankton, aph(λ), was calculated as
the difference between ap(λ) and ad(λ).

2.4. Particulate attenuation coefficient

The beam attenuation coefficient of suspended particles at 660 nm,
cp(660) in m−1, was measured with a C-star beam transmissometer
(WETLabs, Inc.) along a 25-cm pathlength through the water column.
In this study, we used 790 measurements of cp(660), matching the
number of Chla data. Details of the protocol for determining cp(660)
are provided by the manufacturer of the C-star beam transmissometer
(http://www.wetlabs.com/cstar). We assumed that measurements
taken in deep waters (~1000 m) but still far away from the sea
bottom provided the best estimate of particle-free attenuation of the
seawater (Loisel & Morel, 1998). These deep-water measurements
were subtracted from all beam attenuation measurements taken at
the surface ocean layer on a cruise-by-cruise basis to remove the contri-
bution of pure seawater. The resulting values represent the beamatten-
uation by particles, assuming that the contribution of dissolved matter
to the attenuation of light at 660 nm is negligible. We also note that
the measurements taken at 5 m depth were assumed to represent the
near-surface beam attenuation, which is reasonable given that it avoids
or minimizes the potential intermittent contributions of air bubbles
injected by breaking waves.

2.5. Hyperspectral diffuse attenuation coefficient and remote
sensing reflectance

Underwater radiometric measurements were obtained at stations
during daylight hours (N = 116) with a hyperspectral profiling
radiometer (HyperOCR, Satlantic, Inc.), which measures the upwelling
radiance, Lu(λ,z), and the downward irradiance, Ed(λ,z), over the
350–800 nm spectral range with a resolution of 3.3 nm (137 spectral
bands). The spectral remote sensing reflectance, Rrs(λ) in sr−1, is
defined as the ratio of nadir water-leaving radiance, Lw(λ), to the
downwelling plane irradiance, Ed(λ), just above the sea surface (0+).
The measured Lu(λ,z) and Ed(λ,z) in the water column are used to
estimate their values just beneath the surface, Lu(λ, 0−) and Ed(λ, 0−),
and then are propagated through to the sea–air interface to obtain
Lw(λ) and Ed(λ,0+).

The initial data processing was performed using ProSoft ver. 7.7.11
processing software, developed and distributed by Satlantic Inc.
Dark offsets and the manufacturer's radiometric calibrations were
applied to the raw data, and the spectral radiometric data were binned
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Fig. 2. Frequency histogram of the chlorophyll-a concentration, Chla, measured at the
near-surface (N = 176), the depths ofmaximum chlorophyll fluorescence,MCF (N = 159),
and the base of maximum chlorophyll fluorescence, BMCF (N = 85), during the PATEX 2 to
PATEX 7 cruises.
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every 0.1 m. Because of surfacewaves, it was rarely possible tomeasure
Ed(λ,z) and Lu(λ,z) closer to the sea surface. The shallowest reliable
readings typically occurred at depths ranging from 0.5–2 m. The data
from this zone usually exhibited strong fluctuations associated with
surfacewaves, and thus itwas necessary to extrapolate the data upward
to the sea surface. Matlab® routines were developed to analyze each
radiometric profile and process the radiometric data. Visualization of
Ed (λ,z), Lu (λ,z), PAR (photosynthetic available radiance) percentage,
and tilt angle were used to analyze the quality of each profile and the
depth interval to be used to extrapolate the values to just below the
water surface.

The diffuse attenuation coefficients of downwelling irradiance,
Kd(λ), and upwelling radiance, Ku(λ), were calculated as the slope
of a least-squares linear regression of the log-transformed Ed(λ,z)
and Lu(λ,z), respectively, within the selected depth interval, which
generally ranged between 2 to 7 m. Using these coefficients, Lu(λ,z)
and Ed(λ,z) were propagated to just below the water surface by
fitting an exponential function to the profile data. The remote sensing
reflectance was then calculated using the following equation:
Rrs(λ) = 0.54 Lu(λ,0−) / (1.04 Ed(λ,0−)), where 0.54 and 1.04 are
the transfer coefficients of the air–sea interface for Lu(λ) and Ed(λ),
respectively (Austin, 1974). The fraction of Kd(λ) associated with
the presence of particulate and dissolved materials was computed
as Kbio = Kd − Kw for 440 nm, where Kw is the coefficient for pure
water equal to 0.00885 m−1 at 440 nm (Morel & Maritorena, 2001).

A hierarchical cluster analysis (HCA) was applied in order to clas-
sify the Rrs(λ) spectra into coherent groups. The applicability of this
method in the classification of hyperspectral Rrs(λ) dataset for coastal
waters was demonstrated by Lubac and Loisel (2007). Because the
preliminary classification from HCA was greatly degraded by noise
in the red range of several Rrs(λ) spectra, only the range between
400 to 600 nm was considered. Prior to running the HCA, each
Rrs(λ) spectrum was normalized to its mean value computed on the
basis of all spectral values between 400 and 600 nm. The normalized
spectrum is denoted nRrs(λ).

2.6. Bio-optical algorithms evaluation

A comparison was carried out between the measured Chla with
values retrieved from three bio-optical empirical algorithms, OC2v6
and OC4v6 derived for SeaWiFS data and OC3v6 for MODIS/Aqua
(http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/ocv6), using
in situ measurements of Rrs(λ). Furthermore, a matchup analysis
was performed comparing in situ and remote-sensed Chla retrieved
from the Garver–Siegel–Maritorena semi-analytical algorithm (GSM)
and in situ and remote-sensed phytoplankton absorption coefficients
estimated from the GSM (Maritorena et al., 2002) and QAA (Lee et al.,
2002) semi-analytical algorithms. The statistical parameters used for
these evaluations were the mean relative percentage difference, RPD,
and the mean absolute percentage difference, APD. The definitions of
RPD and APD are presented in Table 3. The coefficient of determination,
R2, slope, and intercept obtained from the regression analysis of the
log-transformed in situ measured data and algorithm-derived were
also considered for evaluation of the performance of the empirical and
semi-analytical algorithms.

2.7. Matchup analysis

MODIS satellite/Aqua level 1A and ancillary data of ozone concentra-
tion andmeteorological conditions (wind speed, oxygen concentration,
water vapor and atmospheric pressure) were obtained from NASA's
Distributed Active Archive Center (DAAC). Full resolution imagery of
the local area coverage (LAC) for the PATEX 2 to PATEX 7 cruises was
used to evaluate products derived from empirical and semi-analytical
algorithms. The selected images were processed to level 2 (L2), and
the following data products were obtained: the Chla retrieved from
empirical (OC2v6, OC3v6, OC4v6) and semi-analytical (GSM) algo-
rithms, the phytoplankton absorption coefficient retrieved from GSM
and QAA algorithms, and the ancillary information, such as the solar
and sensor zenith angles and the L2 processing flags. The SeaWiFS
Data Analysis System (SeaDAS) software version 6.4 was used to pro-
cess data from level 1 and the product retrievals.

For comparison between the in situ data and satellite products and
to minimize georeference errors, median values were computed for
all products in a 3-by-3 pixel window centered on the locations of
the oceanographic stations. Furthermore, the coefficient of variation
(CV) was computed for the Chla within each 3 by 3 window, and
the retrieved value was excluded if CV > 0.2. This process was
carried out to avoid strong variation from non-homogeneous regions
within each window (Bailey & Werdell, 2006). For the temporal
threshold coincidence between the satellite and in situ measure-
ments, we considered a ±3 h window around the satellite overpass,
which follows the NASA's criterion (Bailey et al., 2000).

3. Results and discussion

The surface Chla for all six PATEX cruises varied in a wide range
from 0.10 to 18.87 mg m−3 with a mean value of 2.85 mg m−3. The
Chla for MCF and BMCF varied from 0.08 to 24.05 mg m−3 and 0.08 to
12.03 mg m−3, respectively. The frequency distribution of Chla at the
surface, MCF, and BMCF are shown in Fig. 2 (N = 176, 159 and 85).
The variability in chlorophyll-a concentration was mainly associated
with differences in time and geographical locations of sampling among
the different cruises and the phytoplankton size structure (Ferreira et
al., 2013).

3.1. Phytoplankton and particulate absorption and diffuse
attenuation coefficients

Table 1 shows the absorption coefficients at 440 nm of particulate
material, ap(440), and phytoplankton, aph(440), and the contribution
of phytoplankton to the particulate absorption, aph(440) / ap(440), for
each cruise. The data include surface, MCF, and BMCF measurements.
Non-algal absorption, ap(440) − aph(440), did not co-vary with Chla,
regardless of the sampled depth (not shown), and its contribution
was relatively low during all cruises (average of 13%), even with the
high variability in Chla.

Phytoplankton was the dominant component of the particulate
absorption (Table 1), with the lowest and highest average contribu-
tions during PATEX 3 (81%) and PATEX 4 (96%). These results suggest

image of Fig.�2
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that for the shelf break and adjacent areas during the blooms in
spring and summer, the particulate absorption is largely dominated
by living cells and the relative proportions of detrital particulates
shows little seasonal and interannual change. Our results on the per-
cent contribution by phytoplankton are in agreement with the range
of 85 to 94% found by Morel et al. (2006) for Case 1 waters with high
chlorophyll concentrations.

Values of ap(440) ranged from 0.026 to 0.492 m−1 and increased
(on a log scale) with increasing Chla (0.08 to 24.02 mg m−3)
(Fig. 3a). Linear fitting between log-transformed data provided a R2

of 0.77 (N = 356). Inferred from the general nonlinear character
of this dependence (Bricaud et al., 1998) and the broad range of
Chla covered by our dataset, the chlorophyll-specific particle absorp-
tion, ap*(440) (ap(440):Chla) decreased with increasing Chla and
ranged widely from 0.023 to 0.237 m2 mg−1. The power function
ap(440) = A ChlaB, where the A and B parameters are derived
from regression analysis, provided a reasonably good fit to our data
and was comparable to previously derived average relationships
(Bricaud et al., 1998; Morel et al., 2006). Our ap(440) values are on
average 75% above the mean relationship of Bricaud et al. (1998),
B98, whereas the positive departure from Morel et al. (2006) equa-
tion, M06, derived for Case 1 waters with high chlorophyll content
averages only 19%. Therefore, our dataset deviated largely from the
global “average relationship” (represented by B98 equation), while
the difference is less marked if compared with an average relation-
ship of eutrophic Case 1 waters (M06 equation). These differences
have implications in bio-optical models in which the phytoplankton
absorption is parameterized in terms of total chlorophyll-a concen-
tration on the basis of average trends from other regions within the
world's ocean.

The dependence of Kbio(440) on Chla is displayed in Fig. 3b, and a
power law described this dependence in the same way as for ap(440).
The lower R2 (0.65) computed between Chla and log-transformed
Kbio(440) was comparable to that for ap(440) and may be partially
attributed to the lower number of Kbio(λ) data, which comprises only
surface samples (N = 116). We also compared our fitting relationship
for Chla and Kbio(440) to the general prediction model recently re-
analyzed by Morel et al. (2007), M07. The same systematically higher
trend of our ap(440) compared to the general fittings (B98 and M06)
was also verified for Kbio(440) (Fig. 3b). On average, our Kbio(440) was
higher by approximately 26% towhatwas expected fromM07. This find-
ing is in agreement with Kd(λ) being a rough proxy of the absorption
coefficient, merging the dominant effect of absorption and to a lesser
extent backscattering (Gordon, 1989), mainly when the phytoplankton
is the dominant particulate component. Indeed, Kbio(440) and ap(440)
were linearly correlated (Fig. 3c) with a R2 of 0.67. As expected,
Kbio(440) was higher than ap(440), as seen by the points above the 1:1
line, on average by 1.67-fold. It is important to note that the CDOM
absorption increases exponentially towards blue and UV wavelengths,
so its absorption contributes with an important amount to the diffuse
attenuation at 440 nm. Although we could not quantify the effect of
Table 1
The mean, standard deviation (Std), and range of the absorption coefficient at 440 nm for pa
ap(440) for each PATEX cruise. The data are means of pooled data from the near-surface,
fluorescence.

PATEX 2
N = 44

PATEX 3
N = 54

ap(440) Mean 0.22 0.14
Std 0.08 0.05
Range 0.07–0.36 0.02–0.27

aph(440) Mean 0.19 0.11
Std 0.06 0.04
Range 0.07–0.32 0.01–0.26

aph(440) / ap(440) Mean 0.83 0.81
Std 0.07 0.15
Range 0.51–0.92 0.25–0.97
CDOM absorption on Kbio(440), part of the variability in Kbio(440) not
explained by ap(440)may be attributed to CDOMabsorption. The impor-
tance of CDOM in explaining part of the Kbio(λ) variability towards lower
wavelengths is emphasized by the lower R2 (0.42) obtained between
Kbio(360) (Kw(360) equal to 0.0216 m−1, as provided by Morel and
Maritorena (2001)) and ap(360). However, part of the dispersion for
this dependence may be attributed to the correction procedure adopted
for the β amplification factor, which is not optimized for computation of
ap(λ) in the UV range.

Our previous work characterized the variability in the coefficients
of phytoplankton absorption, aph(λ), instead of ap(λ), as a function of
Chla for part of the data shown here (Ferreira et al., 2013). As inferred
from the dominance of phytoplankton on particulate absorption
showed in the present work, our aph(λ) values were generally
above the general relationships (Bricaud et al., 1995, 2004) for a
given Chla. Previous studies concluded that differing non-algal detri-
tal material content for a given Chla caused the systematic deviations
from the average of particulate absorption vs. Chla (e.g., Morel et al.,
2007 and references therein). Our results for ap(λ) however, suggest
that non-algal particles may not modify the relationship between the
bulk optical properties and Chla, which is generally used as a single
index by traditional bio-optical models, but actually show that the
dispersion between Chla and ap(440) (R2 = 0.77) is practically the
same as for aph(440) (R2 = 0.78, Ferreira et al., 2013). Ferreira et al.
also demonstrated that most of the variability in aph(λ) as a function
of Chla was caused by variations in the dominant cell size of phyto-
plankton, according to a size factor retrieved from the aph(λ) spectra.
The systematic deviations in both ap(λ) and Kbio(λ) as a function of
Chla for the Patagonia waters found compared to general trends can
be therefore attributed to variations in the phytoplankton size.

3.2. Relationship between chlorophyll-a and particulate
attenuation coefficient

At 660 nm, after deducting the attenuation by pure seawater, the
particle attenuation coefficient is primarily (~97%, Loisel & Morel,
1998) caused by particle scattering. Fig. 4 shows cp(660) as a function
of Chla for the six PATEX cruises. Because the measurements of
cp(660) were taken along the water column and Chla concentrations
data are from several discrete depths, a higher number of Chla vs.
cp(660) pairs were available (N = 790) than for ap(440) (N = 356).
We compared our data to the relationship derived by Loisel and Morel
(1998), LM98, for near-surface waters (their Eq. 5). We note that the
LM98 relationship was established for a narrower Chla range (0.2 to
3.0 mg m−3), unlike the range of our dataset (0.08 to 24.05 mg m−3).
Our cp(660) data correspond to lower Chla (PATEX 3, 6 and 7) and are
in agreement with LM98 (Fig. 4). Conversely, Chla and cp(660) pairs
were considerably lower than LM98 for higher Chla (PATEX 2 and 4).

Regarding the particulate absorption coefficients, a non-linear
model described the dependence of cp(660) on Chla, and a power
function fit provided the relationship cp(660) = 0.343 Chla0.37 for
rticulates, ap(λ), and phytoplankton, aph(λ), and the percent contribution of aph(440) to
depths of maximum chlorophyll fluorescence, and the base of maximum chlorophyll

PATEX 4
N = 66

PATEX 5
N = 51

PATEX 6
N = 79

PATEX 7
N = 62

0.21 0.08 0.14 0.04
0.16 0.04 0.08 0.02
0.02–0.68 0.02–0.20 0.03–0.37 0.01–0.09
0.20 0.07 0.12 0.04
0.15 0.03 0.08 0.02
0.02–0.67 0.02–0.17 0.02–0.36 0.008–0.09
0.96 0.84 0.92 0.91
0.07 0.13 0.08 0.12
0.71–1.00 0.48–1.00 0.49–0.98 0.25–1.00
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Fig. 3. (a) The particulate absorption coefficient at 440 nm, ap(440), as a function of chlorophyll-a concentration, Chla, for near-surface depths, depths of maximum chlorophyll
fluorescence and the base of the maximum depths during PATEX 2 to PATEX 7 cruises (N = 356, R2 for log-transformed data = 0.77). As indicated, the lines represent the best
fit regression between ap(λ) and Chla (ap(440) = 0.096 Chla0.539) and lines B98 and M06 represent the previously derived relationships (Bricaud et al., 1998; Morel et al.,
2006). (b) The diffuse attenuation coefficient at 440 nm, Kd(440), as a function of Chla for near-surface depths during PATEX 2 to PATEX 7 cruises (N = 116, R2 for
log-transformed data = 0.65). As indicated, the lines represent the best fit regression between Kd(λ) and Chla (Kd(440) = 0.121 Chla0.644), and line M07 represents a previously
derived relationship (Morel et al., 2007). (c) The diffuse attenuation coefficient at 440 nm, Kd(440), as a function of ap(440) for near-surface depths during PATEX 2 to PATEX 7
cruises (N = 116, R2 = 0.67). The dashed line represents a 1:1 ratio.
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the entire dataset. Owing to the large dispersion of the data, the coef-
ficient of determination obtained between the log-transformed data
was relatively low (R2 = 0.60, N = 790). The low exponent (0.37)
indicates a deviation from linearity and relatively weak dependence.
The high dispersion was partially associated with systematic differ-
ences between the cruises (Fig. 4), which was also observed for
ap(440), although to a lesser extent (Fig. 3a). In general, higher values
of cp(660):Chla for a given Chla were observed for PATEX 3, 6 and 7,
and lower values for PATEX 2 and 4. Relatively high cp(660):
Chla ratios for PATEX 5 associated with a coccolithophorid bloom
(Garcia et al., 2011) stand out from most of the data and were also
more scattered. Therefore, a distinct fitting was applied to represent
(i) PATEX 2 and 4 and (ii) PATEX 3, 6, and 7; (iii) PATEX 5 was consid-
ered separately.

Table 2 shows the power law equations resulting from the combi-
nation of all PATEX data and the data derived separately according to
similar trends between cruises. The lowest coefficient A of the rela-
tionship obtained for PATEX 2 and 4 (0.254) indicates a lower relative
magnitude of attenuation for a given Chla, which indicates that the
strong non-linearity (exponent = 0.471) may be explained by higher
Chla and large phytoplankton cells. The PATEX 3, 6, and 7 cruises,
which showed relatively low Chla in association with smaller-sized
cells (Ferreira et al., 2013), revealed higher relative attenuation
coefficients (A = 0.333) and a clear dependence on Chla (exponent
B = 0.818) tending to linearity (cp(660):Chla nearly constant for all
Chla ranges). The highest coefficient A (0.610) and lowest exponent
B (0.40) derived for PATEX 5 indicates relatively high attenuation
values and a weak dependence on Chla (R2 = 0.56). This highlights
the limitation of parameterizations for scattering (or backscattering)
coefficients according to chlorophyll-a during coccolithophorid
blooms because of the high scattering properties of the coccoliths
(CaCO3 platelets around cells) independent of Chla (see Garcia et al.,
2011). As expected, the generally weak dependence of cp(660) on
Chla for PATEX 5 is not verified for particulate absorption coefficients
(Fig. 3a), which are specifically resultant from pigments.

Despite the variability around the mean in cp(660) as a function
of Chla (Loisel & Morel, 1998; this work) that was greater than the
variability in ap(440), there was a general similarity in the variability
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Fig. 4. (a) The particulate attenuation coefficient at 660 nm, cp(660), as a function
of chlorophyll-a concentration, Chla, for samples collected along the water column
during the PATEX 2 through the PATEX 7 cruises (N = 790, R2 for log-transformed
data = 0.60). The line represents the best fit regression between cp(λ) and Chla for
the whole dataset. (b) The best fit regressions between cp(λ) and Chla obtained for
the whole dataset and separately according to cruises, as indicated (see Table 2). The
previously derived relationship by Loisel and Morel (1998), LM98, derived for the
Chla range of 0.2 to 3.0 mg m−3 is shown in (a) and (b) for comparison.
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of both coefficients (Figs. 3a and 4) caused by variations among the
cruises. Our previous work (Ferreira et al., 2013) showed a strong
relationship between the chlorophyll-specific particulate scattering
coefficient at 660 nm, bp*(660) (bp(660) normalized by Chla) and the
Table 2
Results from regression analysis between the beam attenuation at 660 nm, cp(660), and
the chlorophyll-a concentration, Chla, for PATEX 2 to 7 cruises. The regression formula is
cp(660) = A ChlaB where A and B are the best-fit parameters. The determination coeffi-
cient, R2, and the number of data, N, are also shown. The results are presented for surface
and selected depths based on the chlorophyll fluorescence profile. All regression analyses
are significant for p b 0.001.

Cruise Equation derived R2 N

All PATEX cp(660) = 0.343 Chla0.370 0.60 790
PATEX 2 and 4 cp(660) = 0.254 Chla0.471 0.70 299
PATEX 3, 6 and 7 cp(660) = 0.333 Chla0.818 0.70 397
PATEX 5 cp(660) = 0.610 Chla0.400 0.56 94
chlorophyll-specific phytoplankton absorption coefficient, aph*(440)
(aph(440) normalized by Chla). Also, variations in chlorophyll-specific
coefficients as a function of Chla were mostly explained by differences
in the phytoplankton cell size. In fact, Ferreira et al. (2013) derived
two distinct power law relationships for aph(440) as a function of
Chla by analyzing samples dominated by either nanophytoplankton or
microphytoplankton.

Variations in cp(660) as a function of Chla for Patagonia waters do
not appear to reflect the physiological adjustments proposed by
Behrenfeld and Boss (2003). Since the existing relationships between
cp(λ) and phytoplankton biomass can be conceptually extended to
use of particulate backscattering coefficients (Westberry et al., 2010),
the variability in cp(660):Chla presented here could be extended to
applications of existing ocean color reflectance retrievals that depend
on bb(λ) / a(λ). However, pronounced differences in scattering
caused by a great variability in cell size structure associated with
different stages of the bloom makes it difficult to establish a unique
relationship between Chla and scattering (or backscattering) for
Patagonia waters.

3.3. Variability in the hyperspectral remote sensing reflectance spectra

The hyperspectral remote sensing reflectance spectra, Rrs(λ),
derived from the six PATEX cruises showed a great variability in
both the magnitude and spectral shape (Fig. 5). The exclusion of the
600 to 700 nm range for the HCA (Section 2.5) eliminated the
chlorophyll-a fluorescence peak centered at 683 nm, which was a
conspicuous feature of several Rrs(λ) spectra (Fig. 5). As expected,
this peak was associated with Rrs(λ) spectra in high Chla samples.
Three distinct classes were identified through a dendrogram and are
illustrated in Fig. 6. The ordinary spectra, Rrs(λ), for the three classes
are also shown.

Class 1 covered the largest number of spectra (N = 52) and showed
the highest Rrs(λ) magnitudes among the three classes (Fig. 6a) and
the greatest variability at lower wavelengths. The maximum reflec-
tance was found at approximately 490 nm, and the magnitudes
decreased towards higher wavelengths. Class 1 peaks corresponding
to chlorophyll-a fluorescence at approximately 683 nm were not
evident (not shown). Spectra with Rrs(λ) higher than 0.01 sr−1 in
the blue to the green wavelengths were found during the PATEX 5
cruise (Figs. 5d and 6a) and were associated with a great abundance
of coccolithophorids (Garcia et al., 2011).

The Rrs(λ) spectra of Class 2 and Class 3 were similar at the blue
range and showed a concave shape between the main chlorophyll-a
absorption band and the lowest reflectance at approximately 450 nm.
The major differences between these classes were found in the green
range, where Class 2 Rrs(λ) spectra presented a wide peak between
490 and 560 nm, and Class 3 Rrs(λ) spectra showed a distinct peak
at 570 nm. Class 2 Rrs(λ) spectra also showed a double peak in the
green range of the spectrum with variable shapes (N = 42). Class 3
comprised the lowest number of spectra (N = 22), and except for
two spectra with approximately 0.005 sr−1 close to 570 nm (Fig. 6e),
the maximum absolute reflectance was always lower than 0.004 sr−1.
For both Class 2 and Class 3, the Chla fluorescence emission peak near
683 nm can be seen (see Fig. 5).

The wide range of Chla in the study region primarily explained the
clustering identified through the HCA, with the lowest concentrations
corresponding to Class 1 (mean 0.86 ± 0.51 mg m−3) followed by
intermediate concentrations in Class 2 (mean 2.42 ± 1.62 mg m−3),
and the highest concentrations in Class 3 (mean 8.40 ± 3.96 mg m−3).

Class 1 contained few Rrs(λ) spectra from PATEX 2, PATEX 4 and
PATEX 6, most Rrs(λ) spectra from PATEX 3, and all spectra from
PATEX 5 and PATEX 7. Class 2 comprised the Rrs(λ) spectra associated
with moderate Chla found in PATEX 2, the highest Chla found in
PATEX 3, the intermediate Chla found in PATEX 4, the relatively
high Chla found in PATEX 6, and one Rrs(λ) spectrum of PATEX 5.
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Fig. 5. Spectra of remote sensing reflectance, Rrs(λ) in sr−1, shown separately for (a) the PATEX 2 through the (b) PATEX 7 cruises. Note the different scales.
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This spectrum was different from the other samples because, unlike
other sites, diatoms were dominant (Garcia et al., 2011). Class 3
only included spectra from PATEX 2 and 4 (spring cruises). The envi-
ronmental constraints and their effects on the distribution and
temporal evolution of Chla in the Patagonian Shelf-break have been
discussed elsewhere on the basis of ocean color satellite data (Rivas
et al., 2006; Romero et al., 2006) and physical and biological data
collected during the PATEX cruises (Ferreira et al., 2013; Garcia et
al., 2011; Souza et al., 2012).

Although no data for CDOM absorption is available, its contribu-
tion to the Rrs(λ) spectra was probably minor because a noticeable
decrease in Rrs(λ) at the blue portion of the spectra and towards
shorter wavelengths was not observed.
3.4. Evaluation of chlorophyll-a empirical algorithms

The analysis above showed that the Rrs(λ) spectra from the
Patagonia region may be separated according to spectral features
that vary according to Chla. In this section, we investigate the perfor-
mance of operational empirical models that rely on the relationship
between Rrs(λ) band ratios and Chla. Chla was estimated from in
situ Rrs(λ) measurements from all cruises using the OC2v6, OC3v6
and OC4v6 empirical algorithms and compared to the in situ mea-
sured Chla. Fig. 7 depicts the measured Chla as a function of the
Rrs(λ) band ratios, relative to each of the three Chla empirical algo-
rithms, and their respective representational curves. The NOMAD
dataset is also plotted as background for comparison.
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Fig. 6. Results of the hierarchical cluster analysis applied to the normalized remote sensing reflectance spectra, nRrs(λ). Both the absolute remote sensing reflectance, Rrs(λ) in sr−1

(a, c, and e) and the nRrs(λ) with no unit (b, d, and f) are shown. The average nRrs(λ) spectra for each class are shown in bold.
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Both the SeaWiFS 2-band (OC2v6) and MODIS 3-band (OC3v6)
algorithms showed some deviation towards overestimating Chla
when considering the whole PATEX dataset (Fig. 7), with R2 = 0.67
and 0.62, respectively, and a positive RPD (Table 3). The SeaWiFS
4-band (OC4v6) algorithm performed better (R2 = 0.78) and had
the lowest bias (RPD = 11.54%), and a mean absolute percentage
difference (APD = 42.05%, Table 3). The results shown here are in
agreement with previous analyses based on satellite data for the
region (Dogliotti et al., 2009; Garcia et al., 2006).

In order to investigate whether the performance of chlorophyll
empirical models are associated with variations in the spectral
shape of Rrs(λ) and variations in Chla, the same empirical models
used to retrieve Chla were applied separately to each Rrs(λ) class
previously determined by HCA (Fig. 7). Linear fitting adjusted to mea-
sured and estimated log-transformed Chla pairs were not statistically
significant for most cases, which was probably due to the narrower
Chla range and the smaller dataset within each class. Thus, the perfor-
mance of the models for each class was evaluated separately using R2,
slope, and intercept (Table 3). Regarding the OC4v6 algorithm, large
errors (RPD = 31.80%; APD = 51.57%) were found for the class
relative to moderate Chla (Class 2), but there was a good agreement of
the tested algorithm for the classes associated with the lowest (Class 1)
and highest (Class 3) Chla (RPD = −2.63% and APD = 30.82%;
RPD = 6.30% and APD = 50.21%, respectively) (Table 3). Note that the
poorer performance of the model for Class 2 was primarily explained
by a narrower range of the estimated Chla (0.97 to 4.69 mg m−3),
unlike the larger range found in the measured Chla (0.74 to
7.96 mg m−3). The performances of both the OC2v6 and OC3v6
algorithms were always poorer compared with the OC4v6 (Table 3
and Fig. 7).
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Fig. 7. Chlorophyll-a concentration, Chla, as a function of the Rrs(λ) band ratios used for the three Chla empirical algorithms: (a) OC2v6, (b) OC3v6, and (c) OC4v6. The OC3v6 and
OC4v6 algorithms use any of the two and three maximum (max) band ratios, respectively, as indicated on the x axes. The data are shown separately for the three Rrs(λ) classes
ordered by a hierarchical cluster analysis. The grey circles and solid curves represent NASA's Bio-optical Marine Algorithm Data Set (NOMAD) (Werdell & Bailey, 2005) and the
indicated algorithms, respectively. Note that the axes have logarithmic scales.
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Based on remote sensing reflectance, Moore et al. (2009) classified
eight optical water types representative of the global ocean as deter-
mined from the NOMAD dataset. Although they verified a general
pattern of increasing Chla across the water types, the Chla ranges
overlapped between the types. The overlapping occurs in waters
with the same chlorophyll-a content but distinct optical properties,
such as suspended sediments and organic matter, pigment composi-
tion and cell size structure of phytoplankton. In our work, as the
phytoplankton was shown to be the dominant particulate component
and CDOM did not seem to play a noticeable role in determining the
Rrs(λ) spectra (Figs. 5 and 6), the overlap observed between the
three classes in our data (Fig. 7) most likely reflects differences in
phytoplankton optical properties for a given Chla.

High relative errors are expected in the performance of empirical
bio-optical models in high Chla waters because of the increasing
optical complexity from additional material besides phytoplankton
in the eutrophic waters (Morel et al., 2006). Interestingly, the errors
associated with Class 3 (high Chla) were relatively low (Table 3).
Thus, very high Chla associated with phytoplankton blooms along
the Patagonia Shelf break waters does not appear to result in large
errors from empirical model performances. However, large errors
were associated with intermediate to high Chla (Class 2, Table 3).
Although the CDOM contribution to the reflectance spectra appears
to be low, its contribution to absorption should be properly assessed
to determine how it might impact the empirical model's performance
(e.g., Szeto et al., 2011).
3.5. Relations between empirical algorithm errors and inherent
optical properties

Most of the empirical bio-optical algorithms used to derive Chla
rely upon relationships between the Chla and the blue-to-green spec-
tral ratios of Rrs(λ). However, the shape and magnitude of the Rrs(λ)
spectra actually depend on backscattering and absorption coefficients
(IOP), which reflect variations in the optical components of seawater.
In this section, we investigate how the variations in the IOP in terms
of normalization to Chla might influence the performance of the
chlorophyll-a empirical models applied to Patagonia in situ Rrs(λ)
data. As it is based solely on in situ radiometric and Chla measure-
ments, this analysis does not include any uncertainty attributed
to atmospheric correction or satellite radiance accuracy. Only the
OC4v6 model was considered in this analysis, because it performed
best when applied to our dataset (Section 3.4). The relative error
(RE) was defined as RE = 100 ∗ (retrieved Chla − measured Chla) /
measured Chla.
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Table 3
Statistical results for the performance of the three empirical algorithms, OC2v6, OC3v6, and OC4v6, to estimate the surface chlorophyll-a concentration, Chla, from in situ Rrs(λ) data
collected during the PATEX 2 to PATEX 7 cruises. The algorithms were applied to all Rrs(λ) data and separately to each of the three Rrs(λ) classes obtained with a hierarchical cluster
analysis. The mean relative percentage difference, RPDa, and mean absolute percentage difference, APDb, were computed between the measured Chla and Chla estimated from the
algorithm. The R2, slope and intercept derived from linear regression analysis on log-transformed measured and retrieved data were computed only when all Rrs(λ) data were
considered. The mean and standard deviation (Std) of surface Chla corresponding to all Rrs(λ) and to each Rrs(λ) class are also shown (column 1).

Dataset
Mean (Std)

Algorithm RPD APD R2 Slope Intercept N

All data
2.45 (3.42)

OC2v6 27.53 59.30 0.67 0.82 0.06 116
OC3v6 39.31 70.78 0.62 0.77 0.09
OC4v6 11.54 42.05 0.78 0.86 0.03

Class 1
0.86 (0.51)

OC2v6 −2.93 29.95 – – – 22
OC3v6 1.82 31.84 – – –

OC4v6 −2.63 30.82 – – –

Class 2
2.42 (1.62)

OC2v6 77.34 94.98 – – – 42
OC3v6 103.91 122.12 – – –

OC4v6 31.80 51.57 – – –

Class 3
8.40 (3.96)

OC2v6 4.46 60.55 – – – 52
OC3v6 3.44 64.84 – – –

OC4v6 6.30 50.21 – – –

Xalg and Xmeas represent the algorithm-retrieved and measured values, respectively.
a RPD ¼ ∑N

n¼1
Xalg−Xmeas

Xmeas

1
N
� 100.

b APD ¼ ∑N
n¼1

Xalg−Xmeas

Xmeas

�
�
�
�

�
�
�
�

1
N
� 100.
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Fig. 8 shows the dependence of relative errors of the OC4v6
algorithm-retrieved Chla on the measured Chla (Fig. 8a), aph(440)
(Fig. 8b), and bp(660) (Fig. 8c), both coefficients normalized by Chla
(aph*(440) and bp*(660), respectively, in m2 mg−1). bp(660) was
computed as cp(660) subtracted ap(660).

The RE is scattered over the entire Chla range (Fig. 8a), but signifi-
cant relationships (α = 95%) were observed when each class was
considered separately (p b 0.001 for Class 1, Class 2, and Class 3), and
a general trend of underestimation emerged as Chla increased. Likewise
for Chla, significant correlations were found between RE and aph*(440)
(p b 0.001 for Class 1, Class 2, and Class 3) and bp*(660) (p = 0.02 for
Class 1 and p b 0.0001 for Class 2, and Class 3) and a clear tendency
towards overestimation emerged for the retrieved Chla according to
increases in both aph*(440) and bp*(660) (Fig. 8b and c).

Variations in aph*(λ) are associated with phytoplankton pigment
packaging, which may be affected by variations in both the accessory
pigments and cell size. Relatively lower Chla and higher aph*(λ) are
indicative of phytoplankton with small and lesser-packaged cells,
whereas high Chla and lower aph*(λ) are associated with large, highly
packaged cells (Bricaud et al., 1995 and references therein). Our
previous work (Ferreira et al., 2013) confirmed that variations in
aph*(440) were related to cell size for the data presented here,
indicating thatmost of the variability in phytoplankton absorption coef-
ficients in Patagoniawaters is explained by changes in the dominant cell
size. Interestingly, the same trend was verified for bp*(660), whereas a
linear relationship held between aph*(440) and bp*(660) (Ferreira et
al., 2013). The direct dependence of RE on both aph*(440) and
bp*(660) shown here indicates that the empirical algorithm's uncer-
tainties vary systematically with phytoplankton size structure.

The empirical algorithms assume that the sources of variability in
Rrs(λ) originate from Chla and the covariation between the detrital
(dissolved and particulate) component and Chla (O'Reilly et al.,
2000). Thus, variations in pigment packaging, species composition,
and the abundance of colored detrital matter (CDM) relative to
phytoplankton biomass lead to errors in the performance of empirical
algorithms. The trend of increasing errors with increasing Chla-specific
phytoplankton absorption coefficients observed here was verified by
Loisel et al. (2010) and Szeto et al. (2011) using the NOMAD global
dataset, which covered a large, dynamic range that had systematic
differences among the oceanswith respect to aph*(λ) and CDMcontribu-
tion (Szeto et al., 2011). It is interesting to note that regional and tempo-
ral differences associated with the phytoplankton blooms in Patagonia
waters resulted in a Chla range (0.10 to 18.87 mg m−3 at surface)
wide enough to produce differences in Chla-specific IOP and impact
the Chla retrieval from empirical models. The bp*(660) was also shown
to explain theOC4v6 algorithmerrors. Although Rrs(λ) depends on back-
scattering instead of scattering coefficients, the dependence of RE on
bp*(660) found here agrees with Westberry et al. (2010), who argued
that variations in bp(λ) could be conceptually extended to particulate
backscattering coefficients.

Our results clearly address the need to account for the influence of
Chla-specific IOP variability in Chla retrieval algorithms for Patagonia
waters. Regional parameterizations of semi-analytical ocean color
algorithms with chlorophyll-specific IOP derived from the cluster
analysis have the potential to improve product retrievals, as shown
by Tilstone et al. (2012). Classification of the Rrs(λ) spectra prior to
application of specific bio-optical algorithms may also represent a
valuable method of improving remote sensing retrievals (Lubac &
Loisel, 2007; Moore et al., 2009).
3.6. Matchup analyses

Although semi-analytical ocean color models, which are based on
the relationship between AOP and IOP (Gordon et al., 1988), have the
potential to improve the retrieval estimates from remote sensing
reflectance, some approximations have to be assumed. An empirical
step of the QAA model (Lee et al., 2002) assumes spectral ratios of
Rrs(λ), whereas the GSM model (Maritorena et al., 2002) requires
the assumption of mean spectral shapes for absorption and backscat-
tering coefficients. In this section, we evaluated the performance of
semi-analytical algorithms in retrieving phytoplankton absorption
coefficients for Patagonia waters using models embedded in the
SeaDAS software, that have fixed input parameters for the semi-
analytical models.

Matchup analyses were performed to compare coincident in situ
phytoplankton absorption coefficients with those estimated by the
GSM and QAA semi-analytical models. We also compared in situ-
measured Chla with satellite-derived Chla from the three empirical
algorithms (OC2v6, OC4v6, and OC3v6) and the GSM semi-analytical
model. The total number of in situ surface Chla and aph(λ) samples
collected during the six cruises was 176 (see Fig. 2 for Chla). Because
of cloud cover and the application of NASA's selection criteria of
the temporal window (±3 h), the matchup points were reduced to
about 30 depending on the availability of satellite data provided by
the algorithm.
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Fig. 8. Relative errors (RE) of the OC4v6 algorithm (see text for definition) as a function of (a) chlorophyll-a concentration, Chla, (b) chlorophyll-specific absorption coefficient of
phytoplankton at 440 nm, aph*(440), and (c) chlorophyll-specific scattering coefficient of particles at 660 nm, bp*(660). The data are shown separately for the three Rrs(λ) classes
ordered by a hierarchical cluster analysis.
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The matchup results are sorted by cruise instead of by Rrs(λ) clas-
ses that was done for the retrievals using in situ Rrs(λ) (Section 3.4),
because of the reduced satellite data. Evaluation of the satellite model
performance was made using the same statistics as in Section 3.4: R2,
slope, and the intercept between the log-transformed measured Chla
and satellite-estimated. The statistical evaluation of the algorithms is
provided in each respective panel (Figs. 9 to 11).

Fig. 9 presents a comparison between the measured Chla and
algorithm-derived estimates. The dispersion between measured
Chla and satellite-estimated Chla from empirical algorithms (Fig. 9a
to c) was very similar to the dispersions using the in situ Rrs(λ)
dataset (R2 = 0.66, 0.75 and 0.77 for OC2v6, OC3v6, and OC4v6,
respectively). The major difference is that the estimates based on in
situ Rrs(λ) data tended to overestimate lower Chla concentrations
and underestimate higher Chla concentrations, while the opposite
was true for the satellite data (Fig. 9). This difference could be attrib-
uted to the discrepancy in the amount of data (N ~ 33 for matchup
analysis against N = 116 for in situ dataset). Even so, there is a gen-
eral trend of Chla overestimation for both in situ and satellite Rrs(λ)
data, with RPD always positive (Table 3 and Fig. 9). The performance
and overestimation of the GSM model is comparable to that of the
empirical models (Fig. 9).

Scatter plots for satellite vs. measured aph(λ) for blue and green
wavelengths are shown in Figs. 10 and 11 as retrieved from the GSM
and QAA algorithms, respectively. GSM underestimated aph(412) with
a strong negative bias (RPD = −59%). Despite the general trend of
underestimating lower aph(λ) and overestimating higher aph(λ) at
other wavelengths, the GSM aph(λ) at 469 and 488 nm corresponded
reasonably to in situ data (Fig. 10). The errors for the green range of
the spectrum, aph(555), were larger (R2 = 0.47 and RPD = 181%,
Fig. 10f) and the lowest dispersion between satellite and in situ data
was achieved at 645 nm (R2 = 0.80), although with the highest abso-
lute and relative errors because of a considerable overestimation of
the algorithm (RPD = 90% and APD = 94%, not shown).

Errors in the estimates of aph(λ) by GSM could result from differ-
ences between our values of the chlorophyll-specific phytoplankton ab-
sorption, aph*(λ), and the parameter aph*(λ) used in the algorithm. For
instance, the mean value of aph*(λ) is assumed to be 0.0558 m2 mg−1

at 443 nm (SeaDAS code). This value, however, can be highly variable
in the field because of differences in algal cell size and pigment
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Fig. 9. Comparison between in situ-measured and satellite-retrieved chlorophyll-a concentration, Chla, from the (a) OC2v6, (b) OC3v6, and (c) OC4v6 empirical algorithms, and the
(d) GSM semi-analytical algorithm. Coefficient of determination, R2, slope, and intercept obtained from regression analysis on log-transformed algorithm-derived and in situ
measured data, the mean relative percentage difference, RPD, and mean absolute percentage difference, APD, are shown. The data are sorted by cruise.
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composition. In our work, aph*(443) varied from 0.0180 to 0.2478 (av-
erage of 0.0721 m2 mg−1), which was generally higher than mean
values used worldwide but it also varied seasonally (Ferreira et al.,
2009, 2013). Higher values of aph*(λ) than the parameterization of
the GSMalgorithmwould result in lower estimates of aph(λ) and higher
estimates of Chla. Variability in magnitude and spectral variability of
backscattering coefficients throughout the Patagonian region could
also be cause of errors in the GSM estimates and deserves to be further
studied.

In general, the QAA algorithm showed a better performance in
retrieving aph(λ), with points closer to the 1:1 line for 443, 469,
488, and 531 nm, compared to GSM-derived results. The highest
agreement was observed at 488 nm with a RPD of −1.5% (Fig. 11c).
The errors were substantially higher at 555 nm (RPD = 120% and
APD = 132%), and the maximum disagreement between in situ and
satellite data was observed at 645 nm (R2 = 0.045) with a pro-
nounced overestimation (RPD and APD = 509%, not shown). The bet-
ter agreement between in situ and QAA satellite retrievals of aph(λ)
might result from the inexistence of spectral models of the absorption
coefficients for this algorithm as for GSM.
4. Conclusions

In this study, a considerable variability was observed in the coeffi-
cients of particulate absorption, attenuation, and diffuse attenuation
as a function of chlorophyll-a concentration, Chla, in Patagonia waters
during spring and summer phytoplankton blooms. This variability
was shown to influence the performance of empirical models
that derive Chla from ratios of remote sensing reflectance. The errors
in Chla estimates by the empirical algorithm OC4v6 using in situ Rrs(λ)
showed significant statistical relationships with Chla, aph(440) / Chla,
and bp(660) / Chla.

A hierarchical cluster analysis classified the hyperspectral Rrs(λ)
into three classes according to spectral features that corresponded
to the variability in Chla. This result indicates the dominant role of
phytoplankton in controlling the optical properties of the spring and
summer blooms along the Patagonia Shelf break region.

Although reasonable agreements were found between the mea-
sured and satellite-estimated Chla and phytoplankton absorption co-
efficients, regional refinements of both empirical and semi-analytical
algorithms that take into account the variability in Chla-specific IOP
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Fig. 10. Comparison between the in situ-measured and satellite-retrieved phytoplankton absorption coefficient, aph(λ), from the GSM semi-analytical algorithm for blue and green
wavelengths. The coefficient of determination, R2, slope, and intercept obtained from regression analysis on log-transformed, algorithm-derived and in situ measured data, the
mean relative percentage difference, RPD, and mean absolute percentage difference, APD, are shown. The data are sorted by cruise.
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should improve the satellite estimates of the bio-optical properties
for the Patagonia region. Our work contributed to the documentation
of the bio-optical properties for high-Chla waters, as recommended
by Morel et al. (2006).
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