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Abstract: Early after the introduction of the first (narrow spectrum) penicillins into clinical use, penicillinase-producing staphylococci 

replaced (worldwide) the previously susceptible microorganisms. Similarly, the extensive use of broad-spectrum, orally administered -
lactams (like ampicillin, amoxicillin or cefalexin) provided a favorable scenario for the selection of gram-negative microorganisms pro-

ducing broad spectrum -lactamases almost 45 years ago. These microorganisms could be controlled by the introduction of the so called 
“extended spectrum cephalosporins”. However, overuse of these drugs resulted, after a few years, in the emergence of extended-spectrum 

-lactamases (ESBLs) through point mutations in the existing broad-spectrum -lactamases, such as TEM and SHV enzymes. Overuse of 
extended-spectrum -lactams also gave rise to chromosomal mutations in regulatory genes which resulted in the overproduction of chro-

mosomal AmpC genes, and, in other regions of the world, in the explosive emergence of other ESBL families, like the CTX-Ms. Carbap-
enems remained active on microorganisms harboring these extended-spectrum -lactamases, while both carbapenems and fourth genera-

tion cephalosporins remained active towards those with derepressed (or the more recent plasmidic) AmpCs. However, microorganisms 
countered this assault by the emergence of the so called carbapenemases (both serine- and metallo- enzymes) which, in some cases, are 

actually capable of hydrolyzing almost all -lactams including the carbapenems.  

Although all these enzyme families (some of them represented by hundreds of members) are for sure pre-dating the antibiotic era in envi-

ronmental and clinically significant microorganisms, it was the misuse of these antibiotics that drove their evolution. This paper describes 
in detail each major class of -lactamase including epidemiology, genetic, and biochemical evaluations. 
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HISTORIC PERSPECTIVES 
 Shortly after the introduction of the first -lactams into clinical 
practice (Penicillin G, Penicillin V) it was clear that most infections 
caused by gram-negative bacteria could not be controlled by peni-
cillins. However, control of infections caused by gram-positive 
bacteria (opportunistic staphylococcal infections accounting for a 
good part of them) using penicillins was very effective, and, lacking 
what could be considered modern microbiological diagnosis, led to 
a false sensation of controlling infectious diseases. Over prescribing 
patients suffering any “potential” infectious disease was observed 
and in just a few years resistant staphylococci emerged.  

 Natural and emerging resistance gave way to further research 
for -lactam development that could treat these resistant organisms. 
The first wide spectrum penicillins (ampicillin followed by amox-
icillin) could be used for serious opportunistic infections caused by 
different enterobacteria in hospital settings. Cephalosporins arrived 
to the clinical setting by the mid 1960s with the introduction of 
cephalothin (followed by other first generation cephalosporins, and 
together with penicillinase-resistant penicillins reintroduced this 
family in staphylococcal infection control). 

 Extensive use of broad-spectrum, orally administered -lactams 
(like ampicillin, amoxicillin or cefalexin) provided the selective 
pressure for the selection of gram-negative microorganisms produc-
ing broad spectrum -lactamases such as TEM in E. coli and SHV 
(initially in K. pneumoniae). The genes encoding these enzymes 
were extensively disseminated globally by plasmids not only into E. 
coli and K. pneumoniae, but also in several other genera of hospital 
(and community as well) associated microorganisms. 
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 Microbial resistance to classical broad spectrum -lactams re-
sulted in the development of extended spectrum cephalosporins 
(oxyimino cephalosporins like cefotaxime, ceftazidime and cef-
triaxone) and the monobactam, aztreonam in the 1980s. Overuse of 
these drugs resulted, after a few years, in the emergence of ex-
tended-spectrum -lactamases (ESBLs) through point mutations in 
the existing broad-spectrum -lactamases, TEM and SHV. Overuse 
of extended-spectrum -lactams also gave rise to chromosomal 
mutations in regulatory genes which resulted in the overproduction 
of the chromosomal AmpC gene for example resulting in fully re-
sistant strains. About half a decade later, cefotaxime resistant mi-
croorganisms harboring enzymes totally unrelated to those preexist-
ing started to be sporadically isolated. These corresponding genes, 
known as the blaCTX-M types, are currently the most prevalent fam-
ily of ESBLs worldwide.  

 Carbapenems are active on microorganisms harboring these 
extended-spectrum -lactamases, while 4

th
 generation cepha-

losporins towards those with derrepresed (or the more recent plas-
midic) AmpCs. However, microorganisms countered this assault by 
emergence of the so called carbapenemases (which are actually 
capable of hydrolyzing almost all -lactams including the carbap-
enems).  

 A related area (search for inhibitory molecules) rendered sul-
bactam, clavulanic acid and tazobactam, able to inhibit BSBLs 
(broad-spectrum -lactamases) and ESBLs. However, they diminish 
minimal inhibitory concentrations (MIC) only to a certain amount 
and if the acquired resistance is too high, they are not able to re-
cover basal susceptibility. In addition, both the TEM and SHV 
families have accumulated mutations leading to resistance to -
lactamase inhibitors in different amino acid residues than those 
necessary for extending the hydrolytic profile.  

 It is clear that the evolution and explosive emergence of -
lactamases has been a direct result of the counter measures used to 
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ward off resistance to the initial introduction of the penicillins. Al-
though these enzymes described above were all present in the envi-
ronment, it was the misuse of these antibiotics that drove their evo-
lution. The following sections describe in detail each major class of 

-lactamase including epidemiology, genetic, and biochemical 
evaluations.  

CLASS A -LACTAMASES 
The Classical models (TEMs and SHVs) 
TEM -lactamases 

 TEM -lactamase production in gram-negative bacteria became 
apparent in the 1960s when the first enzyme responsible for amin-
openicillin resistance in an E. coli isolate was described. The corre-
sponding encoding gene for TEM-1 -lactamase was located in 
Tn3, a transposable element described in different conjugative 
plasmids [1]. The rapid increase in its prevalence was associated to 
its location [1, 2].  

 The extended-spectrum and inhibitor resistant TEM -
lactamases, most of which are located on plasmids, are derivatives 
of TEM-1 (Fig. 1) and/or TEM-2. TEM enzymes belong to Ambler 
class A and are characterized by an active-site serine [3]. The pre-
mature protein consists of 286 amino acids (the first 23 amino acids 
correspond to the signal peptide), with the mature enzyme having a 
molecular mass of approximately 29 kDa. 

 At the amino acid sequence level, the TEM and SHV -
lactamase families share 67% identity, while the CTX-M family is 
more distant (40% sequence identity with both TEM and SHV)[4, 
5].  

Broad-spectrum -lactamases (BSBL) 

 The broad-spectrum TEM enzymes are mainly represented by 
TEM-1 (Fig. 1), -2 and -13 [6-8] with TEM-1 being the most preva-
lent. They have the same hydrolytic profile and are able to hydro-
lyze ampicillin at a greater rate than carbenicillin, oxacillin, or 
cephalothin, and have negligible activity against extended-spectrum 
cephalosporins. They are inhibited by clavulanic acid. A few addi-
tional mutational variants are included in this subgroup, such as -
55, -57, -90, -95, -110, -127, -128, -135 and -141 among others 
(http://www.lahey.org/Studies/). Amino acid changes summarized 

in (Table 1) do not expand the spectrum of hydrolysis of broad-
spectrum TEMs. They are generally single amino acid changes not 
preserved in other variants. 

Extended-spectrum -lactamases (ESBL) 

 While TEM-3 is thought to be the first TEM-type ESBL de-
scribed in 1988, a ceftazidime-resistant TEM-12 –producing Kleb-
siella oxytoca was isolated in England in 1982, [9]. The gradual 
acquisition of mutations has led to an unexpected increase in the 
number of observed -lactamase variants. Of the natural mutants 
described for TEM-type -lactamases a number of amino acid resi-
dues are especially important for producing the ESBL phenotype 
(http://www.lahey.org/Studies/). The observed changes mainly 
include Gln39Lys (glutamine to lysine at position 39), Glu104Lys, 
Arg164Ser/His/Cys, Gly238Ser, and Glu240Lys (Table 2). 

 Although position 104 is part of a conserved loop, changes to 
several amino acids like Ser, Thr, Lys, Arg, Tyr or Pro (with con-
served activity) have been observed. The Glu104Lys substitution 
has been frequently associated with an ESBL profile along with 
other accompanying mutations in the active site cavity [10], as that 
mutation is unable to confer full resistance by itself. The 
Gly238Ser substitution is frequently associated with ESBL-TEMs, 
providing a catalytic efficiency one-order of magnitude greater than 
TEM-1 towards cefotaxime and ceftazidime [11]. Analysis of the 
crystal structure suggests that substitution at the Gly238 residue is 
involved in a 3 strand displacement, improving the active-site area 
to accommodate bulkier substrates.  

 Another variable residue is Arg164 which is located in the -
loop; Arg164Ser replacement results in more flexibility within the 
loop (involved in the substrate specificity of the enzyme), widening 
the cavity for bulky side chains in the extended-spectrum cepha-
losporins. Therefore, Arg164Ser TEM mutants increase enzymatic 
activity towards ceftazidime, and an additional mutation, 
Glu240Lys, further enhances this effect. Although these substitu-
tions expand the spectrum of -lactamase activity towards third-
generation cephalosporins, they are detrimental to the activity on 
ampicillin [12]. 

 Although TEM-type -lactamases are most often found in E. 
coli and K. pneumoniae, TEM-type ESBLs are also found in other 
species of Enterobacteriaceae and non-fermenting gram-negative 

Table 1. Amino Acid Changes Observed in the Broad-spectrum TEMs

Position 21 34 39 92 115 145 157 158 182 218 265 

TEM-1 L K Q G D P D H M G T 

TEM-2   K         

TEM-13   K        M 

TEM-55          E  

TEM-57    D        

TEM-90     G       

TEM-95      A      

TEM-110 F          M 

TEM-127        N    

TEM-128       E     

TEM-135         T   

TEM-141  E          
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bacilli [13, 14]. TEM-type ESBLs are (and have been) frequently 
associated with hospital outbreaks, standing alone as the sole 
mechanism for the ESBL phenotype, or accompanied by other re-
sistance plasmids encoding other ESBLs and MBLs (IMP- or VIM- 
like). TEM-type ESBLs observed in Polish hospitals were thought 
to be the result of selective pressure from several -lactams used 
within a given institution, in the absence of proper infection control 
measures [15]. TEM-3, TEM-4 or TEM-47 producing-K. pneumo-
niae have caused clonal outbreaks in different European Union 
countries; TEM-24 was associated with outbreaks of E. aerogenes 
and TEM-24, TEM-52 and TEM-92 were related with clonal dis-
semination of P. mirabilis, as well as prolonged outbreak of TEM-
21-producing P. aeruginosa in nursing homes in France [14, 16-
20].  

Inhibitor Resistant TEM (IRT) 

 According to the functional classification of -lactamases, IRT 
enzymes belong to group 2br [21] and comprise a group of plasmid-
encoded TEM- variants with altered interaction with irreversible 
suicide inhibitors such as clavulanate, sulbactam and tazobactam. 
Isolates that only produce IRT are not considered ESBL-producers 
because susceptibility to extended-spectrum cephalosporins, 
cephamycins, carbapenems and piperacillin–tazobactam remains 
unaltered. IRTs were initially found in E. coli [22], and later on, in 
many other enterobacteria [23, 24]. However, the presence of IRTs 
in P. aeruginosa or other non-fermenters has not been reported. 
Amino acid replacements responsible for the resistance profiles are 
summarized in (Table 3).  

 Analyzing the IRTs described (http://www.lahey.org/Studies/), 

it appears that the majority of the amino acid changes within the 

TEM enzyme leading to the inhibitor- resistant phenotype occur at 
residues Met69, Arg244, Arg275, and Asn276. The sites of these 
amino acid substitutions are different from those that lead to the 
ESBL phenotype. Clavulanate, sulbactam and tazobactam act in a 
similar way to inhibit the TEM -lactamase, involving a covalent 
cross-linking reaction between Ser70 and Ser130. Structural analy-
sis suggests that Met69 or/and Arg244 substitutions (frequently 
present in IRTs) result in accommodations that protect the local 
environment of Ser130, leading to inhibitor resistance. The way 
these amino acids perturb this region differs for each substitution; 
either by conformational changes in Ser130 that attenuate the cross-
linking, or by displacing the structural water molecule that stabi-
lizes the substrate in the region of Ser130 [25, 26]. 

Complex Mechanism TEM -lactamases (CMT) 

 Among resistance mechanisms, one of the most interesting 
evolutionary aspects observed in the last decade was shown by the 
TEM-type enzymes that combine both hydrolysis of oxyimino 
cephalosporins and resistance to -lactamase inhibitors. These en-
zymes are known as complex mechanism TEMs (CMT), requiring 
the concomitant appearance of substitutions frequently observed for 
ESBLs and IRTs (Table 4). These new -lactamases confer differ-
ent levels of resistance to oxyimino-cephalosporins and to clavu-
lanic acid, depending on the specific amino acid substitution. The 
CMT enzymes have been identified in different species of Entero-
bacteriaceae, including E. coli, K. pneumoniae, P. mirabilis and E. 
aerogenes [23, 27-29]. 

 Emergence of CMT-type -lactamases has also been associated 
with a novel promoter region involved in their expression [27]. 
Most CMT enzymes, as well as IRTs, have been recovered from 

Table 2. Aminoacid Changes Observed in Extended Spectrum TEMs, Compared to TEM-1 

Position* 6 21 39 104 153 164 182 237 238 240 265 268 

TEM-1 Q L Q E H R M A G E T S 

2be 

(ESBL) 
K F K K R SHC T TG SDN KRV M G 

% changed 2,6 22 31 46 3,8 55 22 10 41 32 19 2,6 

N 

(nt=78) 
2 17 24 36 3 

43 

(24,15, 4) 
17 

8 

(7, 1) 

32 

(30, 1, 1) 

25 

(23, 1, 1) 
15 2 

*Relative to TEM-1 amino acid sequence 
2be: Possible amino acid changes in ESBL-TEM 
% Changed: Relative abundance of mutations occurring in each position. 

N: Total number of ESBL-TEM carrying specific site mutation; numbers in parenthesis indicate the distribution of each amino acid change. 
nt: Total number of ESBL-TEM according to Lahey’s Institute website 

Table 3. Amino Acid Residues Observed in IRTs Compared to TEM-1 

Position* 21 39 69 127 130 165 244 265 275 276 

TEM-1 L Q M I S W R T R N 

2br 

(IRT) 
FI K LVI V G RC SCHG M QL D 

N 

(nt=34) 
4 (3,1) 4 18 (8,6, 4) 2 2 3 (2, 1) 

12 

(5, 4, 2, 1) 
2 

6 

(4, 2) 
7 

*Relative to TEM-1 amino acid sequence 
2br: Possible amino acid changes in IRT 

N: Total number of IRT carrying specific site mutation; numbers in parenthesis indicate the distribution of each amino acid change. 
nt: Total number of IRT according to Lahey’s Institute website 
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urinary tract infections which correlates with the site of infection 
where the -lactam antibiotics and inhibitors reach high concentra-
tions. In general, IRT and CMT enzymes have not been associated 
with outbreaks; however an IRT-2 producing K. pneumoniae has 
been associated with an outbreak in a geriatric institute in France in 
February of 1998 [30]. 
Biochemical Properties of IRTs and CMTs: 

 When compared to TEM-1, most IRT enzymes have low cata-
lytic efficiencies for most substrates, due to the reduced kcat and 
increased  Km values (see example in Table 5). IC50 values for 
inhibitors are higher than those for TEM-1. In general, clavulanic 
acid is a more effective inhibitor than sulbactam, while tazobactam 
may retain some inhibitory activity against these -lactamases [23, 
31]. CMT enzymes usually present a lower hydrolytic activity (kcat) 
against penicillin than TEM-1, as well as their corresponding paren-
tal ESBLs. However, substrate affinity (Km) values are similar to 
TEM-1. Values of kinetic constants obtained for TEM-151 and 
TEM-152 enzymes are also shown [32]. Catalytic efficiencies of 
these TEM enzymes against oxyimino- -lactams are closer to those 
of their corresponding ESBLs. Hydrolytic activitiy of CMTs against 
cephalothin is similar to that of the IRT enzyme TEM-36, while 

that observed in the parental ESBLs were considerably higher. In 
contrast, Km values were similar for CMTs, ESBLs and IRT en-
zymes. Finally, these and other CMT-enzymes are also less resis-
tant to inhibitors than their respective IRTs; their increased suscep-
tibility to inhibitors may explain the small difference observed be-
tween the MICs of -lactams compared to the same antibiotics as-
sociated with inhibitors [27, 29].  

SHV -lactamases 
 SHV-1, a broad-spectrum -lactamase, was initially described 
in K. pneumoniae and later in other members of the Enterobacte-
riaceae [33-35]. Like TEM -lactamases, SHV-variants derived 
from plasmidic SHV-1 have emerged with changes in the spectrum 
of activity towards different substrates, forming part of groups 2be 
and 2br. There are several published reviews summarizing the ki-
netic properties of SHV enzymes [36-38].  

 Until the early or mid 1990´s, SHV-type ESBLs were the most 
frequently described ESBLs [39, 40]; however they have now been 
displaced by the CTX-M enzymes [36]. Although 128 SHV vari-
ants are described in the Lahey’s Institute webpage: 
(http://www.lahey.org/Studies/), not all of them have a defined 

Table 4. Amino Acid Residues Observed in CMTs Compared to TEM-1 

Position* 39 69 104 164 238 240 276 

TEM-1 Q M E R G E N 

2ber 

(CMT) 
K LV K HS S K D 

N 

(nt=10) 
2 

7 

(5, 2) 
4 

6 

(3,3) 
3 3 5 

*Relative to TEM-1 amino acid sequence 
2ber: Possible amino acid changes in CMT 
N: Total number of CMT carrying specific site mutation; numbers in parenthesis indicate the distribution of each amino acid change. 

nt: Total number of CMT according to Lahey’s Institute website 

Table 5. Kinetic Parameters of Different TEM -lactamases [32] 

TEM-1 TEM-36 TEM-29 TEM-151 TEM-28 TEM-152 
 

BSBL IRT ESBL CMT ESBL CMT 

Antibiotic kcat Km 
kcat/ 

Km 
kcat Km 

kcat/ 

Km 
kcat Km 

kcat/ 

Km 
kcat Km 

kcat/ 

Km 
kcat Km 

kcat/ 

Km 
kcat Km 

kcat/ 

Km 

PEN 1,5 34 44 800 60 13.3 235 12 19.6 251 25 10 243 17 14.3 196 15 13 

AMX 1,125 15 75 624 113 5.5 91 26 3.5 149 40 3.7 88 12 7.3 258 48 5.4 

TIC 135 36 3.8 176 130 1.3 42 14 3 60 21 2.9 38 9 4.2 51 36 1.4 

PIP 1,25 55 2.3 1,216 170 7.1 336 39 8.6 172 44 3.9 213 27 7.9 306 50 6.12 

CEF 165 242 0.7 18.4 335 0.05 126 205 0.61 15 330 0.04 194 288 0.67 4 260 0.02 

AZT <0.1 ND - <0.1 ND - 2.1 34 0.06 8.3 83 0.1 43 75 0.57 3.5 22 0.16 

CAZ <0.1 ND - <0.1 ND - 10 215 0.05 5 250 0.02 64 240 0.27 16 230 0.07 

CTX <0.1 ND - <0.1 ND - 14 345 0.04 5 304 0.02 9 50 0.18 1 34 0.03 

FEP <0.1 ND - <0.1 ND - 17 145 0.11 2.5 126 0.02 8 72 0.11 2.8 45 0.06 

(PEN) Penicillin G, (AMO) Amoxicillin, (TIC) Ticarcillin, (PIP) Piperacillin, (CEF) Cephalothin, (AZT) Aztreonam, (CAZ) Ceftazidime, (CTX) Cefotaxime, (FEP) Cefepime.  

(ND) No detectable hydrolysis, (-) Not determinable.  
kcat (s-1), Km ( M), kcat/Km (s-1. M-1). 
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phenotype. Of these, 37 are considered 2be enzymes, 30 are 2b 
enzymes and only 6 are described as 2br [41]. The most common 
amino acid changes are summarized in Table 6. 

 The first plasmidic extended-spectrum SHV was recovered in 
Germany in 1983, from Klebsiella ozaenae and displayed a 
Gly238Ser substitution. This substitution alone accounts for the 
extended-spectrum properties of this ß-lactamase, designated SHV-
2 [42]. From that point, the same ESBL and other allelic variants 
(mainly SHV-5) were found in Klebsiella pneumoniae isolated 
worldwide [40]. Even though SHV-type ESBLs were initially found 
in K. pneumoniae, case reports and outbreaks involving different 
Enterobacteriaceae and non-fermenting gram negative bacilli pro-
ducing SHV-ESBLs are well documented [43-51].  

 SHV-1 (and other close related enzymes like PIT-2 and LEN-1) 
[34, 52] genes are found on the chromosome of K. pneumoniae and 
are considered the ancestor of SHV-ESBLs. However, it cannot be 
completely ruled out that microevolution within their chromosomal 
location has occurred for example, SHV-11 [53]) or even the car-
bapenem hydrolyzing SHVs (SHV-38, [54]) which have been found 
on chromosomal loci. In silico analysis of the fully sequenced K. 
pneumoniae (GenBank: CP000647) reveals the presence of  
blaSHV-11.  

 The conserved nucleotide changes in blaSHV that result in dif-
ferent phenotypes for the SHV variants occur at fewer positions 
within the structural gene compared to TEM ESBLs. The majority 
of SHV variants possessing an ESBL phenotype are characterized 
by the Gly238Ser substitution. A number of variants related to 
SHV-5 also contain a Glu240Lys substitution. Both changes are 
critical in determining the phenotype 2be; Ser-238 and Lys-240 
have an important role in the hydrolysis of ceftazidime and cefo-
taxime by SHV-type ESBLs, respectively [55]. Interestingly, both 
substitions are frequently present among TEM-type ESBLs.  

 SHV-10 has been reported as the first SHV ß-lactamase with an 
inhibitor-resistant phenotype and is designated as IRS (Inhibitor 
Resistant SHV). This enzyme has the same nucleotide substitutions 
present in the extended-spectrum SHV-9 (also called SHV-5a) but 
contains an additional Gly130Ser substitution [56]. It is interesting 
to note that currently, none of the 2br SHV enzymes show this 
amino acid change. These data suggest that Ser-130 has an impor-
tant role in the interaction with cephalosporins [56]. Changes asso-
ciated with IRTs (i.e. Met to Ile, Leu, or Val at position 69, Arg to 
Cys, Ser, His or Gly at position 244, Arg to Glu and Leu at position 

275, and Asn to Asp at position 276) have not been observed in the 
currently described inhibitor-resistant SHVs. 

 Sequence data (in addition with evolutionary analysis) confirms 
the chromosomal origin of blaSHV genes, whose mobilization 
probably involves IS26, on at least two separate occasions. In addi-
tion, these two main ESBL blaSHV branches probably evolved from 
separate chromosomal ancestors [57]. Analysis of genetic environ-
ments associated with plasmidic blaSHV genes include in most cases 
the presence of the insertion sequence IS26 often associated with 
transposons or integrons. The presence of IS26 has been associated 
with the most common SHV ESBL genes: blaSHV-2, blaSHV-2a, 

blaSHV-5 and blaSHV-12 [58-61]. In a strain of K. pneumoniae, the 
plasmidic blaSHV-5 gene was flanked on both sides with a defective 
copy of an IS26-like element, reminiscent of Tn2680. In addition, 
the plasmidic blaSHV-5 was associated with a 7.9 kb region homolo-
gous to part of K. pneumoniae chromosome. These data strongly 
suggest that the orign of blaSHV clearly points to the chromosome of 
K. pneumoniae [62]. blaSHV-5 has also been associated with a class 1 
integron (In-t3) containing different genes that confer aminoglyco-
side resistance (aacA4, aacC1, and aadA1) in addition to IS26 [63]. 

THE NATURAL EXTENDED SPECTRUM -LACTAMASES 
The CTX-M Family 
First reports and Global dissemination: CTX-M Family of  
ESBLSa 

 This family was named following the first report of CTX-M-1 
(after “CefoTaXimase Munich”) and MEN-1, that (both having the 
same sequence) were found independently in Germany and France 
in different bacterial species [64-67]. Although CTX-M-1/MEN-1 
were the first sequenced blaCTX-M type genes, the first identification 
of a CTX-M type enzyme is most likely the report of FEC-1, by 
Matsumoto et al, which was able to hydrolyze cefotaxime more 
efficiently than ceftazidime [68, 69].  

 Since the initial identification of CTX-M enzymes, at least five 
genetically distinct groups have been identified from isolates 
around the world, including over 120 representatives, both plasmid-
borne and chromosome-encoded enzymes (www.lahey.org/Studies; 
[5, 69a]). Although the first isolates were reported in the late 80s, 
the majority of isolates producing CTX-M enzymes were not de-
tected until the CLSI (formerly NCCLS) changed its recommenda-
tions for the detection of ESBLs. Initially, ESBL confirmatory tests 
did not recommend the use of both cefotaxime and ceftazidime, but 

 

 

 

 

 

 

 

 

 

Fig. (1). A) TEM-1 -lactamase in association with benzyl-penicillin, showing the dimension and location of the active cavity; B) Cartoon representation of 

TEM-1 -lactamase in association with benzyl-penicillin (PENG), displaying the specific location of the active site serine Ser70 (S70). Secondary structures 

are also represented: alpha helices (a),  sheets ( ), and the  loop. 
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only ceftazidime. Because the majority of CTX-M enzymes hydro-
lyze cefotaxime more efficiently than ceftazidime these ESBLs 
went undetected. The new CLSI guidelines resulted in the identifi-
cation of several types of CTX-M ESBLs. 

 Plasmid-borne CTX-M ESBLs are class A serine -lactamases 
conferring high-level resistance to most -lactams, including 
amino-penicillins (ampicillin and amoxicillin), carboxy-penicillins 
(carbenicillin and ticarcillin) and the ureido-penicillin, piperacillin, 
and first- and second-generations cephalosporins such as cepha-
lothin, cephaloridine and cefuroxime. Regarding the extended-
spectrum cephalosporins, or oxyimino-cephalosporins, CTX-M 
producing organisms are generally resistant (or have elevated 
MICs) to cefotaxime or ceftriaxone, while ceftazidime may remain 
in the susceptible range even when some CTX-M variants can hy-
drolyze ceftazidime. Generally, CTX-M producers are associated 
with increased MIC values for aztreonam and cefepime, although 
they may remain in the susceptible range. CTX-M producing organ-
isms remain susceptible to cephamycins (cefoxitin) and carbap-
enems (imipenem, meropenem, ertapenem). As other class A 
ESBLs, they are well inhibited by -lactamase inhibitors like clavu-

lanate, sulbactam and tazobactam.  

 The majority of CTX-M enzymes can be found in frequent 
hospital- and community-associated pathogens as E. coli, P. mirabi-
lis, K. pneumoniae, E. cloacae, M. morganii and other species of 
Enterobacteriaceae, but CTX-M enzymes have been found in a 
variety of other species including P. aeruginosa, Aeromonas sp, 
and even Vibrio cholerae [70-73].  

 Today, CTX-M-producing organisms are easily detected as 
potential ESBL producers by the CLSI screening methods [74], and 
most automated methods can detect these isolates efficiently. In our 
hands, the same methods used to identify CTX-M-producing en-
terobacteria have been used for other species in addition to E. coli, 
K. pneumoniae and Proteus, thus extending the utility of the tests. 
However, organisms with an inducible AmpC can be more easily 
characterized if other indicator drugs are used such as cefepime or 

cefpodoxime [75]. 

 In the paragraphs that follow each CTX-M cluster will be dis-
cussed with regards to the number of family members and the epi-
demiology of CTX-M producers. These sections will be followed 
by a brief discussion of the molecular and kinetic characteristics of 
this large group of enzymes. 
General, Clinical and Epidemiological Aspects of the CTX-M 

Clusters (Table 7 and Fig. 2)  

CTX-M-1 (-3) cluster 

 CTX-M-1-type enzymes display a typical “cefotaximase” pro-
file, with efficient hydrolysis (measured originally Vmax/Km) to-
wards aminopenicillins, first- and second-generation cephalosporins 
(not cephamycins), and some oxyimino-cephalosporins such as 

cefotaxime and ceftriaxone, with ceftazidime, ceftizoxime and 
imipenem the most stable tested antibiotics.  

 CTX-M-3, which is identical to the mature enzyme FEC-1 and 
CTX-M-66 (GenBank ABQ45409), is a variant of CTX-M-1 which 
differs at only four amino acid positions, and was first recognized 
in Poland in 1996 from Enterobacteriaceae isolates [76]. From this 
first appearance, CTX-M-3 began to disseminate within Poland and 
was quickly detected in a wide range of countries. Many enterobac-
terial species served as hosts including E. coli, K. pneumoniae, E. 
cloacae, C. freundii, M. morganii, S. marcescens, and Salmonella 
Typhimurium [5, 77], showing that the gene could be easily dis-
seminated [78]. Today, CTX-M-3 is found all over the world in-
cluding many countries in Europe, Asia, Oceania and Africa. Other 
prevalent CTX-M-1-related -lactamases include CTX-M-1 [79-
82], CTX-M-32 [80, 83, 84], and CTX-M-15 (also known as UOE-
1), which has been described in many European, Asian, African, 
North and South American countries, as well as Australia [80, 85-
113].CTX-M-1, CTX-M-3 and CTX-M-15 have been associated 
with well described outbreaks in several locations [78, 87, 90, 114-
118]. Other members of the CTX-M-1 cluster include CTX-M-10-
12, -22, -23, -28-30, -32-34, -36, -37, -42, -52-55, -57, -58, -60-62, 
-64, -66, -68, -69, -71-73, -79, -80, -82, -88, KLUC-2, with CTX-
M-55 and -57 having identical mature proteins.  

 Although KLUC-1 (from Kluyvera cryocrescens) was origi-
nally proposed as an ancestor from which this cluster evolved 
[119], other enzmes have been found to have direct chromosomal 
counterparts; a blaCTX-M-3 gene was found in the chromosome of an 
environmental K. ascorbata [120], and blaCTX-M-37 as a chromoso-
mal gene in a K. cryocrescens strain isolated from a urinary tract 
infection from an outpatient [121]. Therefore, it is more likely that 
the genes encoding these individual enzymes were directly re-
cruited from their chromosomal counterparts in different kluyveras 
(and, possibly, microevolution afterwards). KLUC-2, a plasmid-
borne -lactamase found in an Enterobacter cloacae has been de-
scribed as a “mutant” of KLUC-1 [122]). 

CTX-M-2 Cluster 

 CTX-M-2 was the first reported member of this group of related 
enzymes, and was present in isolates as early as the late 1980s. 
CTX-M-2 enzymes were first detected by phenotypic analysis in 
different cefotaxime-resistant Salmonella serovars from different 
pediatric hospitals in Argentina that produced an enzyme of pI > 8 
that hydrolyzed cefotaxime very efficiently and was susceptible to 
inhibitors. The gene encoding CTX-M-2 was reported as plasmid-
borne, having 84% identity with CTX-M-1, and 78% identity with 
the chromosome-encoded -lactamase from Klebsiella oxytoca [66, 
123].  

 CTX-M-2 is considered one of the most prevalent ESBLs in 
South America especially in Uruguay, Peru, Bolivia, Paraguay and 

Table 6. Most Frequent Amino Acid Substitutions Occurring in Broad-spectrum, Extended-spectrum and Inhibitor-resistant 
SHV -lactamases 

Position 

SHV-1 

8 

I 

35 

L 

43 

R 

129 

M 

234 

K 

238 

G 

240 

E 

2be 

(n=37) 

F 

(5) 

Q 

(10) 

S 

(5) 

V 

(2) 
- 

S, A 

(19, 3) 

K, R 

(17, 1) 

2b 

(n=30) 

Fa 

(1) 

Q 

(14) 

Sa 

(1) 

V 

(2) 

R 

(1) 

Sb 

(3) 

Kb 

(1) 

2br 

(n=6) 

F 

(1) 

Q 

(1) 
- - 

R 

(3) 

Sc 

(1) 

Kc 

(1) 

a Simultaneous changes in SHV-14, b SHV-22, and c SHV-10 
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Argentina. This enzyme is associated with both hospital and 
community settings, and found in different enterobacterial species, 
Pseudomonas spp., as well as many less prevalent species [75, 
124].  

 Today, nearly 85% of the oxymino-cephalosporin resistant 
Gram-negative pathogens which are isolated in different hospitals 
from Argentina and neighboring countries produce at least one 
CTX-M-derived -lactamase, mainly CTX-M-2 (SIR, AAM: 
http://www.aam.org.ar). These enzymes have also been found in 
isolates collected from very different geographic regions [5, 40, 75, 
125-135]. Nosocomial outbreaks involving CTX-M-2-producing 
strains have also been documented [124, 136-139]. Other CTX-M-
2-derived ESBLs include CTX-M-44 (formerly known as TOHO-
1), CTX-M-4 [140], CTX-M-5 [141], CTX-M-6 [142] and CTX-M-
31 [75]. TOHO-1 was first detected in a cefotaxime-resistant Es-
cherichia coli strain isolated in 1993, from patients in Japan, and 
was 83% identitcal to MEN-1) [69],  

 Additional plasmid-borne members of the CTX-M-2 group 
which are not prevalent include: CTX-M-7, -20, -35, -43, -56, -59, -
74, -77. Several chromosome-encoded cefotaximases from 
Kluyvera also belong to this cluster including KLUA-1-6, -8-12 
[143] and, more recently, CTX-M-76 and CTX-M-77 (all from K. 
ascorbata) [144]. However, the mature form of the enzymes 
KLUA-1, -3, -4 and -12 are identical and the mature forms of 
KLUA-2, -6, CTX-M-5, and CTX-M-2, CTX-M-75 are also identi-
cal. 

CTX-M-8 Cluster  

 This cluster has only a few representatives of which CTX-M-8 
was the first to be isolated. It was detected in three AmpC-
producing enterobacteria (E. cloacae, E. aerogenes and C. 
amalonaticus) isolated in Brazil [145]. At the present time members 
of the group include CTX-M-40 [146], CTX-M-41 [147], and CTX-
M-63 (AB205197). However, the amino acid sequences for the two 
latter are identical, therefore CTX-M-63 should be removed and 
renamed, CTX-M-41. KLUG-1, a chromosomal -lactamase from 
Kluyvera georgiana has been proposed as the putative origin of this 
cluster [148]. 

CTX-M-9 Cluster 

 CTX-M-9 related enzymes are the second major cluster, repre-
senting 25 plasmid-encoded members at the present time. The 
dominance of these enzymes began by the end of the 1990s. CTX-
M-9 was the first reported enzyme of this group and was detected in 
E. coli isolated in 1996 in Spain. One year later, four Salmonella 
Virchow isolates were collected [149, 150], while, at the same time 
CTX-M-9-type producers were collected in Brazil, including a 
novel member: CTX-M-16 [151]. 

 The other widely disseminated member of this group is CTX-
M-14, which has been found in isolates collected from Europe, 
North and South America, Asia and Africa [80, 81, 100, 107, 130, 
152-161]. Although initially some of these enzymes were named 
differently such as UOE-2 and TOHO-3 these names are no longer 
used. Additional plasmidic members of the CTX-M-14 group in-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Phylogenic relationship within chromosome- and plasmid-encoded CTX-M/KLU -lactamases showing the five clusters: CTX-M-3, CTX-M-2, CTX-

M-8, CTX-M-9 and CTX-M-25, as well as un-clustered members. 
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clude CTX-M-13, -16-19, -21, -24, -27, -38, -46-51, -65, -67, -81, 
and -83-87. This group includes as chromosomal-encoded counter-
parts KLUY-1-4, observed in isolates of Kluyvera georgiana from 
Guyana [162]. Identical mature -lactamases clustered in this group 
which deserve nomenclature re-examination are CTX-M-14, -18 
and KLUY-1; and KLUY-3-KLUY-4.Well characterized outbreaks 
with isolates producing these enzymes have been reported from 
humans as well as poultry [163-165] [166]. 

CTX-M-25 Cluster 

 CTX-M-25 and CTX-M-26 were the first enzymes described in 
E. coli isolated in Canada, and a K. pneumoniae from the United 
Kingdom, respectively [167, 168]. This group of -lactamases con-
tains six members including CTX-M-25, CTX-M-26, CTX-M-39, -
89, -91, and CTX-M-78, and a chromosome-encoded -lactamase 
from a strain of Kluyvera georgiana isolated from a bloodstream 
infection in Louisville, USA, in 2002 [106, 128, 147, 169]. 

Difficult to Cluster CTX-Ms 

 Some CTX-M -lactamases are difficult to group into the exist-
ing sub-families based on protein alignments. The most peculiar of 
these is CTX-M-45, formerly known as TOHO-2[170]. This en-
zyme displays a frame shift mutation and successive micro dele-
tions that recover the natural reading frame after the sixth base is 
lost. This set of amino acid changes and deletions results in a pro-
tein with an internal short peptide with no amino acid identity with 
other CTX-M family members. Nucleotide alignments, however, 
place it close to CTX-M-14 (CTX-M-9 cluster). CTX-M-64 has 
been described as a “hybrid” -lactamase. This enzyme may be the 
result of homologous recombination between a blaCTX-M-14-like 
(CTX-M-9 cluster) and a blaCTX-M-15-like (CTX-M-3 cluster) [171]. 

Molecular Aspects of the CTX-M -lactamases: 
 Unlike the classical “mutation-born” ESBLs (TEM, SHV), pre-
existing chromosome-encoded ESBLs residing in the genome of 
different members within Kluyvera are the main source of plas-
midic CTX-M -lactamases. Low level expression of CTX-M/KLU 

-lactamases in Kluyvera, in which the blaCTX-M genes are chromo-
somaly located, accounts for the susceptible phenotype when tested 
against gram negative active -lactams. However, transformation of 
these chromosomal genes into E. coli led to the discovery that these 
enzymes were “natural” cefotaximases [120]. 

 In general, horizontal transfer of plasmid-borne blaCTX-M genes 
is mediated by conjugative plasmids carrying additional resistance 
markers, and generally associated with transposons and/or integrons 
[5]. Several mechanisms have been reported and are involved in 
both recruitment and mobilization of these genes (Table 7). 

 Genes encoding CTX-M-1 family members have been found 
associated with ISEcp1-like insertion sequences (belonging to the 
IS1380 family), commonly plasmid-harbored elements that are 
located upstream of the blaCTX-M and are able to mediate transposi-
tion of flanking DNA regions by a one-ended mechanism [174]. 
This is the only experimentally evaluated transposition mechanism 
involved in the mobilization of blaCTX-M genes [174, 175]. blaCTX-M 

genes associated with the ISEcp1-like insertion sequence include 
blaCTX-M-1, -3, -10, -12, -15, -28, -32, -42, -54, -55, -57, -62, -64, -79 (group 1); blaCTX-

M-5, -20 (group 2); blaCTX-M-9, -13, -14, -17, -19, -21, -24, -27, -65 (group 9), 
blaCTX-M-25, -26, -89 (group 25).There are several ISEcp1-linked genes 
that are also associated with the IS903D insertion sequence located 
downstream of the CTX-M gene. This arrangement (ISEcp1-blaCTX-

M-IS903D) is thought to be part of a potential transposon structure 
that probably facilitates the dissemination of the embedded blaCTX-

M [80]. Known IS903D-associated blaCTX-M genes belong to group 9 
and include blaCTX-M-17, -19, -24, -27, -65, and blaCTX-M-54 (cluster 1) 
[176]. 

 The second most prevalent genetic element associated with 
blaCTX-M genes is the ISCR1 element, formerly known as the  
 

orf513-common region, which is normally found within the back-
bone of unusual or complex class 1 integrons [177, 178]. The 
ISCR1 element is usually located upstream of blaCTX-M genes and 
has been found associated with blaCTX-M-2, and blaCTX-M-59 from 
group 2 [71, 179-182], (GenBank EU622856) and blaCTX-M-9 and 

blaCTX-M -14 from group 9 [178, 183-185], and blaCTX-M-1 from group 
1 [186]. Structures harboring ISCR1-associated integrons are usu-
ally related to Tn402 derivatives, and sometimes linked with Tn21 
or Tn1696 transposons. These transposons are widely disseminated 
among both clinical and environmental Gram-negative bacteria and 
carried by large conjugative plasmids [187]. Furthermore, mobiliza-
tion of some Tn21-harbored blaCTX-M genes has been suggested by 
some authors [71, 188] and is probably mediated by insertion se-
quences associated with the transposon, such as IS4321 (IS1111 
family). 

 Both ISEcp1 and ISCR1 (orf513) elements are thought to play 
important roles in the recruitment and mobilization of resistance 
markers by conjugative plasmids. The blaCTX-M-10 gene (cluster 1) 
was found in association with both ISEcp1 and phage-related se-
quences, suggesting that the occurrence of phage-mediated recruit-
ment/mobilization mechanisms was also possible [189]. Finally, 
blaCTX-M-53 (cluster 1) was found associated with a unique structure 
deduced as a putative relaxase/mobilization nuclease with unknown 
function in the recruitment or mobilization of the associated gene 
[190]. 

Gene Expression of blaCTX-M 

 Experimental determination of blaCTX-M promoters has been 
limited, although in silico putative promoters have been identified. 
In general, experimentally determined promoters have similar struc-
tures as the promoters examined in silico. For example, expression 
of ISEcp1-associated blaCTX-M genes seems to be enhanced by pro-
moter’s -10 and -35 sequences embedded in the 3’ region of the 
insertion sequence [191]. For some blaCTX-M-2 family members 
related to ISCR1, two putative promoters have been identified 
[192]. 

Biochemical and Functional Properties of CTX-M/KLU -
lactamases 

 Mature CTX-M -lactamases contain 291 amino acids, result-
ing in proteins of about 30 kDa, and basic isoelectric points be-
tween 7.4 and 9.0. They possess the typical conserved motifs for 
the class A serine- -lactamases [3, 193], including the active site 
serine motif, Ser

73
-Thr-Ser-Lys

76
, a Ser

133
-Asp-Asn

135
 (however for 

CTX-M-81 the conserved sequence is Ser-Asp-His), and a Lys
238

-
Thr-Gly

240
. In addition, the -loop seems to be located between 

Arg
164

-Asp
182

, containing the sequence Glu
169

-X-Thr-Leu-Asn
173

, in 
which the Glu

169
 is directly involved in the hydrolysis of the -

lactam moiety. Kinetic data available for members of the five clus-
ters include CTX-M/KLU: CTX-M-1, -3, -12, -15, -32, -54, -64, -
71, -72, -80 (cluster 1); CTX-M-2, -5, -43, -44 (TOHO-1), KLUA-9 
(cluster 2); CTX-M-8 (cluster 8); CTX-M-9, -14, -16, -18, -19, -27, 
-65, -81, -87 (cluster 9); CTX-M-25, -26, -78 (cluster 25); CTX-M-
45 (TOHO-2) (un-clustered members). Some representative en-
zymes are shown in (Tables 8-10). 

 As described above, CTX-M -lactamases exhibit a natural 
oxyimino-cephalosporinase activity which, when produced in clini-
cal isolates other than their natural host can result in high MICs 
values for cefotaxime/ceftriaxone and for some variants, ceftaz-
idime. These enzymes also efficiently hydrolyze penicillins and 
first-generation cephalosporins [5]. However, compared to other 
ESBLs, CTX-M -lactamases hydrolyze penicillins less effectively 
than TEM/SHV ES-variants [5]. In addition, the hydrolysis of cef-
tazidime is also much higher in TEM, SHV or PER -lactamases 
compared to CTX-M enzymes [24, 207], even though these variants 
are considered “ceftazidimases”. Cefotaxime is a much better sub-
strate for CTX-M enzymes than ceftazidime (even in the so called  
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Table 7. CTX-M-family of -lactamases. Worldwide Reports, Origin, Genetic Association and Biochemical Characterization 

CTX-M cluster 
 

CTX-M-1/3 CTX-M-2 CTX-M-8 CTX-M-9 CTX-M-25 Un-clustered 

First report 

Enzyme FEC-1a/CTX-M-3a CTX-M-2 CTX-M-8 CTX-M-9 
CTX-M-25, CTX-M-

26 

CTX-M-45 

(TOHO-2) 

Year 1986 1990 1996-1997 1996 2000 and 2002 1998 

Country Japan Argentina Brazil Spain Canada and UK Japan 

Bacterial species Escherichia coli Salmonella Typhimurium 

E. cloacae, E. aero-

genes and C. 

amalonaticus 

Escherichia coli 
Escherichia coli / K. 

pneumoniae 

Escherichia 

coli 

Clinical aspects 

First clinical report 

Enzyme CTX-M-1/MEN-1 CTX-M-2 CTX-M-8 CTX-M-9 
CTX-M-25, CTX-M-

26 

CTX-M-45 

(TOHO-2) 

Year 1989 1990 1996-1997 1996 2000 and 2002 1998 

Country Germany/France Argentina Brazil Spain Canada and UK Japan 

Bacterial species 
Salmonella Typhimurium/K. 

oxytoca 
Salmonella Typhimurium 

E. cloacae, E. aero-

genes and C. 

amalonaticus 

Escherichia coli 
Escherichia coli / K. 

pneumoniae 

Escherichia 

coli 

Outbreak implication 

Enzyme (Country) 

CTX-M-1 (Spain), CTX-M-3 

(Poland, Japan), CTX-M-15 

(France, Sweden, Norway, 

Tunisia, Korea) 

CTX-M-2 (Argentina, Japan, 

Brazil) 
 

CTX-M-9 (France), 

CTX-M-14 (Korea, 

Canada), CTX-M-27 

(Tunisia) 

CTX-M-26 (UK)  

Epidemiological data$ 

Dissemination 

(countries) 

Europe, Asia, Africa, Oceania, 

America (see text) 

South America, Japan, Israel, 

Europe (Italy, France, Bel-

gium, UK), Turkey, South 

Africa 

Brazil, Israel, UK, 

Thailand, Tunisia 

Europe, Asia, Africa, 

North and South 

America (see text) 

UK, Israel  

Enzymes 

CTX-M-1/3a/10-

12/15b/22/23/28-

30/32/33c/34/36/37/42/52-

55a/57a/58/60-

62/64/66a/68/69/71-

73/79/80/82/88 

CTX-M-2/4-

7d/20/31/35/43/44e/56/59/74-

77 

CTX-M-8/40/41/63 

CTX-M-9/13/14/16-

19/21/24/27/38/46-

51/65/67/81/83-87/90 

CTX-M-

25/26/39/78/89/91 
CTX-M-45/64 

Most prevalent -

lactamase 

CTX-M-1, CTX-M-3, CTX-M-

15, CTX-M-32 
CTX-M-2 CTX-M-8 

CTX-M-9, CTX-M-14, 

CTX-M-16 
  

Recruitment / genetics 

Association with 

(genetic element) 

ISEcp1 / IS26 / ISCR1 / phage-

related sequences 
ISCR1 / ISEcp1  

ISCR1 / ISEcp1 / 

IS903D 
ISEcp1  

blaCTX-M-1, -3, -10, -12, -15, -28, -32, -42, -

54, -57, -62, -64, -79 (ISEcp1) 
blaCTX-M-5, -20 (ISEcp1) 

blaCTX-M-9, -13, -14, -17, -19, -

21, -24, -27, -55, -65 (ISEcp1) 

blaCTX-M-1 (ISCR1) blaCTX-M-2, -59 (ISCR1) blaCTX-M-9, -14 (ISCR1) 

blaCTX-M-10 (phage-related 

sequences) 

blaCTX-M-17, -19, -24, -27, -65 

(IS903D) 

Available data on 

genetic environ-

ment 

blaCTX-M-53 (relax-

ase/mobilization nuclease?) 

 
blaCTX-M-25, -26, -89 

(ISEcp1) 
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(Table 7) Contd.... 
 

CTX-M cluster 
 

CTX-M-1/3 CTX-M-2 CTX-M-8 CTX-M-9 CTX-M-25 Un-clustered 

Origin 

Kluyvera spp. K. ascorbata / K. cryocrescens K. ascorbata K. georgiana K. georgiana K. georgiana 
K. cryocres-

cens 

blaCTX-M-3 (K. ascorbata) blaCTX-M-76 (K. ascorbata) 

blaCTX-M-37 (K. cryocrescens) blaCTX-M-77 (K. ascorbata) 

Known chromo-

some-encoded 

counterpart 
blaKLUA-1-6, -8-12 (K. ascorbata) 

blaKLUG-1 (K. 

georgiana) 

blaKLUY-1-4 (K. geor-

giana) 

blaCTX-M-78 (K. 

georgiana) 

blaKLUC-1 (K. 

cryocrescens) 

Biochemical characterization 

Availability of 

kinetic data 

CTX-M-1, -3, -12, -15, -32, -

54, -64, -71, -72, -80 
CTX-M-2, -5, -43, -44, KLUA-9 CTX-M-8 

CTX-M-9, -14, -16, -18, 

-19, -27, -65, -81, -87 

CTX-M-25, -26, -

78 
CTX-M-45 

*Isolation or description
$ References: [5, 24, 80, 104, 172, 173], and www.lahey.org/studies.
aIdentical mature -lactamases: CTX-M-3 and CTX-M-66; CTX-M-55 and CTX-M-57
bAlternative name: UOE-1
cPreviously known as CTX-M-27GR
dPreviously given the name CTX-M-5
eAlso known as TOHO-1 

 

Table 8. Kinetic Constants for CTX-M-1 (-3) Cluster a

Amoxicillin Piperacillin Cephalothin Cefotaxime Ceftazidime Aztreonam 

 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

CTX-M-1 87 10 8.7    2,450 115 21.3 317 125 2.5 1 50b 0.02    

$ 160 185 0.86 180 66 2.7 2,800 96 29 380 113 3.4 <0.01 >3,000 ND 190 188 1 

#       114.7 163.7 0.7 47.1 71.1 0.66 ND ND ND 33.7 66.4 0.51 CTX-M-3 

§       408 91.3 4.47 22.5 10.3 2.18 ND 1,670b 0.001d 3.67 122 0.03 

CTX-M-12       146 806 0.182 312 99.7 3.13 1.8 464.5 0.004 17.1 177.4 0.096 

CTX-M-15 20 38 0.52 35 13 2.7 35 43 0.8 150 54 2.8 2 1,760 0.001 1.5 11 0.14 

CTX-M-32 3c 8c 0.4    928 211 4.4 320 322 1 0.91 271 0.003 1 31 0.03 

CTX-M-54 4c 33c 0.1    11 325 0.03 34 182 0.2 0.13 48 0.003 9 244 0.04 

CTX-M-64 37c 19.5c 1.9    185 37.9 4.9 197 103 1.9 ND >10,000 ND    

CTX-M-71 49 5.2 9.4 27 3.2 8.4 68e 18e 3.8 65 130 0.5 0.69 180 0.004 0.84 10 0.084 

CTX-M-72       150.7 153.3 0.98 47.7 71.6 0.67 ND ND ND 49.4 74 0.67 

CTX-M-80       189.6 160.7 1.18 47.2 49.3 0.96 ND ND ND    

aReferences: CTX-M-1 [65]; CTX-M-3 $[5], #[194], and §[195]; CTX-M-12 [196]; CTX-M-15 [197]; CTX-M-32 [83]; CTX-M-54 [176]; CTX-M-64 [171]; CTX-M-71 [198]; CTX-
M-72 [194]; CTX-M-80 [199] 
b Apparent Km was determined as Ki in competitive assays using a reporter substrate 
c Kinetic parameters for ampicillin 
d Obtained by initial hydrolysis rates at low substrate concentrations 
e Kinetic parameters for cephaloridine 
ND: not determinable 

 

“ceftazidimases”), due to a more favorable environment within the 
active site for the recognition and interaction for those substrates as 
compared to the bulky ceftazidime moiety [205, 208]. Stable sub-
strates for which negligible hydrolysis is observed include the car-
bapenems and 7- -methoxy-cephalosporins such as cefoxitin. Even 
though CTX-M production has been associated with carbapenem 
resistance for P. aeruginosa, these isolates also show decreased 
permeability and/or upregulated efflux systems. Lastly, inhibition 

by class A -lactamase inhibitors is stronger for tazobactam than 
clavulanate (although for some enzymes a comparable inhibition is 
observed) and sulbactam [24]. 

 The strictly conserved Ser237 amino acid has been suggested as 
important for the hydrolytic activity observed for the oxyimino-
cephalosporins, especially cefotaxime [140, 209] In addition, an-
other residue that seems to be involved in the modulation of oxy-
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imino-cephalosporinase activity is Arg276 located at a position 
equivalent to Arg244 in TEM and SHV ESBLs [210]. Insights into 
the structural properties of the CTX-M -lactamases reveal some 
distinct characteristics compared to other class A enzymes, and 
supports the previous hypotheses about the relative importance of 
some amino acid residues. In CTX-M-44 (TOHO-1), for example, 
the hydroxyl group of the Ser

237
 seems to rotate due to interactions 

with the carboxyl group located on the substrate. Another notewor-
thy difference is the presence of three sulfate ions located in the 
vicinity of the catalytic site, one of which is tightly bound to the 
active site, and the other two interact with the positively charged 
region containing two arginine residues (Arg

274
 and Arg

276
). This 

could allow the interaction of the methoxyimino moiety of the 
third-generation cephalosporins prior to its proper binding to the 
active site resulting in further hydrolysis [205]. Lys

73
 seems to be 

able to adopt two different and alternative conformations, one of 
which is the close interaction with Glu

166
 [205]. This characteristic 

was also observed in other CTX-M -lactamases such as CTX-M-9 
and CTX-M-14 [208]. 

 There are a number of emergent CTX-M variants that produce 
up to 8-fold higher MIC values for ceftazidime, such as CTX-M-15 
and -16, compared to related enzymes such as CTX-M-3 and -9, 
respectively Several amino acids substitutions in CTX-Ms have 
been suggested as responsible for the increased ceftazidime hy-
drolysis. One of these mutations, Asp240Gly, seen in enzymes such 
as CTX-M-15, -16 and -27 [151, 197, 200], leads to increased 
flexibility of the 3-strand remodeling the active site in order to 
become more accessible to the bulkier ceftazidime moiety [208]. 
CTX-M-15, -16 and -27 are closely related to CTX-M-3, -14 and -

Table 9. Kinetic Constants for CTX-M-9 Cluster a

Amoxicillin Piperacillin Cephalothin Cefotaxime Ceftazidime Aztreonam 

 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/Km 

(μM-1.s-1) 
kcat  
(s-1) 

Km  

(μM) 
kcat/ 

Km (μM-1.s-1) 

C
T

X
-M

-9
 

90 20 4.5 110 20 5.5 3,000 150 20 450 120 3.7 2 600 0.003 10 220 0.04 

100 20 5 200 48 4 2,700 175 15.4 415 130 3.2 3 630 0.004 10 200 0.05 

C
T

X
-M

-1
4

 

   39 20 2 510 27 19 1,400 41 34 nd 13,000 ND nd 41 ND 

C
T

X
-M

-1
6

 

40 10 4 45 8 5.6 2,800 83 33.7 1,400 150 9.3 15 350 0.04 3 17 0.18 

10 105 0.09 15 23 0.65 7b 216b 0.03 20 54 0.37 ND ND - 2 286 0.007 

C
T

X
-M

-1
8

 

      1,190 51 23.4 74.5 1.68 44.3 ND 5,610 ND 18.5 278 0.07 

1 100 0.01 8 10 0.75 30b 123b 0.25 3 60 0.06 0.02 25 0.0001 ND ND ND 

C
T

X
-M

-1
9

 

      882 54.8 16.1 84.8 58 1.47 ND 2,720c ND 0.42 313c 0.0013 

C
T

X
-M

-2
7

 

5 10 0.5 9 8 1.1 232 83 2.8 113 150 0.75 3 330 0.009 0.4 17 0.02 

C
T

X
-M

-8
1

 

      176.4 148.9 1.19 47.6 47.3 1.01 ND ND ND    

aReferences: CTX-M-9 [81, 151]; CTX-M-14 [81, 200, 201]; CTX-M-16 [151]; CTX-M-18 [5, 202, 203]; CTX-M-19 [202, 203]; CTX-M-27 [200]; CTX-M-81 [199] 
b Kinetic parameters for cephaloridine 
c Apparent Km was determined as Ki in competitive assays using a reporter substrate

nd: Not detectable 

ND: not determinable 
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9, respectively, and are thought to have evolved through selective 
pressure by ceftazidime [5, 173].  

 Interestingly, unlike TEM or SHV ESBLs, the active site of the 
CTX-M -lactamases has not been enlarged to interact with bulkier 
molecules like the oxyimino-cephalosporins. The expansion of their 
hydrolytic activities seems to rely on an enhanced mobility of the 

3-strand, expanding the activity towards ceftazidime, or a direct 
interaction of specific amino acids (probably Ser

237
 and Asn

104
) 

with the oxyimino side chains of third-generation cephalosporins, 
such as what is seen for CTX-M-27 [208]. Furthermore, the 3-
strand includes both residues essential for catalytic activity (Lys

234
 

and Ser
237

 as part of the “oxyanion” hole), and amino acids at posi-
tions 231 and 240, at either end of this secondary structure. Substi-
tutions associated with increased hydrolytic activity towards ceftaz-
idime, like Asp240Gly and Val231Ala, appear to result from the 
higher flexibility of the 3-strand, but these substitutions were also 
correlated with lower stability [208]. Recent studies revealed 
“breathing” of CTX-M -lactamases and the implication that the 
Asp240Gly replacement accommodated ceftazidime. The insertion 
of the ceftazidime side chain deep in the catalytic domain, along 
with a coordinated movement of Ser

70
, the 3-strand and the -

loop, facilitates the interaction with the antibiotic [211]. 

 Mutations at position 167 (generally Pro
167

, or 142 in the ma-
ture protein) occur in the immediate vicinity of the -loop, appar-
ently modifying the interaction with the antibiotic, especially the 
oxyimino-cephalosporins [202]. Nevertheless, even when mutations 
occurring in these positions generally lead to large increases in the 
MICs to ceftazidime for the producing strains, only discrete cata-
lytic efficiency towards ceftazidime is obtained [5, 173]. Therefore, 
the term “ceftazidimases” that is currently applied for these CTX-M 

variants should be used carefully. It has also been noted that 
Asp240Gly substitutions have been selected more frequently than 
mutations in Pro

167
 (generally Pro167Ser or Pro167Thr), probably 

because modifications in residues comprising the -loop result in a 
significant decrease in the catalytic efficiencies [173]. 

PER -lactamases: 
 At the present time there are 6 members of the PER -lactamase 
family with PER-1 and PER-2 being the most prevalent family 
members (Fig. 3). PER-1 was identified in a Pseudomonas aerugi-
nosa strain (“Pseudomonas Extended Resistance”) isolated from the 
urinary tract of a hospitalized patient in France in 1991 [212]. PER-
1 has been responsible for oxyimino-cephalosporin resistance in 
clinically-important enterobacteria and non-fermenter Gram-nega-
tive bacilli isolated in different locations worldwide [212-225]. 

 PER-2 shares 86% amino acid sequence identity with PER-1 
and accounts for 10% and 5% of the oxyimino-cephalosporin resis-
tance observed for K. pneumoniae and E. coli isolates respectively 
from Argentina [75]. The first PER-2 producing isolate can be 
traced back to a Proteus mirabilis strain isolated in Argentina in 
1989, which was at that time named ARG-1 (M. A. Rossi, G. Gut-
kind, M. Quinteros, et al., Abstr. 31

st
 ICAAC, abstr. 939, 1991). 

However, the gene sequence was described as blaPER-2 in a 
ceftibuten-resistant Salmonella Typhimurium isolate whose gene 
was harbored by a transferable plasmid [226]. Since its first report, 
PER-2 has been found in other species including Klebsiella pneu-
moniae, Enterobacter cloacae, Enterobacter aerogenes, and Vibrio 
cholerae and community-acquired enteropathogenic Escherichia 
coli (EPEC) isolates in Argentina and Uruguay [75, 227-229], and 

Table 10. Kinetic Constants for other CTX-M Clusters a 

Amoxicillin Piperacillin Cephalothin Cefotaxime Ceftazidime Aztreonam 

 

kcat (s-1) 
Km 

(μM) 

kcat/Km 

(μM-1.s-1) 
kcat (s-1) 

Km 

(μM) 

kcat/Km 

(μM-1.s-1) 
kcat (s-1) 

Km 

(μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 

Km 

(μM) 

kcat/Km 

(μM-1.s-1) 
kcat (s-1) Km (μM) 

kcat/Km 

(μM-1.s-1) 
kcat (s-1) 

Km 

(μM) 

kcat/Km 

(μM-1.s-1) 

Cluster 2 

CTX-M-2       839 8.74 9.6 6.58 3.13 2.1 ND 15,000
d
 0.0003

e
 3.97 205 0.02 

CTX-M-5       1,500
b
 350

b
 4.3 210 95 2.2 7.4 440 0.017 21 730 0.03 

CTX-M-43 14.8
c,d

 21
c
 0.7 4.1 9.7

d
 0.4 11.3 10.2 1.1 70 30 2.3 ND 1,600

d
 ND 28 4.5 0.6 

CTX-M-44    13 8 1.7 480 39 12 250 120 2.1 21 7,900 0.0013    

KLUA-9 7 15 0.47 5 11 0.46 56 49 1.15 3.3 43 0.08 ND >1,000 ND 0.24 390 0.0006 

Cluster 8 

CTX-M-8 55 12 4.6 74 19 3.9 1,600 87 18.4 72 74 0.97 2 >500 ND 13 800 0.02 

Cluster 25 

CTX-M-25 5.9 7.7 0.8    230 190 1.2 101 28 3.6 33 13 2.6 84 120 0.7 

CTX-M-26 12 24 0.5    530 110 4.7 120 150 0.77 0.015 3,300 ND 100 130 0.78 

CTX-M-78 29.2
c
 46

c
 0.63 16.6 19 0.88 84.1 26 3.24 9.5 30 0.32 ND ND ND 5.3 396 0.013 

Un-clustered 

CTX-M-45 1.2 12 0.1 130 84 1.6 12,000 470 25.5 220 66 3.4 1.3 160 0.008 0.1 140 0.0007 

KLUC-1 ND 30 - ND 20 - ND 140 - ND 110 - ND 5,700 - ND 150 - 

aReferences : CTX-M-2 [195]; CTX-M-5 [141]; CTX-M-43 [204]; CTX-M-44 [205]; KLUA-9 [206]; KLUC-1 [119]; CTX-M-25, CTX-M-26 [167]; CTX-M-45 [170]
b Kinetic parameters for cephaloridine
c Kinetic parameters for ampicillin
d Apparent Km was determined as Ki in competitive assays using a reporter substrate
e Obtained by initial hydrolysis rates at low substrate concentrations
ND: not determinable 
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PER-producing isolates have also been found in other countries 
worldwide [127, 230, 231]. 

 Biochemical and genetic analyses in addition to the crystal 
structure of PER-1 have been reported [212, 218, 232, 233]. The 
gene encoding PER-1 is 927 bp and encodes for a 308 amino acid 
protein which has less than 30% amino acid identity with the 
known TEM or SHV ESBLs [234]. The enzyme is a 29kDa protein 
with a pI of 5.4 and displays high catalytic efficiencies for both 
penicillins and cephalosporins (classical and oxyimino-cephalo-
sporins), with high Km values for cephaloridine and third-generation 
cephalosporins (particularly ceftazidime) and high kcat values; re-
sulting in catalytic efficiencies comparable to those for TEM or 
SHV ESBLs [232, 235]. This explains the high level resistance to 

-lactam drugs, especially ceftazidime, in PER-1 producing iso-
lates.  

 The mature PER-2 -lactamase possesses a molecular mass of 
30,780 Da and a pI of 5.4, with a predicted signal peptide of 26 
amino acids [207]. Like PER-1, PER-2 has high catalytic efficien-
cies (kcat/Km) towards most of the tested antibiotics, generally char-
acterized by low Km and high kcat constants (Table 11). PER-2 has 
similar catalytic efficiencies for both ceftazidime and cefotaxime 
although the mechanism for this high efficiency differs. PER-2 has 
a 7-fold higher affinity for cefotaxime compared to ceftazidime but 
the turnover constant (kcat) for ceftazidime is 4-fold higher [207]. 
According to Bouthors et al. [232], PER-1’s kcat/Km values for both 
cephalosporins are one order magnitude lower than PER-2 (0.093 
and 0.026 M

-1
.sec

-1
 for cefotaxime and ceftazidime, respectively), 

due to 10-fold higher Km values. The most poorly hydrolyzed anti-
biotics were cefoxitin, cefepime and imipenem. PER-2 was strongly 
inhibited by lithium clavulanate and tazobactam, displaying IC50 
values of 0.068 and 0.096 M, respectively [207]. As observed in 
(Table 11), PER-6 displays overall lower catalytic efficiencies than 
PER-2 for most of the -lactams, due to significant differences in 
Km values (especially for cephalosporins), and less susceptibility to 
inhibitors [207, 236].  

 The main difference observed in the 3D-structure of PER-1 and 
PER-2 compared to other class A -lactamases is the new fold in 
the  loop and insertion of four amino acids residues at the S3 
strand, leading to an expansion or broadening of the catalytic cavity 
which better accommodates the bulky moieties of some cepha-
losporins [233]. In addition, a modification at position 242 in both 
PER-1 and PER-2, representing the counterpart of the Glu240 resi-
due in TEM or SHV -lactamases, does not seem to result in 

changes in its kinetic properties as observed for TEM/SHV [207, 
232]. 

 The genetic environment of blaPER-1 has been elucidated from 
different species. In some strains it is part of composite transposons 
flanked by different arrangements of insertion sequences, depend-
ing on whether it is found on the chromosome or a plasmid [213, 
237]. In an Alcaligenes faecalis strain, it was found associated with 
a Tn3-family transposon-like structure, named Tn5393d, which 
contains the strAB genes typical of other Tn5393 derivatives. The 
authors postulate the occurrence of consecutive insertion of two 
composite transposons, one of them (Tn4176) including two non-
identical and interrupted copies of the IS1387 element (IS1387a 
and b) [237]. In other gram-negative microorganisms, blaPER-1 was 
identified as part of either a chromosome composite transposon, 
bracketed by ISPa12 and ISPa13 (equivalent to IS1387a and 
IS1387b, respectively), as observed in Pseudomonas aeruginosa, 
Providencia stuartii and Acinetobacter baumannii, or as a plasmid-
borne gene that was associated with an upstream ISPa12, in Salmo-
nella Typhimurium and A. baumannii [213]. 

 The genetic environment of the blaPER-2 gene is homologous to 
those associated with plasmid-borne blaPER-1 in Salmonella Typhi-
murium and Acinetobacter baumannii isolates [207, 213, 215, 237, 
238]. One difference observed was the location of the upstream 
position of the IS elements with respect to the structural blaPER 
genes. This difference in the positioning of the IS element could 
impact blaPER expression [207, 213]. Downstream of blaPER-2 and 
some plasmid-encoded blaPER-1 lies a gst-like gene encoding a hy-
pothetical glutathione-S-transferase identified in aquatic microor-
ganisms [213], and a putative ABC-transporter encoding gene simi-
lar to that from Shewanella oneidensis [207]. The presence of simi-
lar structures upstream of blaPER suggests a common history of 
recruitment and mobilization.  

 The lack of reports of PER-2 producing isolates outside of 
South America is intriguing. It is possible that detection of the gene 
or its enzyme is problematic thus underestimating its occurrence. 
Sequence differences in blaPER-2 may result in less efficient or no 
amplification using primers designed from the blaPER-1 sequence. 
Additionally, the pI of 5.4 correlates with the TEM-1 -lactamase 
making detection by IEF very unlikely. The variety of genetic 
backgrounds (including both chromosomal and plasmid locations) 
could dictate the transmissibility of this gene compared to the gene 
encoding PER-1. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Phylogenic relationship among members of PER family, compared to other types of -lactamases. 
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 Recently, the PER-6-encoding gene was detected on the chro-
mosome of an Aeromonas allosaccharophila environmental isolate 
from France with an amino acid identity with PER-2 of 92%. The 
identification and evaluation of PER-6 may give some clues as to 
the family origin and evolution of PER enzymes [236].  

 Little is known about the other PER family members. PER-3 
and PER-4 are closely related to PER-1, sharing more than 99% 
amino acid sequence identity whereas PER-5 shares only 76.9-
88.3% amino acid identity with the other variants. This 12-13% 
difference in sequence idenity probably represents a new sub-
cluster within the PER family. blaPER-3 has been found associated 
with an ISCR1 element in a complex class 1 integron (In39) from 
an Aeromonas caviae strain (GenBank AY740681). The position of 
blaPER-3 is equivalent to that of other ISCR1-associated resistance 
genes including PER-4 (GenBank EU748544) and PER-5 (Gen-
Bank EU687473) detected in Proteus vulgaris and Acinetobacter 
baumannii strains, respectively.  

Class A Carbapenemases: 
 The class A carbapenemases have gained wide notoriety with 
the identification of KPC-producing organisms [239]. These en-
zymes can be clustered in divergent groups: SME, NMC/IMI, KPC, 
GES, SFC-1 and SHV-38, displaying 30 to 70% identity in amino 
acid sequence between the different groups [240]. These mono-
meric enzymes are mainly included in Bush-Jacoby-Medeiros func-

tional group 2f. Functionally, GES-1, GES-2 and SHV-38 are as-
signed to group 2be, because of their hydrolytic activity on oxy-
imino-cephalosporins. Crystal structures of some of these enzymes 
(SME-1, NMC-A and SHV-38) share overall structures of other 
class A -lactamases [240]. The substrate profile of these enzymes 
includes penicillins, cephalosporins, aztreonam and carbapenemes. 
As expected, they are inhibited by clavulanic acid although KPC 
enzymes are only partially inhibited by -lactamase inhibitors [41, 
241]. Class A carbapenemases have been detected in members of 
Enterobacteriaceae such as E. cloacae, S. marcescens, K. pneumo-
niae and to a lesser extent K. oxytoca, C. freundii and E. coli. Some 
(GES-2 and KPC-2) have also been reported in pseudomonads 
[242, 243]. Carbapenem MICs for class A carbapenemase produc-
ers are variable and the MICs can range from highly resistant to 
fully susceptible.  

 SME, NMC-A and IMI are chromosomally encoded class A 
carbapenemases, and their coding genes have not been associated 
with mobile genetic elements to date, except for the allelic variant 
IMI-2 [244]. Although these enzymes are encoded in the chromo-
some of Serratia marcescens and Enterobacter spp. they are not 
found in every isolate of these species [240]. Isolates producing the 
chromosomal carbapenemase can display resistance to carbapenems 
(higher for imipenem than meropenem) while remaining susceptible 
to expanded spectrum cephalosporins [245].  

Table 11. Main kinetic parameters of PER -lactamases a 

PER-1  PER-2  PER-6  

Substrate kcat 

(s-1) 

Km 

( M) 

kcat/Km 

( M-1.s-1) 

kcat 

(s-1) 

Km 

( M) 

kcat/Km 

( M-1.s-1) 

kcat 

(s-1) 

Km 

( M) 

kcat/Km 

( M-1.s-1) 

8 27 0.29 
Benzylpenicillin 

4.6 24 0.19 

2 16 0.12 5 200 0.025 

Ampicillin ND ND ND 12 38 0.33 1 20 0.05 

Piperacillin b ND ND ND 0.04 0.2 0.2 0.1 4 0.025 

8 23 0.35 
Cephalothin 

9.5c 75c 0.127 
6 9 0.67 8 55 0.145 

Cefoxitin b ND ND ND < 0.001 0.14 - ND ND ND 

Cefuroxime ND ND ND 6 21 0.3 ND ND ND 

41 441 0.093 
Cefotaxime 

8.15 30 0.27 
34 46 0.76 40 900 0.045 

109 4150 0.026 
Ceftazidime 

24.5 806.4 0.030 
140 320 0.43 12 1,000 0.012 

Cefoperazone ND ND ND 0.5 5 0.10 ND ND ND 

Cefepime ND ND ND 0.39 16 0.02 10 2,000 0.005 

11 147 0.075 
Aztreonam b 

2.33 45.3 0.051 
0.23 2 0.12 3 40 0.075 

Imipenem b ND ND ND <0.001 0.06 - 0.006 1.5 0.004 

aReferences: PER-1 [218, 232], PER-2 [207], PER-6 [236] 
bKm determined as Ki 
cKinetic parameters for cephaloridine 

ND: not determinable  
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 SME stands for Serratia marcescens enzyme. Three SME en-
zyme variants have been reported, SME-1, SME-2, and SME-3 
[246-248]. IMI-1 (named for imipenemase), was identified from an 
E. cloacae isolated in the United States in 1984, before the approval 
of carbapenem usage. This enzyme shares more than 95% identity 
to NMC-A [249] and is 99% identical to IMI-2. IMI-2 was identi-
fied from both environmental and clinical isolates of E. asburiae 
[244] and E. cloacae, respectively [250]. Surprisingly, blaIMI-2 and 
its regulator, blaIMI-R, were located on a self-transferable 66-kb 
plasmid, flanked downstream by an open reading frame that shared 
97% nucleotide identity with tnpA of Tn2501 and further upstream 
by an IS2-like element. NMC-A was the first class A carbapene-
mase reported and was identified in an E. cloacae isolated in 1990 
in France [251, 252]. Expression of NMC-A is inducible [246]. The 
carbapenemase coding gene is preceded by a divergently tran-
scribed LysR-type regulatory gene, nmc-R, similar to those found 
upstream in some genera of AmpC- -lactamase producers. The 
NmcR regulator increased enzyme production in the presence of 
imipenem and cefoxitin. Constitutively high production of NMC-A 
is associated with mutations in the regulator gene, nmcR or in an 
amidase coding gene (ampD) [253, 254]. A similar LysR-type tran-
scription factor is encoded upstream of blaSME-1. Evaluation of the 
Serratia system revealed only a slight increase in -lactamase pro-
duction after induction due to a high basal level of the enzyme 
[253]. blaIMI-1 and blaIMI-2 were also found associated to imiR, lo-
cated in the chromosome or in a plasmid, respectively [244, 249]. 
The IMI-2 producing isolates indicated a derepressed phenotype 
with little induction observed due to a high basal level of enzyme 
production [250].  

 SME, NMC-A and IMI enzymes display a broad hydrolytic 
profile that includes penicillins, classical cephalosporins, aztreonam 
and carbapenems, but not cefoxitin or oxyimino cephalosporins. 
Rates of hydrolysis (kcat) for imipenem are higher than for mero-
penem and  200% that of benzyl-penicillin. Kinetic parameters for 
representative members of these enzymes are shown in (Table 12). 
The overall hydrolytic activity is not affected by substitutions ob-
served between the different allelic variants [248, 249, 255, 256].  

 KPC (named for K. pneumoniae carbapenemase) enzymes are a 
major concern. Unlike previously mentioned class A carbapene-
mases, KPC are able to hydrolyze oxyimino-cephalosporins. De-
spite the ability to hydrolyze all -lactams including carbapenems 
using in vitro assays, KPC-producing organisms do not always 
display a carbapenem resistant phenotype. These organisms often 
display MICs for imipenem and meropenem that do not exceed the 
susceptibility breakpoints. This phenotype makes detection of KPC-
producing organisms difficult and ertapenem seems to be a better 
indicator of KPC production than the other carbapenems [257]. 
Carbapenemase screening tests have been proposed regarding those 
Enterobacteriaceae displaying reduced susceptibility [74]. 

 KPC were first reported from K. pneumoniae isolated in the 
United States in 2001, in North Carolina [239]. Very shortly after, 
KPC producing isolates were described in multiple locations in the 
US and worldwide [242, 258-271]. blaKPC has been identified in 
multiple Enterobacteriaceae isolates as well as Pseudomonas spp. 
and Acinetobacter [262, 270, 272-277]. There are twelve variants of 
KPC, KPC-2-13 (KPC-1 has been resequenced and shown to be 
KPC-2) [239, 278]. KPC-2, initially reported from Klebsiella spp. 
[257, 279] seems to be the most common KPC-enzyme detected in 
Enterobacteriaceae and Pseudomonas spp.; KPC-3 was also de-
tected first in K. pneumoniae [259] while KPC-5 [242] and KPC-6 
[280] were reported from non fermenters (P. aeruginosa and Acine-
tobacter spp., respectively) These three allelic variants displayed 
single but different amino acid substitutions with respect to KPC-2 
while KPC-4 [242] showed two substitutions. Genes for the other 
allelic variants include: KPC-7 (EU729727), KPC-8 (FJ234412), 
KPC-9 (FJ624872), KPC-10 (GQ140348), KPC-11 (HM066995), 
KPC-12 (HQ641422), and KPC-13 (HQ342890). 

 KPC-2 shares 63% amino acid identity with SFC-1 (see below), 
57% to SME-1, 55% to NMC-A and IMI [239, 257]. The character-
istics of KPC-2 are typical for Class A carbapenemases with a de-
crease in the size of the water pocket and the placement of the cata-
lytic serine [281]. Purified KPC-2 hydrolyzes efficiently penicillins 
and classical cephalosporins while imipenem, meropenem, cefo-
taxime and aztreonam are hydrolyzed 10-fold less. Cefoxitin and 
ceftazidime are only slightly hydrolyzed. The kinetic studies also 
revealed that clavulanic acid and tazobactam particially inhibited 
KPC-2 [239]. Substrate profiles for different KPCs are similar, 
however differences in the hydrolytic profiles have been observed 
([242, 282], and Table 12). 

 blaKPC genes are associated with a novel Tn3-based transposon, 
Tn4401. This transposon is flanked by a 5-bp target site duplica-
tion, the signature of a recent transposition event, and is inserted in 
different open reading frames located on plasmids that vary in size 
and nature. Tn4401 was considered the origin of blaKPC acquisition 
and dissemination to various-sized plasmids identified in non-
related K. pneumoniae and P. aeruginosa isolates from the United 
States, Colombia and Greece [283]. Although the genetic environ-
ment of blaKPC from isolates recovered in China is different they are 
still associated with a transposable element [284]. 
GES-type -Lactamases (for Guiana Extended Spectrum) 

  This family has 15 recognized members, including ESBLs and 
a cephamycinase. The ability to hydrolyze carbapenems is not a 
common feature of GES enzymes, but GES-2 [285], -4 [286], -5, -6 
[287] and -11 [288, 289] are capable of carbapenem hydrolysis. 
GES-2 was identified in a P. aeruginosa isolated in 2000, from 
South Africa. The isolate was resistant to expanded-spectrum 
cephalosporins and displayed intermediate susceptibility to 
imipenem. The GES-2 amino acid sequence differs from GES-1 by 
a single amino acid substitution (Gly170Asn) in the omega loop of 
class A enzymes. This modification seems to be critical for carbap-
enemase activity [287]. GES-2 hydrolyzes expanded-spectrum 
cephalosporins and imipenem and is less inhibited by clavulanic 
acid and tazobactam compared to GES-1 (Table 12). GES-2 en-
zymes have been predominantly identified in P. aeruginosa while 
GES-4 [286], -5 and -6 [287] have been reported from Enterobacte-
riaceae and GES-11 from Acinetobacter spp. [288]. GES-2 produc-
ing isolates have been implicated in nosocomial outbreaks [290, 
291]. All blaGES, except for blaGES-7, have been found as gene cas-
settes in class 1 integrons located in transferable plasmids, non-
transferable plasmids or the chromosome [286-288]. 

 SFC-1 and SHV-38 are chromosomally encoded class A car-
bapenemases identified from an environmental isolate of S. fonti-
cola and a clinical isolate of K. pneumoniae, respectively [54, 292]. 
SFC-1 enzyme was not present in other members of the species and 
could have been acquired by horizontal gene transfer, whereas 
SHV-38 is a single point variant of the chromosomally encoded 
SHV-1 of K. pneumonia, being the only class A carbapenemase 
with a known origin. An Ala146Val substitution in SHV-38 is re-
sponsible for the hydrolytic spectrum that includes ceftazidime and 
imipenem [54].  

AmpC -lactamases 

Chromosomally-encoded AmpCs 

 AmpC serine -lactamases can be classified as Ambler class C 
or group 1 enzymes according to Bush-Jacoby-Medeiros [3, 41]. 
The first recognized AmpC was the chromosomally encoded en-
zyme from an Escherichia coli strain capable of hydrolyzing peni-
cillin [293, 294]. AmpC -lactamases are widely distributed among 
members of different phyla including several enterobacteria, and 
pseudomonads, which are the most frequent producers of this type 
of enzyme in the clinical setting [295]. Recently, an excellent re-
view of AmpC -lactamases was written by George Jacoby. There-
fore, this section on AmpC -lactamases will only highlight critical 
aspects of these important enzymes [301]. 
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 Susceptibility profiles of organisms that produce a chromo-
somally encoded AmpC depend on the level of enzyme production. 
When enterobacteria overproduce the AmpC -lactamase they may 
become resistant to broad-spectrum penicillins, cephalosporins 
(except cefepime and cefpirome), -lactam/ -lactamase inhibitor 
combinations, and aztreonam. In the case of P. aeruginosa, over-
production of AmpC also negates the use of the 4

th
 generation 

cephalosporins. The carbapenems are not affected unless the en-
terobacteria display a down regulation of its porins in addition to 
AmpC overproduction [296-298]. 

 The over expression of chromosomal ampC genes can occur by 
two different mechanisms. For organisms such as E. coli that do not 
have an inducible ampC gene, mutations in the promoter or attenu-
ator region result in higher level expression of ampC. Organisms 
such as E. cloacae, S. marcescens, C. freundii or P. aeruginosa 
carry an inducible ampC gene on the chromosome and over expres-
sion of the gene results from modifications in genes involved in 
regulatng induction. Phenotypically these isolates are referred to as 
derepressed mutants [299, 300]. 

 The expression of inducible ampC is regulated by AmpR, a 
LysR-family regulator divergently transcribed from ampC [301]. 
Under -lactam-mediated induction, hydrolyzed murein products 
gain access into the cytoplasm through the AmpG permease [302, 
303]. During normal growth, muropeptides are shuttled into the 
cytoplasm and recycled for use during cell wall synthesis. A major 
recycling enzyme is the cytoplasmic AmpD amidase which specifi-
cally cleaves the anhydro moetiy from the muropeptides preparing 
the peptides for recycling [304, 305]. During the induction of 
ampC, the intracellular concentration of anhydro-N-acetylmuramyl-
L-Ala- -D-Glu-meso-DAP (anhMurNAc-tripeptide) increases, and 
acts as a cofactor for the modification of AmpR resulting in an 
increase in ampC transcription. Removal of the inducing -lactam 
from the medium reduces the amounts of muropeptide in the cyto-
sol allowing low basal levels of ampC transcription due to the dis-
placement the muropeptide from AmpR by the cofactor in greater 
concentration, UDP-N-acetylmuramyl-L-Ala- -D-Glu-meso-DAP-D-
Ala-D-Ala (UDP-MurNAc-pentapeptide), the peptide required for 
cell wall synthesis [299]. Mutations in ampD also lead to an accu-
mulation of muropeptides, and increasing the synthesis of AmpC 
independently of inducers, and giving rise to the acquired resistance 
to oxyimino-cephalosporins and more stable penicillins such as 
piperacillin and ticarcillin. 

Plasmid-encoded AmpC -lactamases 

 In the late 1980’s, genes encoding chromosomal AmpC -
lactamases became mobilized and found on plasmids. The threat 
from these plasmid-encoded AmpC genes was the mobilization of 
the gene and their capcity to spread to organisms that did not pro-
duce these enzymes as part of their natural genome. (Table 13) 
(adapted from reference [295]) summarizes different chronological 
and epidemiological data of AmpC -lactamases. 

 Plasmid-mediated ampC genes can be grouped based on their 
genomic origin and divided into six different families 
(http://www.lahey.org/studies, and (Fig. 4)). The nomenclature of 
plasmid-encoded AmpCs can be confusing as there are two distinct 
groups with the same name, CMY. By nucleotide sequence analy-
sis, the majority of CMY enzymes belong to the cluster of CMY-2, 
including CMY-2-7, CMY-12-18, CMY-20-41, CMY-43-46, 
CMY-49, and CFE-1. These plasmid-encoded genes are derived 
from the closely related chromosome-encoded AmpC of Citrobac-
ter freundii. In addition, CMY-34, 35, 37, 39, 41, 45, 46, and 49 are 
chromosome-encoded -lactamases found in C. freundii 
(http://www.lahey.org/studies). With sequencing methodologies 
improving, some CMY-2-group members have been found to have 
the same sequence and duplicate names can be found on the lahey 
website (http://www.lahey.org/studies). CMY-2 is the most preva-
lent plasmid-encoded AmpC worldwide [295, 341-343]. 

 The other CMY family seems to be mostly derived from aero-
monads (A. hydrophila, A. sobria), including CMY-1, -8-11, -19 
and MOX -lactamases, although MOX-4 was found on the chro-
mosome of Vibrio fluvialis.  

 Derivatives of the Enterobacter genome include ACT and MIR 
-lactamases; ACT-1 from E. asburiae and MIR-1 from E. cloacae, 

while MIR-2 and MIR-3 are actually chromosomal enzymes from 
Aeromonas sp.  

 DHA-1 and DHA-2 were recruited from the chromosomal gene 
of Morganella morganii; both are inducible as the structural gene 
and the ampR gene required for induction were mobilized together. 
The same inducible phenotype has been described for organisms 
producing ACT-1 and CMY-13 [311, 321, 323, 326]. ACC en-
zymes are derived from Hafnia alvei while FOX enzymes are 
closely related to the chromosomal gene of A. caviae CAV-1. 
Plasmid-encoded AmpC producers such as ACC-1, CMY-2, and 
DHA have been implicated in nosocomial outbreaks [308, 322, 324, 
327]. 

 The most common mobile genetic element associated with 
plasmid-encoded AmpC -lactamases is the insertion sequence 
ISEcp1, associated with many CMY-encoding genes (CMY-2, 4, 5, 
7, 12, 14-16, 21, 31, and 36), and ACC-1 and ACC-4 [295]. ISEcp1 
has been shown to participate in the mobilization of chromosomal 
bla genes from the reservoir to a plasmid location [344], and to 
provide strong promoters from which the genes can be properly 
expressed, as demonstrated for the blaCMY-7 gene [345]. 

 The other element that has been associated with ampC genes is 
the ISCR1 from complex class 1 integrons [177]. Plasmid-borne 
ampC genes linked to this structure are some blaCMY-1-type genes (1, 
8-11, 19), blaDHA-1, and blaMOX-1 [295, 328, 346]. Finally, blaCMY-13 
has been shown to be associated with two copies of IS26 [321], 
while other ampC genes are linked to different genetic backgrounds 
[333, 337, 340]. 

 Recently, a new group of AmpC -lactamases (both chromo-
somaly-encoded and plasmid-borne) with extended-spectrum activ-
ity has been described and are refered to as ESACs for extended 
spectrum AmpC. These enzymes display an enhanced activity to-
wards oxyimino-cephalosporins due to different genetic modifica-
tions including deletions, insertions and substitutions [347]. For 
example, among the plasmidic AmpC, CMY-10 displays a 3-amino 
acid deletion in the R2 loop compared to E. cloacae P99, increasing 
both kcat and kcat/Km parameters (in spite of the increased Km) for 
ceftazidime and imipenem [348]. In general the modifications for 
ESACs are located in either the -loop or in the R2-loop, leading to 
a redistribution of the active site that improves the accessibility of 
substrates bearing bulkier R1 side chains (oxyimino-cephalo-
sporins) or an expansion of the R2 binding site, respectively [348].  

Biochemical and Structural Features of AmpC -lactamases: 
 The biochemical features of AmpCs include molecular masses 
between 34-40 kDa and pIs ranging from 6.6 to >8.0 [295, 320]. 
The structure of AmpC -lactamases is similar to other serine- -
lactamases and DD-peptidases, having an open active cavity capa-
ble of accommodating the bulkier side chain of cephalosporins 
[295]. The active site serine is located at position 64 (Ser

64
), and 

other important residues for the catalytic activity include Lys
67

, 
Tyr

150
, Asn

152
, Lys

315
 and Ala

318
 [349]. Compared to class A -

lactamases, class C enzymes belong to a more homogeneous group 
with respect to their kinetic behavior [350]. Class C -lactamases 
are able to recognize a wide range of antibiotics but are typically 
described as cephalosporinases. Generally, these enzymes have 
strong affinities for cephalosporins (very low Km) but low kcat val-
ues and are less efficient in deacylation (k+2 >> k+3) which is the 
limiting step of the hydrolytic reaction [351, 352].  
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Table 12. Kinetic Parameters of Representative Class A Carbapenemases 

SME-1  IMI-1  NMC-A  SFC-1  SHV-38  KPC-1  GES-2  

Antibiotics 
Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Benzylpenicillin 16.7 19.3 1.15 64 36 0.56 28 260 9.3    13 100 7.70    4 0.4 0.096 

Ampicillin 488 181 0,37 780 190 0.24    176 155 0.881    130 110 0.9    

Cephaloridine 770 980 1.25 1,070 2,000 1.9 185 2,820 15.2    150 40 0.27 560 340 0.6 0.5 7.7 0.065 

Cefoxitin NC < 0.15 NC 45 0.3 0.0067 93
a
 5.0 0.062 77 4.2 0.054    120 0.3 0.002 NH NH NH 

Ceftazidime NC <0.07 NC 270 0.0068 2.4 10
-5
 90

a
 4.7 0.052 52 2.1 0.040 3,800 110 0.030 94 0.1 0.001 >3,000 ND ND 

Cefotaxime NC < 0.98 NC 190 3.4 0.018 956 286 0.30 89 8.3 0.093 800 1 0.001 160 14 0.1 890 2.2 0.0025 

Aztreonam 259 108 0.42 93 51 0.55 125 707 5.60 484 162 0.33 5,500 3 0.0005 310 20 0.07    

Imipenem 202 104 0.52 170 89 0.52 92 1,040 11.30 82 54 0.66 24 0.01 0.0005 81 12 0.2 0.45 0.004 0.009 

Meropenem 13.4 8.9 0.66 26 10 0.38 4.35 12 2.75 26 6.5 0.250    12 3 0.3 NH NH NH 

References: SME-1 [248]; IMI-1 [249]; NMC-A [255]; SFC-1 [256]; SHV-38 [54]; KPC-1 [239] ; GES-2 [285] 
NC: not calculated because too low initial rate hydrolysis. a: Km determined as Ki  

NH: not hydrolyzed 

ND: Hydrolysis not detectable due to very high Km values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Phylogenic relationship between plasmid-encoded and selected chromosome-encoded AmpC -lactamases. 
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Table 13. Plasmid-encoded AmpC -lactamases. First Report, Origin, Genetic Environment, and Availability of Struc-
tural/Biochemical Data

AmpC 
families 

First report 
(country / 

year) 

Species of 
first isolate 

Most prob-
able origin 

Other repre-
sentatives 

Mode of expres-
sion: C (constitu-
tive); I (inducible) 

Outbreak im-
plication (year, 

source) 

Known genetic 
association 

Available 
kinetic (K) 

and/or struc-
tural (S) 
analyses 

References 

ACC-1 
Germany / 

1999 

K. pneumo-

niae 
H. alvei ACC-2 to -4 C 

ACC-1 (1998-

1999, K. pneu-

moniae) 

ISEcp1 (ACC-

1, ACC-4) 
ACC-2 (K) [295, 306-309] 

ACT-1: I 

ACT-1 USA / 1997 
K. pneumo-

niae 
E. cloacae ACT-2 to -7 

ACT-2-7: C 

  ACT-1 (K,S) [297, 310-314] 

CFE-1 Japan / 2004 E. coli C. freundii  C    [315] 

CMY-1 
South Korea / 

1989 

K. pneumo-

niae 
A. hydrophila 

CMY-8-11, 

CMY-19 
C  

ISCR1 (CMY-

1, 8-11, 19) 
CMY-1 (K) 

[295, 314, 316-

318] 

CMY-13: I IS26 (CMY-13) 

CMY-2 Greece / 1996 
K. pneumo-

niae 
C. freundii 

CMY-3-7, 

CMY-12-18, 

CMY-20-41, 

CMY-43-46, 

CMY-49 

Remaning: C 

CMY-2 (2001, 

Taiwan / Shig-

ella sonnei) 

ISEcp1 (CMY-

2, 4, 5, 7, 12, 

14-16, 21, 31, 

36) 

CMY-2 (K) 
[295, 314 , 319, 

320, 321 , 322] 

DHA-1 
Saudi Arabia / 

1997 

S. Enteri-

tidis 
M. morganii DHA-2 I 

DHA-1 (2004, 

Korea / K. 

pneumoniae; 

2006, Belgium, 

K. pneumoniae) 

ISCR1   [323-328] 

FOX-1 
Argentina / 

1994 

K. pneumo-

niae 
A. caviae FOX-2 to -7 C   FOX-5 (K) [329-334] 

LAT-1 Greece / 1993 
K. pneumo-

niae 
C. freundii  C    [335, 336] 

MIR-1 USA / 1990 
K. pneumo-

niae 
E. cloacae MIR-4, MIR-5 C   MIR-1 (K) [314, 337, 338] 

MOX-1 Japan / 1993 
K. pneumo-

niae 
A. hydrophila MOX-2 C  ISCR1  MOX-2 (K) [339, 340] 

 

 Preferred substrates include benzyl-penicillin followed by 
aminopenicillins [350, 351], first and second generation cepha-
losporins and cephamycins. AmpC enzymes also have high affinity 
for the oxyimino-cephalosporins. However resistance arises when 
the organism over produces the enzyme [299, 300, 352]. AmpC -
lactamases are poorly inhibited by mechanism-based -lactamase 
inhibitors such as clavulanate. It is noteworthy that the AmpC of M. 
morganii displays unusual inhibition by tazobactam combinations, 
with lower MIC values when compared to other AmpC producers 
[300, 353, 354]. This behavior, along with the apparently high cata-
lytic efficiency of Morganella AmpC towards piperacillin, could 
suggest a slight protection of the latter by tazobactam due to a rapid 
acylation of the active site by tazobactam [41, 350, 354]. (Table 14) 
displays a selection of kinetic parameters for different variants of 
AmpC -lactamases. A more comprehensive review was recently 
published by G. Jacoby [295]. 

CLASS D -LACTAMASES 
 The broad-spectrum OXA -Lactamases, “Oxacillinases”, are 
Ambler class D -lactamases that possess active site serine groups 
that were first named by the high relative rates of oxacillin and 

cloxacillin hydrolysis observed with the initial enzymes analyzed. 
However, this criterion no longer defines the group. Among the -
lactamases, class D enzymes are the most diverse group in amino 
acid sequence. Therefore, there can be as little as 20% identities 
among some members of this family. This diversity is also observed 
at the biochemical level with enzymes of narrow- to expanded-
spectrum activity, including some that can hydrolyze carbapenems. 
Even with limited amino acid identity between OXA- -lactamases, 
most new enzymes can be clustered with one or more pre-existing 
members of the OXA -lactamase family. [355]. In general, 
carboxylation of the -amine of Lys-70 by dissolved CO2 (using the 
numbering for OXA-10) in the first conserved motif (SXXF) is 
essential for the acylation and deacylation steps in the class D ß-
lactamase, while Val-117 promotes carboxylation. Inhibition of this 
class of enzymes by chloride ions seems to be due to a competition 
with the carboxlated Lys (Vercheval, L., et al. 49

th
 ICAAC-

Abstract C1-1378, 2009). Class D enzymes are not easily inhibited 
by clavulanic acid, tazobactam or sulbactam. In turn, NaCl can 
inhibit most of these -lactamases [356]; a criterion that could be 
used for preliminary detection of new representatives.   
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Table 14. Kinetic Parameters of Selected AmpC -lactamases 

Benzylpenicillin Amoxicillin Cephalothin Cefoxitin* Cefotaxime* Imipenem* Aztreonam 

 
kcat  

(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 
Km (μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

k2/K  

( M-1.s-1) 

104  

(k3)ss (s-1) 

Km(calc) 

(nM) 

Chromosome-encoded 

E. coli K12 45 4.4 10 4.2 3.5 1.2 300 42 7 0.2 0.65 0.3 0.17 1.7 0.1 0.01 0.8 0.012 0.135 1.6 1.2 

E. cloacae 

P99 

14 0.6 23 0.74 0.4 1.8 200 9* 20 0.06 0.024 2.5 0.015 0.01 1.5 0.003 0.04 0.075 0.26 4.4 1.2 

C. freundii 31 0.4 75 6.5 0.2 30 210 13 16 0.32 0.25 1.3 0.017 0.005 3.4 0.016 0.085 0.19 0.18 3.2 1.4 

S. marcescens 75 1.7 44 0.46 0.01 46 1,1 67 16 0.014 0.3 0.04 1.7 12 0.14 0.001 0.06 0.017 0.012 7 58 

M. morganii 

M29 
0.007 0.25 0.03 0.07 0.13 0.5 140 148 1 0.04 0.02 2 0.032 0.02 1.6 0.07 2 0.035 1 40 ND 

Hafnia alvei 

ACC-2 
8.1 10 0.81 0.2

b
 <1

b
 >0.2 300 13 23 <0.01 ND ND 0.02 19 0.001 <0.01 ND ND ND ND ND 

P. aeruginosa 76 1.7 45 4.4 0.5 9 430 17 25 0.12 0.05 2.4 0.15 0.2 0.75 0.03 0.026 1.15 0.058 23 50 

Aeromonas 

caviae CAV-1 
5 8.7 0.57 ND ND ND 540 500 1.08 0.5 0.4 1.25 0.2 0.1 2 ND ND ND ND ND ND 

Plasmid-borne 

ACT-1 55 2.1 26 1 1.7 0.6 460 38 12 0.37 0.5 0.74 0.05 0.07 0.7 0.011 0.37 0.03 0.024 21 12 

MIR-1 14 0.4 35 0.55 0.16 3.4 160 2.1 76 0.64 0.75 0.7 2.7 4 0.67 0.012 0.15 0.08 0.22 16 8 

CMY-1 13 1 13 0.45 2.2 0.2 480 30 16 0.05 0.06 0.9 0.01 0.015 0.67 0.002 0.05 0.04 0.36 <80 <20 

CMY-2 14 0.4 35 0.55 0.16 3.4 160 2.1 76 0.23 0.07 3.3 0.004 0.0012 3.3 0.033 ND ND 2 <60 <3 

MOX-2 5 9.7 0.51 ND ND ND 250 78 3.2 35 300 0.12 0.05 ND 0.9 ND ND ND ND ND ND 

FOX-5 11 9.2 1.2 ND ND ND 870 71 12 0.7 0.85 0.82 0.08 ND ND ND ND ND ND ND ND 

*Apparent Km determined as Ki values 
a Cephaloridine instead of cephalothin was used 
b Amoxicillin was used 
Chromosome-encoded AmpC: E. coli K12, E. cloacae P99, C. freundii, S. marcescens, P. aeruginosa [351, 352], M. morganii [354], H. alvei [307], A. caviae CAV-1 [329]; Plasmid-

borne AmpC: ACT-1, MIR-1, CMY-1, CMY-2 [314], FOX-5 [333]; MOX-2 [340] 

 

 The OXA -lactamases can be divided into broad spectrum -
lactamases, extended-spectrum -lactamases, and carbapenemases. 
The broad-spectrum -lactmases include many OXA enzymes and 
are listed in (Tables 15 and 16). OXA-1 (also known as OXA-30) is 
intriging as it can hydrolyze fourth generation cephalosporins but 
has limited activity against ceftazidime [357]. OXA-2 shares 30% 
amino acid identity with OXA-1 [358]. OXA-2 producing microor-
ganisms have been associated with outbreaks but blaOXA-2 was as-
sociated with integrons in which other ß-lactamases were encoded 
(PER-1, CTX-M, and metallo -lactamases, see Table 16), so their 
contribution may be marginal.  

Table 15. OXA-1 Related Broad Spectrum Enzymes 

Enzyme Clinical isolate 
Outbreak 

Association 

Genetic 
environ-

ment 
Reference 

OXA-1/-30 Eco*, Shi yes (CTX-M-15) P, I, GC, [359-361] 

OXA-31 Pae No P, I, GC, [357] 

OXA-47 Kpn No P, I, GC, [362] 

*Corresponds to the first description 
P = plasmid, I = integron, GC = gene cassette 

Eco: E. coli; Pae: P. aeruginosa; Kpn: K. pneumoniae, Shi: Shigella  

Table 16. The OXA-2 Subgroup 

Enzyme Clinical isolate Outbreak 
Genetic 

environment 
Reference 

OXA-2 
S. Typhimurium*, 

Several ent, Pae, Aba 

yes (PER-1, 

MBL, CTX-

M-2) 

P, I, GC, Tn 
[181, 358, 

363, 364] 

OXA-3 Pae*, Kpn  no P, I, GC [365] 

OXA-21 Aba*, Pae no P, I, GC [366] 

OXA-34 Pae no ? AF350424 

OXA-36 Pae no ? AF300985 

OXA-46/-

81* 
Pae no Cr, I, GC [367] 

OXA-53 Sal no P, I, GC [368] 

OXA-56 Pae Yes (SPM-1) P, I, GC [369] 

P = plasmid, I = integron, GC = gene cassette, Tn = Transposon, ? = not detemined  
ent: enterobacteria, Pae: P. aeruginosa, Aba: A. baumanii, Sal: Salmonella  

*Corresponds to the first description 
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Other Wide-Spread Broad-Spectrum OXA Enzymes 
 OXA-10 was first described as PSE-2 and has since been re-
named. It is closely related to OXA-5 which was initially isolated 
from a P. aeruginosa isolate recovered in the UK [370]. Although 
the production of OXA-10 does not increase the MICs for ceftaz-
idime in pseudomonas, this enzyme possess a broader hydrolysis 
spectrum than other narrow-spectrum class D -lactamases [371, 
372]. Several OXA enzymes of this subgroup possess increased 
activity towards extended-spectrum cephalosporins. Other OXA-10 
derived enzymes with broad spectrum activity include OXA-28, -
35/4, -56, -74 and OXA-101 [363, 369, 371, 373, 374]. OXA-9 is 
unique as it is inhibited by clavulanic acid and cloxacillin but not 
by NaCl [375]. It shares low amino acid identity with even its most 
closely related enzymes OXA-12 and OXA-18 (see below).  

 Most of the broad-spectrum blaOXA genes are located in gene 
cassettes. The blaOXA-5 gene was found as a gene cassette inserted in 
a class 1 integron, and was also found in association with the 
blaGES-2 gene during an outbreak of carbapenem-resistant P. aeru-
ginosa isolates from South Africa [376]. The blaOXA-9 gene was first 
identified as part of Tn1331 on a plasmid in a K. pneumoniae iso-
late [377]. Therefore it is not surprising that blaOXA-9 has been de-
scribed in several species, including Salmonella spp. [378], and P. 
putida where it was associated with the metallo- -lactamase VIM-2 
[379]. OXA-20 and OXA-46 are also integron-borne narrow-
spectrum class D -lactamases that share between 75- 78% identity 
with their closest relative, OXA-2 [367, 380]. With the exception of 
OXA-101, described in several enterobacteria, the remaining en-
zymes have been described in P. aeruginosa. Only OXA-74 was 
associated with outbreaks of P. aeruginosa [363, 369, 373, 374]. 

Extended-spectrum OXA -lactamases  
 Most OXA ESBLs identified so far were recovered from P. 
aeruginosa (Table 17). The OXA-2 variants such as OXA-15 have 
a single-point mutation as compared to OXA-2 (Asp150Gly). 
OXA-15 has an increased ability to hydrolyze ceftazidime, and to a 
lesser extent cefepime and aztreonam. OXA-32 differs from OXA-2 
by an Leu169Ile amino acid substitution which is responsible for 
resistance to ceftazidime but not to cefotaxime when present in P. 
aeruginosa [376]. OXA-ESBLs derived from OXA-10 or OXA-7 
are also listed in (Table 17). They seem to require two amino acid 

substitutions (Asn73Ser, Gly157Asp) to extend their substrate pro-
file [371, 372]. Most OXA-type ESBLs are relatively resistant to 
inhibition by clavulanic acid. Some of them confer resistance pre-
dominantly to ceftazidime, but OXA-17 (prevalent in Taiwan 
[381]) seems to increase the MICs of cefotaxime and cefepime 
when cloned into E. coli. [382].  

 blaOXA-18 encodes a 275 amino acid enzyme whose closest 
OXA-derivatives are OXA-45, OXA-9 and OXA-12 (66%, 45% 
and 42% amino acid identity, respectively). OXA-45 resembles 
OXA-18 in its substrate profile including inhibition by clavulanic 
acid. OXA-18 is unique since it is a class D -lactamase which 
confers high resistance to extended-spectrum cephalosporins but its 
activity is totally inhibited by clavulanic acid [383-386]. OXA-18 
has only been found in P. aeruginosa, and was associated with an 
outbreak in Tunisia [387].  

 All of the OXA ESBLs have been associated with gene cas-
settes. The blaOXA-15 gene was identified as a gene cassette within 
the variable region of a class 1 integron structure in a P. aeruginosa 
[388]. blaOXA-18 is likely to be chromosomally located; it was found 
bracketed by two duplicated sequences containing ISCR19. OXA-
45 was described in P. aeruginosa and, in this case, chromosomally 
located and flanked by ISCR5 elements.  

Carbapenem Hydrolyzing Class D -Lactamases  
 Most class D enzymes that hydrolyze carbapenems have been 
found in Acinetobacter spp. (Table 18) and the relatedness of the 
enzymes and their epidemiology are reviewed in this current issue 
by Evans et al. Therefore, the following section will include the 
biochemical properties of OXA -lactamases including the carbap-
enem hydrolyzing class D -lactamases.  

Biochemical properties OXA Enzymes 
 The Bush 2d subgroup of -lactamases are defined as enzymes 
hydrolyzing oxacillin at a rate >50% of that for benzyl-penicillin 
[41]. As seen in Tables 19 and 20, some of the OXA -lactamases 
(especially the carbapenem hydrolyzing enzymes) do not fulfill this 
requirement. Typically, the enzymes efficiently hydrolyze penicil-
lins (benzyl-penicillin, ampicillin, piperacillin and ticarcillin) and 
the narrow-spectrum cephalosporins, cephalothin and cephaloridine 
[356].  

 

Table 17. Extended-spectrum OXA -lactamases  

Enzyme Clinical isolate Outbreak Genetic environment Reference 

OXA-2 variants 

OXA-15 Pae no P, I, GC, [388] 

OXA-32 Pae no P, I, GC, [376] 

OXA-10 variants 

OXA-7 Eco no P, I, GC [370, 389] 

OXA-10/PSE-2 Pae*, ent no P, I, GC, Tn [390-392] 

OXA-11 Pae, no P [393] 

OXA-13 Pae no Cr, I, GC [394] 

OXA-14 Pae no P [395] 

OXA-16 Pae no P [396] 

OXA-17 Pae*, Kpn no P [382, 397] 

OXA-19 Pae no Cr, I, GC [372] 

ent: enterobacteria, Pae: P. aeruginosa, Kpn: K. pneumoniae  
*Corresponds to the first description 
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Table 18. Carbapenem Hydrolyzing OXA -lactamases  

Enzyme cluster Aditional member Described mainly in Outbreak Genetic environment Reference 

OXA-23 

(ARI-1) 
OXA-27, OXA-49, OXA-73 Aba yes Cr, P, IS [398] 

OXA-25, OXA-26, OXA-40, 
OXA-24/-40 

OXA-72 
Aba yes Cr, P [399, 400] 

OXA-64 to OXA-71, OXA-75 to 

OXA-78, OXA-83, OXA-84, 

OXA-86 to OXA-89, OXA-91, 
OXA-51 

OXA-92, OXA-94, OXA-95 

Aba no Cr, IS [401, 402] 

OXA-58 OXA-96, OXA-97 Aba yes P, IS [403] 

OXA-55 OXA-SHE Sal no Cr [404] 

OXA-48 OXA-54 Kpn, Son yes P, IS, Cr [362, 405, 406] 

OXA-50 None Pae no Cr [407] 

OXA-60 None Rpi no Cr [408] 

OXA-62 None Ppn no Cr [409] 

Aba: A. baumannii, Sha: S. algae, Kpn: K. pneumoniae, Son: S. oneidensis, Pae: P. aeruginosa, Rpi: R. pickettii, Ppn: P. pnomenusa, 
Outbreak associated: yes or no  

Cr: chromosome; P: plasmid; IS: associated to insertion sequences. 

Bold text: chromosome-encoded and naturally-occurring class D -lactamases 

 

 Mature class D -lactamases contain between 243 and 260 
amino acid residues with isoelectric points (pIs) between 5.1 and 
9.0. The crystal structures of several class D -lactamases (OXA-1, 
-10, -13, -46, -48) reveal a dimeric structure, with a similar mono-
meric folding observed for class A -lactamases [410-414]. An 
additional -strand mediates the association into dimers. Major 
differences are found when comparing the molecular details of the 
active site for class D -lactamases to the corresponding regions in 
class A and C -lactamases. Lys70 is carbamylated in the native 
structure of OXA-10 [415]. The carbamylated lysine may act as a 
base to activate the Ser67 hydroxyl group for enzyme acylation. 
The decarbamylated -lactamases in degassed buffer are shown as 
inactive and only recover initial activity at pH 7.0 or higher by the 
addition of HCO3

-
 (as the source of carbon dioxide). Discrepancies 

in the biochemical behavior of OXA enzymes may be related to the 
different experimental conditions that modify the carbamylation 
status. 

 Post-translational carbamylation occurs between the -amine of 
Lys70 and CO2 and is promoted by the presence of hydrophobic 
residues such as Val117 in OXA-10. A classical feature of most 
class D -lactamases is the inhibition by NaCl, which is attributed 
to the YGN motif at position 144 to 146. The inhibition by chloride 
ions appears to be due to a competition with the carboxlated Lys (L. 
Vercheval et al. 2009. 49th ICAAC. Abs C1-1378). OXA -
lactamases having a FGN element instead of YGN are not or are 
only weakly inhibited by NaCl. It is the opinion of some research-
ers that the dimeric structure of the OXA -lactamases suggests that 
class D enzymes may bind other substrates besides -lactams which 
results in carbamylation of the active site Lys-70 residue [413, 
415]. 

 It must be kept in mind that even with an extremely low kcat 
value for hydrolysis of a -lactam, the -lactam may still be hydro-
lysed efficiently in vivo. The organism may counter balance the low 
kcat between enzyme and substrate by producing very high perip-
lasmic concentrations of the -lactamase. This would allow an effi-

cient -lactam degradation which is directly proportional to the kcat 
and the enzyme concentration [416]; moreover, if there are restric-
tions on the penetration of the antibiotic into the periplasmic space, 
and/or increased efflux through the external membrane, hydrolysis 
of the entering -lactam may still result in clinical resistance to that 
antibiotic. 

 Carbepenem-hydrolizing class D -lactamases (CHDLs) may 
increase carbapenem MICs although they may have low hydrolytic 
activity on imipenem and especially on meropenem. Most of them 
do not confer resistance to extended-spectrum -lactams such as 
ceftazidime, cefotaxime or aztreonam (Table 19). Moreover, 
CHDLs show higher affinities (low Km) for imipenem than for any 
other tested -lactam. Consequently, meropenem is hydrolyzed at a 
much slower rate than imipenem [417]. The YGN motif at position 
144 to 146 is highly conserved among class D -lactamases, how-
ever for the CHDLs, OXA-23 and OXA-24, a Phe for Tyr substitu-
tion in the YGN motif has occurred, but the CHDLs OXA-51 and 
OXA-58 subgroups retain the YGN at this position [243]. Finally, 
the Phe residue in OXA-40 seems to be responsible for the inhibi-
tion by NaCl whereas a Tyr residue in motif YGN was related to 
susceptibility to NaCl [418]. 

THE METALLO -LACTAMASE SUPERFAMILY  
 In addition to true metallo- -lactamases, which are able to 
cleave the amide bond of -lactams, the MBL superfamily was 
defined by Neuwald et al. in 1997, [420] including related enzymes 
that hydrolyze thiol-ester, phosphodiester and sulfuric ester bonds 
as well as oxydoreductases; some members have been shown to 
play significant roles in nucleic acid processing. This family (that 
already contains several thousands members) continues to increase 
in number, and have been found encoded by the chromosome in 
several bacteria that are susceptible to -lactam antibiotics, as well 
as in eukaryotic organisms (including humans), representing per-
haps a general scaffold from which metallo- -lactamases evolved. 
Surprisingly (or not) some known metallo- -lactamases seem to be 



-lactamase-mediated Resistance Current Pharmaceutical Design, 2013, Vol. 19, No. 2    185 

more structurally related to different enzymes rather than to other 
metallo- -lactamases.  

 MBLs or class B -lactamases constitute a heterogeneous fam-
ily characterized by: 

I. Their ability to hydrolyze a broad spectrum of -lactams, in-
cluding penicillins, cephalosporins and carbapenems, but lack 
the ability to hydrolyze monobactams. 

II. Their requirement for one or two zinc ions for their activity, 
making them susceptible to metal ion chelators (EDTA, dipi-
colinic acid). They remain stable against the therapeutic -
lactamase inhibitors [243, 421]. 

 Initially, MBLs were detected in environmental or opportunistic 
pathogens as chromosomally encoded enzymes that could not be 
easily transferred [422]. Unfortunately, an explosive increase in 
acquired MBLs has occurred in the last ten years; being association 
with integrons in mobile genetic elements a contributing factor 
[241]. A limited number of genes, such as blaIMP-1, -3, -10, and -12 and 
blaVIM-2, have been clearly associated with 31 to 56 kb plasmids 
found in P. aeruginosa or P. putida [243, 422].  

 

 Class B -lactamases are classified into three subclasses B1, B2 
and B3 on the basis of their known amino acid sequences. Con-
served secondary structure as evaluated by X-ray diffraction facili-
tated their classification even when the sequence similarity was not 
obvious [423]. Chromosomally encoded subclass B1 enzymes are 
represented in diverse bacterial lineages, including BcII (B. cereus) 
[424], CcrA (B. fragilis) [425], and BlaB (E. meningosepticum) 
[426]. The acquired IMP-type MBLs, VIM-type and SPM-1 
enzymes are included in this subclass [427].  

 Subclass B2 is represented within the genus Aeromonas. Good 
examples of these are CphA (A. hydrophila) [428], ImiS  
 

(A. veronii) [429] and Sfh-I from Serratia fonticola [430]. The most 
heterogeneous and therefore less conserved MBLs are found in 
subclass B3. These enzymes are chromosomally encoded, and 
found in environmental isolates. However, L1 enzymes can be re-
sponsible for resistance to carbapenems in S. maltophilia, an organ-
ism causing opportunistic infections in nosocomial settings and 
therefore a concern [431]. In addition, GOB-1 and its allelic vari-
ants are found in strains of Elizabethkingia meningoseptica [432]
while FEZ-1 was identified from Legionnella gormani [433]. 

 All class B enzymes are monomeric with the exception of L1 
which is a homo-tetramer. B1 and B3 MBLs are broad spectrum 
hydrolyzing enzymes while subclass B2 enzymes are strict carbap-
enemases [423, 427, 434]. Naturally occurring subclass B1 en-
zymes, such as BcII and BlaB, are encoded by the chromosome, 
while acquired MBLs have also been identified in plasmids. Most 
acquired MBLs are associated with gene cassettes of type 1 or type 
3 integrons, located on the chromosome or in plasmids. However, 
blaSPM-1 is associated with a different mobile genetic element, 
ISCR4 [435].  

 Despite their great diversity, most MBLs share five conserved 
motifs: Asp84, His116-X-His118-X-Asp120-His121, His196, 
Asp221 and His263 and they all exhibit an -fold [427]. The 
conserved motifs are necessary for maintaining appropriate folding 
(Asp84) or for coordinating the two potential Zn2+ binding sites. 
The first site (“the histidine site”) includes His116/Asn116, His118, 
His196 and a water molecule or hydroxyl group, the second site 
(the “cysteine site”) requires Asp120, Cys121/His121, His263 and 
two water molecules (Table 21). 
 A big difference between sublasses B1 and B3 with respect to 
B2, is that B2 types are inhibited upon binding of the second Zn

2+
 

ion, whereas the B1 and B2 enzymes increase their activity upon 
binding the second site [427]. 

Table 19.  Some Broad Spectrum and Extended Spectrum OXAs 

OXA-46 OXA-10 (Vmax) OXA-20 OXA-32 OXA-17 OXA-16 

BSBL  BSBL  BSBL  ESBL  ESBL  ESBL  
 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 
Km (μM) 

kcat/Km 

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km 

(μM-1.s-1) 

PEN 18 48 0.38 89 63 1.412 26 4.4 0.006 3.5 45 0.08 5 34 0.147 48 65 0.738 

AMP 6 20 0.3 587 235 2.5 80 33 2.4    26 245 0.106 97 205 0.473 

CAR 5 545 0.009 31 195 0.159       2 296 0.021 17 129 0.132 

OXA 300 320 0.94 608 222 2.739 116 329 0.35    120 153 0.784 411 960 0.428 

CPL    79 2,340 0.033 20 69 0.3 2 360 0.006 23 2,940 0.008 21 424 0.05 

CEF 8 23 0.35 6 38 0.158 13 5 2.6 3 60 0.05 5 286 0.017 3 32 0.094 

CTX ND >103* - 9 346 0.026 ND - - ND - - 22 2,240 0.01 6 346 0.017 

CRO    3 55 0.054       1 544 0.002 1.4 36 0.039 

CAZ ND >103* - ND - - ND - - H >3,000 H ND - - ND - - 

FEP ND >103* -                

AZT ND >103* -    6 69 0.09 ND - -       

References: OXA-46 [367]; OXA-10 [396]; OXA-20 [380]; OXA-32 [376]; OXA-17 [382]; OXA-16 [396] 
(PEN) Penicillin G, (AMP) Ampicillin, (CAR) Carbenicillin, (OXA) Oxacillin, (CPL) Cephaloridine, (CEF) Cephalothin, (CTX) Cefotaxime, (CRO) Ceftriaxone, (CAZ) Ceftaz-
idime, (FEP) Cefepime, (AZT) Aztreonam. 

* Measured as an inhibition constant, (ND) No detectable hydrolysis, (H) Hydrolyzed but kinetic parameters cannot be determined due to high Km value, (-) Not determinable 
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The Imported IMP MBLs 
 Currently there are 24 IMP variants that are shown in Table 22. 
Although IMP-variants diverge from each other by single or several 
amino acid substitutions (up to approximately 20 % of the amino 
cid sequence) (Figs. 5 and 6), the six residues involved in zinc bind-
ing are conserved. What is common for all isolates that produce 
these enzymes is that the coding genes are carried on a gene cas-
sette inserted mainly into class 1 integrons and the resistance profile 
includes most -lactams except aztreonam [437]. 

Kinetics of the IMP MBL cluster 

 Initial kinetic analysis of IMP-1 soon revealed that this enzyme 
hydrolyzed classical broad-spectrum and extended-spectrum -
lactams in addition to carbapenems, while aztreonam was relatively 
stable. Clavulanate or cloxacillin failed to inhibit IMP-1 but the 
presence of EDTA resulted in a sharp decrease in enzymatic activ-
ity [421, 438, 439].  
 Table 23 summarizes some reported kinetic parameters for 
IMP-1. As indicated, a common problem in the analysis of kinetic  
 

Table 20. A comparison between Broad and Extended Spectrum OXAs with Carbapenem Hydrolizing OXAs 

OXA-46 OXA-32 OXA-17 OXA-40 OXA-48 OXA-58 

BSBL  ESBL  ESBL  CHDL  CHDL  CHDL  
 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

kcat  

(s-1) 

Km  

(μM) 

kcat/Km  

(μM-1.s-1) 

PEN 18 48 0.38 3.5 45 0.08 5 34 0.147 5 23 0.220 245 40 6.1 5.5 50 0.11 

AMP 6 20 0.3    26 245 0.106 5 220 0.02 340 5,200 0.065 1 130 0.008 

OXA 300 320 0.94    120 153 0.784 2 876 0.003 25 30 0.85 1.5 70 0.002 

PIP    3 155 0.02    1 23 0.05 75 410 0.18 2.5 50 0.05 

CEF 8 23 0.35 3 60 0.05 5 286 0.017 3 72 0.050 3 20 0.15 0.1 150 0.001 

CFR    ND - -    ND - - 8 390 0.02 0.1 200 0.0005 

CAZ ND >10
3
* - H >3,000 H ND - - 20 2,500 0.01 4 5,100 0.001 ND - - 

CTX ND >10
3
* - ND - - 22 2,240 0.01 ND - - 11 190 0.06 ND - - 

FEP ND >10
3
* -       ND - - 1 160 0.005 ND - - 

AZT ND >10
3
* - ND - -    ND - - ND - - ND - - 

IMI          0,1 6.5 0.015 2 14 0.15 0.1 7.5 0.014 

MER          ND - - 0.1 200 0.0005 <0.01 0.075 <0.15 

References: OXA-46 [367]; OXA-32 [376]; OXA-17 [382]; OXA-40 [418]; OXA-48 [406]; OXA-58 [419] 
(PEN) Penicillin G, (AMP) Ampicillin, (OXA) Oxacillin, (PIP) Piperacillin, (CEF) Cephalothin, (CFR) Cefpirome, (CTX) Cefotaxime, (CAZ) Ceftazidime, (FEP) Cefepime, (AZT) 

Aztreonam, (IMI) Imipenem, (MER) Meropenem.  

* Measured as an inhibition constant, (ND) No detectable hydrolysis, (H) Hydrolyzed but kinetic parameters not be determined due to high Km value, (-) Not determinable. 
 

Table 21. Important Zn Binding Residues (Adapted from refs. [423, 436])

Ligand(s) 
-Lactamase 

First binding site Second biniding site 

consensus His116 His118 His196 Asp120 Cys221 His263 

BcII His86 His 88 His149 Asp90 Cys168 His210 

IMP-1 His77 His79 His139 Asp81 Cys158 His197 

VIM-2 His88 His90 His153 Asp92 Cys172 His214 

Subclass B1 

SPM-1 His76 His78 His165 Asp80 Cys184 His221 

Consensus Asp120 Cys221 His263 Asn116 His118 His196 
Subclass B2 

CphA Asp73 Cys167 His205 Asn69 His71 His148 

consensus His/Gln116 His118 His196 Asp120 His121 His263 
Subclass B3 

FEZ-1 His71 His73 His149 Asp75 His76 His215 
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Table 22. IMP Variants 

IMP-variant 
Original isolate 

(species, country, year) 
Genetic context and location of blaIMP References 

IMP-1 P. aeruginosa, Japan, 1988 

Transferable plasmid, chromosome 

Integron: integrase-like gene-blaIMP-1- aac(6´)-Ib-like gene (transfer-

able plasmid) 

In31:Inti1-blaIMP-1-aacA4-catB6-orfN-qaCG- qacE 1-sul1- orf5 

[438-444] 

IMP-2 A. baumannii, Italy, 1997 In42: Inti1-blaIMP-2-aacA4-aadA1- qacE 1-sul1 (chromosome) [445] 

IMP-3, originally MET-1 S. flexneri, Japan, 1998 class 1 integron (plasmid) [446, 447] 

IMP-4 
Acintetobacter spp., China, 

1994 

chromosome 

class 1 integron: Int1-blaIMP-4-qacG2-aacA4-catB3- qacE 1-

sul1(plasmid) 

class 1 integron: int1-blaIMP-4-orfII-orfIII-qacE_1-sul1-orf5 

(plasmid) 

[448-451] 

IMP-5 
A. baumannii, 

Portugal, 1998 
In76: int1-blaIMP-5-qacE 1-sul1- [452] 

IMP-6 S. marcescens, Japan, 1996 integron: int-blaIMP-6-ORF3 (plasmid) [453-455] 

IMP-7 
P. aeruginosa 

Canada, 1995 
class 1 integron: int1-ORF1-aacC4-blaIMP-7-aacC1-qacE 1-sul1- [456] 

IMP-8 
K. pneumoniae 

Taiwan, 1998 

class 1 integron: intII-blaIMP-8-aac(6´)Ib (plasmid) 

class 1 integron: intII-blaIMP-8-aadB-cmlA (chromosome) 
[457-459] 

IMP-9 P. aeruginosa, China, 2000 conjugative plasmid [460] 

IMP-10 

P. aeruginosa, Japan, 1997 

Alcaligenes xylosoxidans, 

Japan, 2000 

plasmid, chromosome [461] 

IMP-11 
A. Baumannii, 

Japan, 2001 
Not evaluated AB074436 

IMP-12 P. putida, Italy, 2000 class 1 integron: int1-blaIMP-12-aacA4-qacE 1-sul1 (plasmid) [462] 

IMP-13 P. aeruginosa., Italy, 2001 

InPSG: int1-blaIMP-13-aacA4- qacE 1-sul1 (chromosome) 

In88: int1-blaIMP-13- qacE 1-sul1 

In89: int1-orf1-blaIMP-13-aadB- qacE 1-sul1 

[463 , 464-466] 

IMP-14 P. aeruginosa, Thailand, 2005 class 1 integron: int1-blaIMP-14-aacA4- qacE 1-sul1 
AY553332 

[467] 

IMP-15 P. aeruginosa, Thailand, 2003 

Class 1 integron: int1-blaIMP-15-dfr-aacA4-qacE 1-sul1 

In95: int1-aacA7-blaIMP-15-qacH-aacA4-aadA1-oxa-2aadA1-

qacE 1-sul1 (non transferable plasmid) 

AY553333 

[468] 

 

IMP-16 P. aeruginosa, Brazil, 2002 
class 1 integron: int1-blaIMP-14-aac(6´)-30/aac(6´)Ib´-aadA1-

qacE 1-sul1(chromosome) 

[469] 

 

IMP-18 P. aeruginosa, USA, 2006 Unpublished 
[470] 

 

IMP-19 
Aeromonas caviae, France, 

2006 

Class 1 integron: int1-ISAeca-1-aacA4-blaIMP-19- qacE 1-sul1 

(plasmid) 
[471] 

IMP-20 P. aeruginosa, Japan, 2004 Not evalutated AB196988 

IMP-21 P. aeruginosa,, Japan, 2005 Not evaluated AB204557 

IMP-22 
P. aeruginosa, 

Italy, 2005 
Class 1 integron (plasmid) [472] 

IMP-24 
S. marcescens, Taiwan, 2002-

2006 
chromosome [459] 

Note : IMP variants implicated in nosocomial outbreaks are marked in bold letter  
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Fig. 5. IMP-MBLs amino acid sequences alignment. 
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Fig. 6. Phylogenic relationships among IMP-MBLs family.  

Table 23. Different Kinetic Parameters Obtained for IMP-1 

Watanabe et al  Osano et al
  Laraki et al 

Antibiotic 
Km ( M) Relative Vmax Km ( M) Relative Vmax 

Relative 
Vmax/Km 

Km ( M) kcat (s-1) 
kcat/Km  

( M-1 .s-1) 

Benzylpenicillin 650 717    520 320 0.62 

Ampicillin 335 215 2.15 100 100 200 950 4.8 

Carbenicillin 381 391    ND ND 0.02 

Piperacillin 468 145    ND ND 0.72 

Imipenem 24.6 166 7.33 6.9 1.9 39 46 1.2 

Meropenem 5.3 37 0.74 1.0 3.0 10 50 5 

Panipenem   2.07 2.7 2.8 30 44 1.5 

Nitrocefin      27 63 2.3 

Cephaloridine 5.7 100 7.74 29.5 8.2 22 53 2.4 

Cephalothin 6.1 113    21 48 2.4 

Cefuroxime 4.2 35    37 8 0.22 

Ceftazidime 46.4 20 1.24 16.1 27.8 44 8 0.18 

Cefotaxime 2.3 22    4 1.3 0.35 

Cefpirome      14 9 0.64 

Cefepime      11 7 0.66 

Cefoxitin 6.1 51    8 16 2 

Moxalactam 28.9 193 7.55 47.4 13.5 10 88 8.8 

Aztreonam ---a < 1 3.97 0.078 0.43 >1,000 <0.01 < 0.00001 

References: Watanabe et al [438]; Osano et al [439]; Laraki et al [421] 
a: The Ki value determined by using cephaloridine as the substrate, > 100 M. ND: not determined.  

Buffer and experimental conditions as indicated in the corresponding references.  



190    Current Pharmaceutical Design, 2013, Vol. 19, No. 2 Gutkind et al. 

Table 24. Kinetic Constants for the IMP-1 Cluster 

IMP-1 IMP-2 IMP-3 IMP-6 IMP-10 IMP-12 

IMP-13 

Unpublished 

IMP-16 IMP-18 IMP-19 

Antibiotics 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km  

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Benzylpenicillin 520 320 0.62    370
b
 14.3

 b
 0.039 220 51 0.23 ND ND 0.07       7,805 800 0.10 90 55 0.61 206 1011 4.91 

Ampicillin 200 950 4.8 110 23 0.21 464
 b
 7.4

 b
 0.016    ND ND 0.06 1,500 18 0.012 214 82 0,38 1,065 137 0.13       

Carbenicillin ND ND 0.02 700 252 0.36       ND ND 0.18 175 3.7 0.021    3,331 433 0.13       

Piperacillin ND ND 0.72       230 22 0.09 ND ND 0.04 ND ND 0.023 150 282 1.9 2,804 250 0.09    148 41.2 0.28 

Ticarcillin 740 1.1 0.0015             470 6.9 0.015 125 224 1.8       140 683 4.88 

Imipenem 39 46 1.2 24 22 0.92 1,140
 b
 92.3

 b
 0.08 110 68 0.61 60 220 3.7 920 240 0.26 49 124 2.5 365 133 0.36 7 17 2.4 100 26.5 0.26 

Meropenem 10 50 5 0.3 1 3.3    7.6
a
 32 4.2 47 64 1.4 7.2 9.5 1.3 10 1.4 0.14 72 23 0.32 8.4 0.05 0.006 7 1.0 0.14 

Cephaloridine 22 53 2.4 3 0.8 0.27 248
 b
 221

 b
 0.89    28 140 5.0                

Cephalothin 21 48 2.4    9.9 223 22.5 4.7 374 79.6 4.9 230 47 16 118 7.4 31 25 0.81 42 77 1.8    76 11.0 0.14 

Cefuroxime 37 8 0.22             7 61 8.7 1 23 23 49 52 1.06 7 0.9 0.15 95 16.4 0.17 

Ceftazidime 44 8 0.18 111 21 0.19 128
 b
 4.5

 b
 0.035    51 51 1.0 15 6.7 0.45 15 9 0.6 87 13 0.15 1.3 1 0.77 20 6.4 0.32 

Cefotaxime 4
a
 1.3 0.35    3.1 40.1 12.9 3.8

a
 55 14.5 5.7 74 13 22 56 2.5 21 33 1.6 36 35 0.97 3 0.7 0.23 61 20.1 0.33 

Cefpirome 14
a
 9 0.64                         48 14.3 0.30 

Cefepime 11
b
 7 0.66 7 4 0.57          26 15 0.58 8 12 1.5 88 20 0.23 0.8 0.35 0.44    

Cefoxitin 8
b
 16 2 7 7 1.0             12 35 2.9 CND NH CND 11 2 0.18 33 9.7 0.29 

References: IMP-1 [421]; IMP-2 [445]; IMP-3 [446]; IMP-6 [454]; IMP-10 [461]; IMP-12 [462]; IMP-16 [469]; IMP-18 (L. Borgianni et al, 49th ICAAC, C1-090, 2009); IMP-19 [471] 
ND: data could not be determined, NH. No hydrolysis detected 
a: Km was detected as Ki,  
b: Vmax was estimated as 2 times the maximum hydrolysis rate observed 

Buffer and experimental conditions as indicated in the corresponding references.  

 
data is the variability observed by different research groups; using 
different methodologies and experimental conditions. With that 
said, common features that are observed for IMP enzymes include 
an overall preference for cephalosporins and carbapenems rather 
than for penicillins (with some exceptions, see Kcat for ampicillin in 
IMP-1 as an example) and a lack of activity toward aztreonam.  

 IMP-2 exhibited a 20-fold and 10-fold lower Kcat/Km ratio for 
ampicillin and cephaloridine, respectively, and a much higher affin-
ity for meropenem revealing a functional significance in some of 
the mutations that differentiated the two IMP variants [445]. IMP-3 
preferentially hydrolyzes cephalosporins rather than penicillins or 
carbapenems while IMP-1 had better hydrolytic activity against 
imipenem [446]. The kcat/Km value of IMP-6 was approximately 7-
fold higher against meropenem than imipenem, and some activity 
loss on penicillin and piperacillin could be detected when compared 
to IMP-1 [454]; most likely due to point mutations at the expense of 
activity against penicillins. IMP-10 differed from IMP-1 in its ex-
tremely low hydrolyzing activities for benzylpenicillin, ampicillin, 
and piperacillin [461]. IMP-12 is less efficient than IMP-1 and 
other IMP variants for hydrolysis of penicillins. A very high Km is 
observed for imipenem, similar to that for IMP-3, which is probably 
due to a Ser262-to-Gly262 substitution not present in IMP variants 
with higher imipenem affinities [462]. Both amino and ureidopeni-
cillins are good substrates for IMP-13, with a 5-fold higher effi-
ciency in hydrolysis for ureidopenicillins compared to aminopeni-
cillins. Differences were also seen in the hydrolytic profile of piper-
acillin and ticarcillin compared to other IMP- -lactamases. IMP-13 
is capable of hydrolyzing all the cephalosporins assayed with a 100-

fold increase in the efficiency of cefuroxime hydrolysis when com-
pared to IMP-1. Hydrolytic efficiency for imipenem was nearly 20-
fold higher compared to meropenem due to the higher catalytic 
turnover for imipenem (Santella, unpublished). IMP-16 lacks ce-
foxitin hydrolysis and displays a lower Kcat/Km value for imipenem 
compared to those for other IMPs [469]. The hydrolytic efficiency 
of IMP-19 was rather poor for carbapenems, despite an excellent 
affinity for meropenem ([471], and Table 24). 

VIM-MBLs 
 The VIM-type enzymes are most prevalent in Europe, with 23 
allelic variants (Table 25). They have also appeared in Eastern Asia 
and the Americas. Sequencing of VIM-1 (Figs. 7 and 8) revealed it 
was divergent from the other class B enzymes such as Bc-II (38.7% 
identity) and IMP-1 (31.4 % identity) [473]. VIM-2 displayed 92.9 
% amino acid identity with VIM-1, 32% with Bc-II from Bacillus 
cereus, 31% with IMP-1, and 27% with CcrA from Bacteroides 
fragilis [474].VIM-2, first discovered in France, is currently the 
most widespread acquired MBL [422].  

 In general, VIM-MBLs result in a significant decrease in sus-
ceptibility to ampicillin, carbenicillin, piperacillin, mezlocillin, 
cefotaxime, cefoxitin, ceftazidime, cefoperazone, cefepime and 
carbapenems, in the producing microorganism, even if the produc-
ing microorganism is an enterobacterial species [427]. 

Kinetics of the VIM MBLs Cluster 

 VIM enzymes have, in general, a broad substrate hydrolysis 
range, including penicillins, cephalosporins, cephamycins, oxace-
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Table 25. VIM Variants 

VIM-variant 
Original isolate 

(specie, country, year) 
Genetic context and location of blaVIM References 

VIM-1 P. aeruginosa, Italy, 1997 

In70.2: IR1-inti1-blaVIM-1-aacA4-aphA15-aadA1- qacE 1-sul1- orf5 (chromosome) 

In70: res1- IR1- ISPa7- inti1- blaVIM-1- aacA4- aphA15- aadA1- qacE 1-sul1- orf5 

(plasmid) 

In110: 5´-CS- blaVIM-1-aacA4-aphA15-aadA1-3´CS (plasmid) 

[473, 475-477] 

VIM-2 
P. aeruginosa, France, 

1996 

In 56: inti1-blaVIM-2- qacE 1-sul1(plasmid) 

In 58: inti1-aacCA7-blaVIM-2-aacC1-aacA4- qacE 1-sul1(chromosome) 

In 59: inti1-aacCA29-blaVIM-2-aacA29- qacE 1-sul1(chromosome) 

class 1 integron: inti1-blaVIM-2-aac(6)IIlike- qacE 1-sul1 

[474 , 478, 479] 

VIM-3 
P. aeruginosa, Taiwan, 

1997-2000. 

class 1 integron: inti1-blaVIM-3-orf2-aacA4-aacA4- aadB- aacA4-qacE 1(probably chromo-

some) 

class 1 integron: inti1-blaVIM-3-orf2-aacA4-qacE 1 

class 1 integron: inti1-blaVIM-3-orf2-aacA4-aadB-aacA4 

[459, 480, 481] 

VIM-4 
P. aeruginosa, Greece, 

2001 

class 1 integron: inti1-blaVIM-4- qacE 1-sul1 (probably chromosome) 

InV4P1: inti1-blaVIM-4- bla P1b -qacE 1-sul1(chromosome) 
[482, 483] 

VIM-5 
K. pneumoniae, Turkey, 

2003 
class 1 integron: inti1-blaVIM-5-orfD- qacE 1-sul1 (non conjugative plasmid) 

(Midilli, K., et al.. A. 

KLIMIK Congress, 

Istanbul, Turkey, 2003. 

Abstract S-21, p. 275) 

[484, 485] 

VIM-6 P. putida Singapore, 2000 class 1 integron: inti1-blaVIM-6-blaOXA10-aacA4- orf-aadA-qacE 1 [486, 487] 

VIM-7 
P. aeruginosa United 

States, in 2001 
integron: att1-blaVIM-6 - (transferable plasmid) [488] 

VIM-8 P. aeruginosa, Colombia, 

1998 
Not evaluated [489] 

VIM-9 P. aeruginosa, U K, 2004. Not evaluted AY524988 

VIM-10 P. aeruginosa, UK, 2004. Not evaluated AY524988 

VIM-11 
P. aeruginosa, Argentina, 
2002 

class 1 integron: Inti1-blaVIM-11 

class 1 integron: Inti1-blaVIM-2-aac(6)IIlike- qacE 1-sul1 
[479, 490] 

VIM-12 K. pneumonia, Greece, 

2005 
class 1 integron: inti1-aacCA7-blaVIM-2-aacA7- qacE 1-sul1 (transferable plasmid ) [491, 492] 

VIM-13 P. aeruginosa, Spain, 2005 class 1 integron: inti1-blaVIM-2-aacA4- qacE 1 (chromosome) [493] 

VIM-14 P. aeruginosa, Italy, 2008 Not evaluated (AY635904) 

VIM-15 
P. aeruginosa, Bulgaria, 

2006 
class 1 integron: inti1-blaVIM-15- qacE 1 -sul1(chromosome) [494] 

VIM-16 
P. aeruginosa, Germany, 

2005 
class 1 integron: inti1- aac(6´)-Ib´ -blaVIM-15- aac(6´)-Ib´ - qacE 1 -sul1 (chromosome) [494] 

VIM-17 (VIM-2 

Homologue) 

P. aeruginosa, Greece, 

2004-2005 
In 59.3: inti1-aacCA29-blaVIM-2-aacA29- qacE 1-sul1(probably chromosome) [495] 

VIM-18. P. aeruginosa, India, 2006 class 1 integron: inti1-blaVIM-18- qacE 1 -sul1(chromosome) [496] 

VIM-23 E. cloacae, Mexico, 2009 Not evaluated GQ242167 

Note: VIM variants implicated in nosocomial outbreaks are marked in bold letter  
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Table 26. Kinetic Parameters of VIM-MBLs 

VIM-1 VIM-2 VIM-5  VIM-7 VIM-11  VIM-13  VIM-15 VIM-16 

Antibiotics 
Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 
Km ( M) kcat (s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Km 

( M) 

kcat  

(s-1) 

kcat/Km 

( M-1.s-1) 

Benzylpenicillin 841 29 0.034 49 55.8 1.14 113 29 0.26 17
 a
 430 25 15.3 113 7.4 1,127 757 0.67 25 240 9.6 450 230 0.51 

Ampicillin 917 37 0.04    125 14 0.11 15
 a
 190 13 109 190 1.8 197 67 0.34       

Carbenicillin 75 167 2.2       84
 a
 1,200 14             

Piperacillin 3,500 1,860 0.53 72 32.7 0.45 1,753 47 0.03 26
 a
 140 5.4    729 362 0.49       

Ticarcillin 1,117 452 0.41 46 31.7 0.69                   

Cephalothin 53 281 5.3 44 56.2 1.28    45 180 4.0 4.5 81 1.8 76 656 8.6       

Cephaloridine 30 313 10       250 180 0.72       83 190 2.3 1,400 89 0.064 

Cefoxitin 131 26 0.2 24 2.8 0.12    68 10 0.15 7.4 6.4 0.86          

Cefuroxime 42 324 7.7 22 12.1 0.55    29 16 0.55 5.5 27 4.9 56 283 5       

Cefotaxime 247 169 0.68 32 27.5 0.86 101 9.2 0.09 22 56 2.6 11.4 41.3 3.6 233 612 2.6 13 90 6.9 240 81 0.34 

Ceftazidime 794 60 0.076 98 88.7 0.90 149 0.2 0.001 120 1.4 0.012 110 14 0.13 509 10 0.019 37 1.0 0.027 150 0.22 0.0014 

Cefepime 145 549 3.8 184 4.7 0.03 76 0.1 0.001 580 5.3 0.009 >1,200 >100 0.083 1,870 61 0.033 130 9.5 0.076 210 0.31 0.0015 

Cefpirome 287 707 2.5 123 9.2 0.07       183 102 0.56          

Cefoperazone    49 29.8 0.61                   

Imipenem 1.5 2.0 1.3 10 9.9 0.99 12 3.5 0.29 27 100 3.7 9.4 20 2.1 18.5 54 2.92 7.3 61 8.4 89 45 0.51 

Meropenem 48 13 0.27 5 1.4 0.28 49 2.4 0.05 38 42 1.1 22.7 3.2 0.14 15.5 9 0.59 3.4 6.5 1.9 120 8.4 0.070 

References: VIM-1 [497]; VIM-2 [474]; VIM-5 [485]; VIM-7 [498]; VIM-11 [499]; VIM-13 [493]; VIM-15 [494]; VIM-16 [494] 
CND: data could not be determined 
a: Km were measured as Ki using nitrocefin as reporter substrate 
b: Vmax was estimated as 2 times the maximum hydrolysis rate observed 
Buffer and experimetal conditions as indicated in the corresponding references 
 

phamycins, and carbapenems, but not monobactams (Table 26). 
VIM-1 showed the highest kcat/Km ratios for carbenicillin, azlocillin, 
some cephalosporins (cephaloridine, cephalothin, cefuroxime, ce-
fepime, and cefpirome), imipenem and biapenem. Kinetic parame-
ters show a remarkable variability within the various penam, 
cephem, and carbapenem compounds, resulting in no clear prefer-
ence of the enzyme for any of these -lactam subfamilies [497]. 
Kinetic parameters revealed that VIM-2 did not hydrolyze cefepime 
and cefpirome efficiently [474], while ceftazidime and cefepime 
were less efficiently hydrolyzed by VIM-5 compared to VIM-1. 
The behavior of VIM-5 against carbapenems was similar to that of 
VIM-1 and VIM-2, with greater efficiency for imipenem compared 
to meropenem [485]. Catalytic efficiencies of VIM-7 for penicillins 
and carbapenems were higher than VIM-1 and VIM-2. Although 
VIM-7 exhibits high Km values, the higher activity against penicil-
lins, and to some extent carbapenems, correlated with high kcat 
values [498]. VIM-11 showed greater hydrolytic efficiency for 
imipenem similar to what was observed for VIM-7 [499]. VIM-12 
displays unusual characteristics even though the active site is con-
served. It has a narrow substrate specificity with activity against 
penicillin and to a much lesser extent imipenem. In contrast, mero-
penem was found to act as a noncompetitive inhibitor of the en-
zyme and ceftazidime was not hydrolyzed due to both a very low 
affinity and kcat values [500].  

Other Acquired MBLs 
 SPM-1 (Sao Paulo Metallo- -lactamase) was reported from P. 
aeruginosa isolated in Brazil in 1997. The isolates were resistant to 
all -lactam antibiotics, except for aztreonam, which had an MIC of 
4 g/ml. SPM-1 was different from VIM and IMP enzymes and 

represented a new family of MBLs. SPM-1 contained the classic 
MBL zinc-binding motifs and showed the highest identity (35.5%) 
to IMP-1. The predicted molecular weight of the protein was 
27,515 kDa, larger than that of IMP (25,041 kDa) or VIM (25,322 
kDa) MBLs [501]. blaSPM-1 was carried on a plasmid that could be 
transformed into both Escherichia coli and P. aeruginosa [501]. 
Upstream of blaSPM-1, a novel common region (CR4) was identified, 
comprising an open reading frame, orf495, whose product shares 
significant identity with putative recombinases, such as Orf513 
[435]. The emergence and dissemination of an epidemic SPM-1-
producing P. aeruginosa clone among unrelated Brazilian hospitals 
has contributed to the high carbapenem resistance rates observed in 
Brazil [437]. The first nosocomial outbreak of P. aeruginosa pro-
ducing SPM-1 was reported in 2004 [502]. The hydrolytic profile of 
SPM-1 bears similarity to that of IMP-1. Zinc chelator studies es-
tablished that none of the chelators completely inhibited SPM-1 
([503] and Table 27). 
 GIM-1 (German IMipenemase) was reported in 2004 from P. 
aeruginosa isolated in Germany, as part of the SENTRY Antimi-
crobial Surveillance Program in 2002 [504]. The isolates showed 
resistance to imipenem, meropenem, ceftazidime, cefepime, and 
piperacillin-tazobactam; they were only susceptible to polymyxin 
B. GIM-1 differed in its primary sequence from that described for 
IMP, VIM, and SPM-1 enzymes by 39 to 43%, 28 to 31%, and 
28%, respectively. blaGIM-1 was found on a 22-kb nontransferable 
plasmid and located in the first position of a 6-kb class 1 integron, 
In77, followed by aacA4, aadA1, and blaOXA-2. Kinetic analyses 
revealed that GIM-1 has no clear preference for any substrate and 
did not hydrolyze aztreonam. The comparison of GIM-1 kinetic 
values with the parameters reported for other clinically relevant 
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Fig. 7. Amino acid alignment of VIM-MBLs (mature protein). 

 

MBLs showed that, in general, the kcat/Km ratios obtained for 
GIM-1 were lower than those of other MBLs, specifically IMP-1, 
VIM-1, and SPM-1 (Table 27). 
 NDM-1 was reported in 2007 from E. coli isolates collected in 
New Delhi, India [505]. The isolate was resistant to ampicillin, 
piperacillin, cephalothin, cefoxitin, cefotaxime, cefuroxime, ceftaz-
idime, aztreonam, cefepime, ertapenem, imipenem, meropenem and 
ciprofloxacin. NDM-1 shares very little identity with other MBLs, 
being the most similar to VIM- 1/VIM-2 with only 32.4% identity. 
The gene encoding NDM-1 was found on a 140 kb plasmid in E. 
coli and was flanked by PAI and IS26/Tn3. This 392 bp region was 
downstream to the 4.8 kb complex class 1 integron containing Int, 
arr-2, ere2A, aadA1 and cmlA7 as gene cassettes and qac 1. 
Downstream of the integron is an intact copy of ISCR1. NDM-1 is a 
monomeric enzyme of 28kDa, and can hydrolyse all -lactams 
except for aztreonam. Compared to VIM-2, NDM-1 displays tighter 
binding to most cephalosporins and in particular cefuroxime, cefo-

taxime and cephalothin and also to the penicillins. NDM-1 does not 
bind the carbapenems as tightly as IMP-1 or VIM-2 and turns over 
the carbapenems at a similar rate to VIM-2 (Table 27). 

 NDM-1 has recently been identified within P. aeruginosa and 
A. baumannii. The location of the resistance mechanisms in 
promiscuous plasmids and their association with flexible genetic 
platforms together with the poorly controlled use of antibiotics are 
most likely factors that have contributed to the explosive emergence 
of NDM-1-producing bacteria. In addition, the lack of surveillance 
and control policies also contribute to the spread of NDM-
producing organisms. Given that NDM-1 bacteria are mainly 
transmitted via oral - fecal, inadequate water sanitation and other 
basic hygiene facilities have exacerbated this problem. 

 Currently, there have been a few variants of NDM-1 reported ; 
the first was NDM-2, in a clonal dissemination of A. baumannii. 
This variant had a C82G substitution resulting in an amino acid 
change (Pro28Ala). blaNDM-2 was surrounded by two copies of  
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Table 27. Kinetic Paramerers of New MBLs 

VIM-1  IMP-1 SPM-1 GIM-1 NDM-1 

Antibiotics 
Km  

( M) 
kcat  
(s-1) 

kcat/Km  
( M-1.s-1) 

Km  

( M) 
kcat  
(s-1) 

kcat/Km  
( M-1.s-1) 

Km  

( M) 
kcat  
(s-1) 

kcat/Km 
( M-1.s-1) 

Km  

( M) 
kcat  
(s-1) 

kcat/Km 
( M-1.s-1) 

Km  

( M) 
kcat  
(s-1) 

kcat/Km 
( M-1.s-1) 

Benzylpenicillin 841 29 0.034 520 320 0.62 38 108 2.8 46 6.6 0.14 16 11 0.68 

Ampicillin 917 37 0.04 200 950 4.8 72 117 1.6 20 3.3 0.16 22 15 0.66 

Carbenicillin 75 167 2.2 ND ND 0.02 814 74 0.09 170 4.1 0.02    

Piperacillin 3,500 1,860 0.53 ND ND 0.72 59 117 2 69 6.9 0.10 12 14 1.17 

Mezlocillin 346 255 0.74             

Ticarcillin 1,117 452 0.41 740 1.1 0.0015 0.35 a a 57 2.3 0.04    

Cephalothin 53 281 5.3 21 48 2.4 4 43 11.7 22 16 0.72 10 4 0.40 

Cephaloridine 30 313 10 22 53 2.4 18 14 0.8       

Cefoxitin 131 26 0.2 8 16 2 2 8 4 206 8.3 0.04 49 1 0.02 

Cefuroxime 42 324 7.7 37 8 0.22 4 37 8.8 7 5.9 0.80 8 5 0.61 

Cefotaxime 247 169 0.68 4a 1.3 0.35 9 16 1.9 4 1.1 0.24 10 6 0.58 

Ceftazidime 794 60 0.076 44 8 0.18 46 28 0.6 31 18 0.58 181 5 0.03 

Cefepime 145 549 3.8 11 7 0.66 18 18 1 431 17 0.04 77 13 0.17 

Cefpirome 287 707 2.5 14 a 9 0.64          

Imipenem 1.5 2.0 1.3 39 46 1.2 37 33 1 287 27 0.09 94 20 0.21 

Meropenem 48 13 0.27 10 50 5 281 63 0.22 25 2.7 0.11 49 12 0.25 

Biapenem 7.5 8.5 1.1 28 160 6          

Aztreonam >1,000 <0.01 <0.0001 
> 

1,000 

> 

0.01 
<0.0001 0.3 a a ND ND ND ND   

References: VIM-1 [497]; IMP-1 [421]; SPM-1 [503]; GIM-1 [504]; NDM-1 [505] 
a Km was obtained as Ki 

ND: not determinable 
Buffers and experimental conditions as indicated in the corresponding references 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Phylogenic relationship among VIM-MBLs.  

ISAba125. The strain lacked detectable plasmids and blaNDM-2 could 
not be transferred by conjugation [505a].  

 NDM-4 (differs from NDM-1 by a single Met154Leu substitu-
tion) has increased hydrolytic activities for carbapenems and sev-
eral cephalsosporins [505b]. NDM-5 conserves the same substitu-
tion and differs from NDM-4 by a Val88Leu substitution. In this 
case, TOP10 transformants displayed reduced susceptibility to 
cephalosporins and carbapenems [505c]. To date, no publications 
have described NDM-3 or NDM6.  

 SIM-1 (for Seoul IMipenemase) was reported from seven 
multidrug resistant A. baumannii isolated in Korea [506], although 
they exhibited relatively low imipenem and meropenem MICs (8 to 
16 g/ml). SIM-1 is a new member of subclass B1, displaying 64 to 
69% identity with IMP-type MBLs, its closest relatives. The blaSIM-

1 gene was carried on a gene cassette inserted into a class 1 inte-
gron, which included three additional cassettes (arr-3, catB3, and 
aadA1).  

 KHM-1 was reported from C. freundii isolated at the Kyorin 
University Hospital (Tokyo) in 2008 [507]. This isolate, recovered 
in 1997, was resistant to most -lactam antibiotics, except mono-
bactams and showed reduced susceptibility for carbapenems. The 
coding gene for KHM-1was not detected within integrons and no 
sequence homologies for site-specific cointegration events, ORF or 
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transmissible elements were detected upstream of blaKHM-1. Purified 
KHM-1 shows high catalytic efficiency towards cephalosporins 
(cephaloridine, cefoxitin, cefotaxime, ceftazidime) and low kcat / 
Km values of penicillin G, ampicillin, meropenem and imipenem 
(Table 27).  

 Recently reported MBLs are AIM-1 (D. Yong et al., 48
th

 
ICAAC, C1-890, 2008) and DIM-1 [508], identified in Pseudo-
monas spp. in Australia and The Netherlands, respectively. 

Some Concluding Remarks 
An Urgent Need for Kinetic Evaluation Standardization 

 Evaluation of -lactamases is a critical parameter in establish-
ing the characteristics of these enzymes. However, as demonstrated 
in this review, there are strong discrepancies in data obtained for 
the same set of enzymes; some of these differences occur because 
of the different experimental approaches or conditions used. Guide-
lines need to be developed for reporting enzymatic analysis and 
evaluation of data for publication. Although these ideas have been 
discussed among -lactamase researchers, no guidelines have been 
published so that hydrolysis data from different laboratories can be 
compared. There needs to be a set of drugs and conditions estab-
lished for hydrolytic analysis of specific classes of -lactamases. 
However, these guidelines need to take into consideration the actual 
interaction between organism and drug. Therefore, assay conditions 
need to reflect these types of interactions as closely as possible. 
Then kinetic comparisons between laboratories can be used to anal-
ize the correlation between activity and -lactam MICs.  

Requirements for a “Successful -lactamase”: The -lactamases 
point of view 

 Good hydrolytic activity and concentration of enzyme are im-
portant requirements to a successful -lactamase. The concentration 
of the enzyme is dependent on the level of gene expression encod-
ing the enzyme. This can be controlled by the promoter sequence 
ofthe gene, the copy number of the gene, and in the case of inte-
grons, the placement of the gene within the integron which relates 
back to promoter strength. Therefore, a successful -lactamase 
requires more than the ability to simply hydrolyze a drug.  

Requirements for a “Successful -lactamase”: The Human  
Factor 

 Lack of detection is an additional requirement for a successful 
-lactamase when the definition of success is the spread of the re-

sistance mechanisms to patient populations. The inability to detect 
certain -lactamase phenotypes in the clinical laboratory allows the 
spread and mobilization of the gene to genetic platforms capable of 
increasing the efficiency of mobilization. Once susceptibility tests 
and detection methods are available, there is a chance to contain 
further spread, but this is not usually the case. We knew of the arri-
val of TEM -lactmase into enterobacterial plasmids, but this did 
not help us identify or inhibit the spread of TEM and SHV derived-
ESBLs, or the rise of CTX-Ms as the most prevalent ESBL, nor 
have we been able to prevent the dissemination of “mobile” metallo 
and (more recently) class A carbapenemases such as KPCs. The 
trend over the last 30 years is to evaluate a curiosity only to find 
that the curiosity has diseminated “undiagnosed”. More communi-
cation, networking and cooperation from clinical microbiology 
laboratories, academic groups, diagnostic companies, health autho-
rities and pharmaceutical companies is needed if we are ever going 
to curb the rapid emergence of various -lactamases in the coming 
years.  
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