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1 Introduction

The Large Hadron Collider (LHC) at CERN is reaching, for many observables, an impres-

sive accuracy. The precision of the LHC measurements will be further enhanced in the

next runs and even more in the High-Luminosity upgrade of the LHC (HL-LHC). Theory

must be ready for this appointment, producing equally accurate instruments in order to

interpret the high-precision data. In this framework, QCD corrections play a crucial role.

However, higher order perturbative QCD corrections for many observables and benchmark

processes are of the same order of QED/EW or mixed QCD-EW theoretical predictions.

Next-to-next-to-leading order (NNLO) QCD theoretical predictions (the standard of the-

oretical precision) for observables measured at the LHC are quite accurate but, in many

cases, they are not sufficient to match the current accuracy at the experimental level and

the new precision that will be reached in the following years. This scenario motivates a new

theoretical effort to go beyond NNLO QCD corrections by including the first QED/EW

corrections, mixed QCD-EW contributions and even the next QCD perturbative order: the

next-to-next-to-next-to-leading order (N3LO).

The Drell-Yan (DY) mechanism [1] (a benchmark process at modern colliders) con-

stitutes a clear example of the statements of a precision observable. This process offers

the possibility of studying fundamental electroweak (EW) parameters in a clean and ac-

curate way. It also provides strong tests for QCD predictions and stringent information

to determine parton distribution functions (PDFs) with high accuracy. The experimental

precision for the DY mechanism at the LHC is at the percent level for the total cross

section.Differential distributions and shapes are measured with an even greater accuracy

(see for instance ref. [2]). The perturbative QCD corrections have been computed at next-

to-leading order (NLO) in ref. [3], at NNLO for the inclusive cross section in refs. [4–6]

and considering differential distributions in refs. [7–12]. In addition, threshold expansions

have been also presented at N3LL accuracy in association with soft-virtual cross sections at

N3LO in refs. [13, 14]. Very recently, the N3LO QCD corrections have been obtained for the

inclusive cross section for the production of a lepton pair via virtual photon exchange [15].

– 1 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
5

However, computing several terms in the αs expansion is not enough to reach the ulti-

mate accuracy goal, since the EW coupling α satisfies α ∼ α2
s, and therefore NLO EW cor-

rections, i.e.O(α), are expected to be of the same order as the NNLO QCD contributions for

the total cross section. In the case of differential distributions, there are kinematical regions

where the QED corrections could be as large (or even more) as the NLO QCD contributions.

The calculation of NLO EW corrections for the DY process has been addressed in

refs. [16–18] and [19, 20] for charged currents (CC) and neutral currents (NC), respectively.

In order to improve our understanding of these EW effects, the calculation of their first

order QCD corrections, i.e. the O(αsα), becomes necessary. These corrections represent

the first term in the fixed order expansion that takes into account mixed effects from the

strong and electroweak interactions.

Different approaches have been followed in the literature in order to approximately

combine the QCD and EW corrections [21–29], by either assuming the full factorisation or

the additive combination of the strong and electroweak contributions. Monte Carlo event

generators, which reach NLO (QCD+EW) accuracy [18, 25, 28] and contain all the leading

logarithmically enhanced factors due to QCD and QED radiation, achieve a very good level

of description of the shape of the differential distributions, but they clearly lack the NNLO

QCD⊗QED accuracy for the total cross section or inclusive differential distributions as the

rapidity or the invariant mass of the final state leptons.

A perturbative calculation of the Drell-Yan mechanism can be characterised by the

following subsets: on one hand, purely factorisable terms that arise due to initial state

(production, from the initial state partons) and final state (decay, from the final state

leptons) emission and, on the other hand, non-factorisable terms originated by soft pho-

ton exchange between the production and the decay. Partial exclusive results have been

presented for the resonance region, by relying on the pole approximation [30–32]. These

non-factorisable O(αsα) terms have been shown [30–32] to have a negligible impact on the

cross section, allowing to treat effectively Drell-Yan in the (resonant) limit of the decou-

pling between the production and decay processes, at least for the achieved experimental

accuracy. Several steps towards the computation of the (inclusive) initial state QCD×EW

corrections have been recently carried out in an analytical way [33–35]. The appearance of

massive gauge bosons results in extra complications, so it seems natural to start by looking

at the case of QED contributions instead.

The first computation of the mixed QCD⊗QED O(αsα) corrections to the inclusive

on-shell production of a Z boson in hadronic collisions was achieved in ref. [36], by profit-

ing from the available NNLO pure QCD corrections via the so-called abelianisation tech-

niques [37, 38]. Those contributions were shown to be of the order of the NNLO QCD

corrections for LHC energies, which makes them relevant to reach an accurate theoreti-

cal description. Moreover, it would be highly desirable to evaluate their effect at a fully

exclusive level.

A crucial ingredient in the calculation of fully differential distributions are the so-

called subtraction methods. For the case of pure QCD corrections to the hadroproduction

of colourless final states, the qT -subtraction method [39, 40] has been extensively used in

order to obtain NNLO-accurate predictions. In this work, we extend the qT -subtraction
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formalism in order to apply it to the calculation of O(αsα) mixed corrections at a fully

exclusive level. Our results are of value for transverse-momentum resummation at the

corresponding logarithmic accuracy.

In particular, we will focus on the mixed QCD⊗QED corrections to the production of

an off-shell Z boson decaying into a neutrino-antineutrino system. We consider the simplest

case of uncharged particles in the decay of the off-shell Z boson as a way to directly address

the relevance on initial state corrections to a number of exclusive observables. Note that

a recent work [41] also considers the production of a Z boson, though in this case on-

shell, in a fully exclusive way, based on the abelianised version of the nested soft-collinear

subtraction formalism [42].

This paper is organised as follows: in section 2 we present the relevant formulae for the

extension of the qT -subtraction method to the QCD⊗QED case. In section 3 we present our

numerical results and study the phenomenology of the corrections for different kinematical

variables. Finally, in section 4 we present our conclusions.

2 Mixed order corrections with qT -subtraction formalism

We consider the inclusive hard-scattering reaction

h1(p1) + h2(p2)→ F (M, qT ) +X , (2.1)

where the collision of the two hadrons h1 and h2 with momenta p1 and p2 produces the

triggered generic final state F , without colour and electric charge, such as one or more

neutral vector bosons (γ∗, Z, ZZ, γγ, . . .), Higgs particles, and so forth. The observed final

state F is accompanied by arbitrary and undetected radiation X, coming from the initial

state only, which in this case, consists of either quarks, antiquarks, gluons or photons. The

system F is composed by n final-state particles with momenta q1, q2, . . . , qn, and has total

invariant mass M2 = (q1 + q2 + · · · + qn)2, transverse momentum qT and rapidity y. We

use
√
s to denote the centre-of-mass energy of the colliding hadrons, which are treated in

the massless approximation (s = (p1 + p2)
2 = 2p1 · p2).

We start by considering the QCD⊗QED perturbative expansion of the (differential)

cross section for the production of the final state F , by expanding in powers of the strong

(αs) and electromagnetic (α) couplings,

dσF =
∑
i,j

(αs
π

)i (α
π

)j
dσ

(i,j)
F , (2.2)

where dσ
(i,0)
F stands for the pure QCD corrections, and dσ

(0,j)
F for the pure QED ones.

The mixed corrections are represented by dσ
(i,j)
F with both i, j 6= 0, being the first mixed

contribution dσ
(1,1)
F .

Following a similar structure to the one valid in the pure QCD case [39, 40], the basic

formula for the qT -subtraction method in the case of mixed QCD⊗QED corrections can

be expressed in the following way,

dσ
(1,1)
F = H(1,1)

F ⊗ dσ(0,0)F +
[
dσ

(1,1)
F+jet − dσ

(1,1)
F CT

]
, (2.3)
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where dσ
(1,1)
F+jet corresponds to the F+jet production cross section at O(αsα). It is important

to note that in this context ‘jet’ stands for either quarks, antiquarks, gluons or photons

in the final state and all of them need to be considered in the initial state as well. The

term inside the square bracket in eq. (2.3) is finite in the limit of vanishing transverse

momentum of the F state, but the individual terms dσ
(1,1)
F+jet and dσ

(1,1)
F CT are separately

divergent. In order to evaluate dσ
(1,1)
F+jet, we can make use of any NLO subtraction method

(adapted, though, to the case of mixed QCD⊗QED corrections).

The subtraction counter-term dσ
(1,1)
F CT encodes the singular behaviour of the real scat-

tering amplitudes in the small-qT region. The coefficient function H(1,1)
F restores the correct

normalisation to the total cross section and it has Born kinematics (e.g. it is proportional

to δ(qT )). Both coefficient functions can be obtained, through the abelianisation proce-

dures [37, 38], from eqs. (63-70) in ref. [43]. We have checked (as a self-consistency check)

that the same coefficient functions can be obtained from first principles, i.e. redefining

eq. (6) in ref. [40] to take into account QED emissions and expanding it to a given fixed

order.

We present in the following the explicit expression of all the required terms needed for

the subtraction at O(αsα). These are constructed by convoluting the parton distributions

with the corresponding partonic terms, which up to O(αsα) are given by

dσFabCT =
(αs
π

)
dσ

F (1,0)
abCT +

(α
π

)
dσ

F (0,1)
abCT +

(αs
π

)(α
π

)
dσ

F (1,1)
abCT

=
∑
c

dσ
(0,0)
cc,F

{(αs
π

)
Σ̃
F (1,0)
cc←ab (z, qT /Q) +

(α
π

)
Σ̃
F (0,1)
cc←ab (z, qT /Q) (2.4)

+
(αs
π

)(α
π

)
Σ̃
F (1,1)
cc←ab (z, qT /Q)

}
and

HFab ⊗ dσFLO =
[
1 +

(αs
π

)
HF (1,0)
ab +

(α
π

)
HF (0,1)
ab +

(αs
π

)(α
π

)
HF (1,1)
ab

]
⊗ dσFLO

=
∑
c

dσ
(0,0)
cc,F

{
δcaδcbδ(1− z) +

(αs
π

)
HF (1,0)
cc←ab (z) (2.5)

+
(α
π

)
HF (0,1)
cc←ab (z) +

(αs
π

)(α
π

)
HF (1,1)
cc←ab (z)

}
.

In order to simplify the notation, we indicate by z the dependence on both partonic mo-

mentum fractions z1 and z2. The explicit dependence on either z1 and z2 can be easily

understood in terms on the dependence on the partonic label a and b, respectively. Also, it

is implicit the dependence on the renormalisation (µR), factorisation (µF ) and resummation

(Q) scales.

Note that, for the sake of generality, in the results contained in this section we keep the

full dependence on the resummation scale [43]. This dependence is needed in the context of

transverse-momentum resummation. The fixed-order cross-section is independent of this

scale, and it is convenient to set Q = M to simplify the corresponding expressions.
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The contributions to the counter-term Σ̃
F (i,j)
cc←ab can be organized in the following way

Σ̃
F (1,0)
cc←ab(z, qT /Q) = Σ

F (1,0)[1;2]
cc←ab (z)Ĩ2 (qT /Q) + Σ

F (1,0)[1;1]
cc←ab (z)Ĩ1 (qT /Q) , (2.6)

Σ̃
F (0,1)
cc←ab(z, qT /Q) = Σ

F (0,1)[1;2]
cc←ab (z)Ĩ2 (qT /Q) + Σ

F (0,1)[1;1]
cc←ab (z)Ĩ1 (qT /Q) , (2.7)

Σ̃
F (1,1)
cc←ab(z, qT /Q) = Σ

F (1,1)[2;4]
cc←ab (z)Ĩ4 (qT /Q) + Σ

F (1,1)[2;3]
cc←ab (z)Ĩ3 (qT /Q)

+ Σ
F (1,1)[2;2]
cc←ab (z)Ĩ2 (qT /Q) + Σ

F (1,1)[2;1]
cc←ab (z)Ĩ1 (qT /Q) , (2.8)

according to their power of logarithmic enhancement. The dependence on the transverse

momentum is given by the known integrals [43]

Ĩn (qT /Q) = Q2

∫ ∞
0

db
b

2
J0 (bqT ) lnn

(
Q2b2

b20
+ 1

)
, (2.9)

where b is the impact parameter, J0(x) is the 0th-order Bessel function and b0 = 2e−γE ,

with γE representing the Euler number. Notice that we are using the “+1” prescription (see

the argument of the logarithm inside eq. (2.9)), and therefore, the counter-terms vanish in

the large-qT limit. More details about eq. (2.9) can be found in the appendix A of ref. [43].

The corresponding coefficients for the expansion of Σ̃
F (i,j)
cc←ab and HF (i,j)

cc←ab are more easily

presented by considering their N -moments (Mellin) with respect to the variable z. At NLO

in QCD and QED they are given by

Σ
F (1,0)[1;2]
cc←ab,N = −1

2
A(1,0)
c δcaδcb , (2.10)

Σ
F (1,0)[1;1]
cc←ab,N = −

[
δcaδcb

(
B(1,0)
c +A(1,0)

c `Q

)
+ δcaγ

(1,0)
cb,N + δcbγ

(1,0)
ca,N

]
, (2.11)

Σ
F (0,1)[1;2]
cc←ab,N = −1

2
A(0,1)
c δcaδcb , (2.12)

Σ
F (0,1)[1;1]
cc←ab,N = −

[
δcaδcb

(
B(0,1)
c +A(0,1)

c `Q

)
+ δcaγ

(0,1)
cb,N + δcbγ

(0,1)
ca,N

]
, (2.13)

HF (1,0)
cc←ab,N = δcaδcb

[
HF (1,0)
c −

(
B(1,0)
c +

1

2
A(1,0)
c `Q

)
`Q

]
(2.14)

+ δcaC
(1,0)
cb,N + δcbC

(1,0)
ca,N +

(
δcaγ

(1,0)
cb,N + δcbγ

(1,0)
ca,N

)
(`F − `Q) ,

HF (0,1)
cc←ab,N = δcaδcb

[
HF (0,1)
c −

(
B(0,1)
c +

1

2
A(0,1)
c `Q

)
`Q

]
(2.15)

+ δcaC
(0,1)
cb,N + δcbC

(0,1)
ca,N +

(
δcaγ

(0,1)
cb,N + δcbγ

(0,1)
ca,N

)
(`F − `Q) ,

– 5 –
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while for the mixed QCD⊗QED corrections at O(αsα) they are given by

Σ
F (1,1)[2;4]
cc←ab,N =

1

4
A(1,0)
c A(0,1)

c δcaδcb , (2.16)

Σ
F (1,1)[2;3]
cc←ab,N =−A(0,1)

c

1

2
Σ
F (1,0)[1;1]
cc−ab,N −A(1,0)

c

1

2
Σ
F (0,1)[1;1]
cc−ab,N , (2.17)

Σ
F (1,1)[2;2]
cc←ab,N =−1

2
A(1,0)
c HF (0,1)

cc←ab,N−
1

2

∑
a1,b1

Σ
F (1,0)[1;1]
cc←a1b1,N

[
δa1aγ

(0,1)
b1b,N

+δb1bγ
(0,1)
a1a,N

]
− 1

2
A(0,1)
c HF (1,0)

cc←ab,N−
1

2

∑
a1,b1

Σ
F (0,1)[1;1]
cc←a1b1,N

[
δa1aγ

(1,0)
b1b,N

+δb1bγ
(1,0)
a1a,N

]
(2.18)

− 1

2

[
A(1,1)
c δcaδcb+

(
B(1,0)
c +A(1,0)

c `Q

)
Σ
F (0,1)[1;1]
cc←ab,N +

(
B(0,1)
c +A(0,1)

c `Q

)
Σ
F (1,0)[1;1]
cc←ab,N

]
,

Σ
F (1,1)[2;1]
cc←ab,N =−

∑
a1,b1

HF (1,0)
cc←a1b1,N

[
δa1aδb1b

(
B(0,1)
c +A(0,1)

c `Q

)
+δa1aγ

(0,1)
b1b,N

+δb1bγ
(0,1)
a1a,N

]
−
∑
a1,b1

HF (0,1)
cc←a1b1,N

[
δa1aδb1b

(
B(1,0)
c +A(1,0)

c `Q

)
+δa1aγ

(1,0)
b1b,N

+δb1bγ
(1,0)
a1a,N

]
−
[
δcaδcb

(
B(1,1)
c +A(1,1)

c `Q

)
+δcaγ

(1,1)
cb,N +δcbγ

(1,1)
ca,N

]
, (2.19)

HF (1,1)
cc←ab,N =δcaδcbH

F (1,1)
c +δcaC

(1,1)
cb,N +δcbC

(1,1)
ca,N+C

(1,0)
ca,NC

(0,1)
cb,N +C

(0,1)
ca,NC

(1,0)
cb,N

+HF (1,0)
c

(
δcaC

(0,1)
cb,N +δcbC

(0,1)
ca,N

)
+HF (0,1)

c

(
δcaC

(1,0)
cb,N +δcbC

(1,0)
ca,N

)
+

1

2
A(1,1)
c δcaδcb`

2
Q+
(
δcaγ

(1,1)
cb,N +δcbγ

(1,1)
ca,N

)
`F

−
[
δcaδcb

(
B(1,1)
c +A(1,1)

c `Q

)
+δcaγ

(1,1)
cb,N +δcbγ

(1,1)
ca,N

]
`Q

+
1

2

∑
a1,b1

[
HF (1,0)
cc←a1b1,N+δca1δcb1H

F (1,0)
c +δca1C

(1,0)
cb1,N

+δcb1C
(1,0)
ca1,N

]
(2.20)

×
[(
δa1aγ

(0,1)
b1b,N

+δb1bγ
(0,1)
a1a,N

)
(`F−`Q)−δa1aδb1b

((
B(0,1)
c +

1

2
A(0,1)
c `Q

)
`Q

)]
+

1

2

∑
a1,b1

[
HF (0,1)
cc←a1b1,N+δca1δcb1H

F (0,1)
c +δca1C

(0,1)
cb1,N

+δcb1C
(0,1)
ca1,N

]
×
[(
δa1aγ

(1,0)
b1b,N

+δb1bγ
(1,0)
a1a,N

)
(`F−`Q)−δa1aδb1b

((
B(1,0)
c +

1

2
A(1,0)
c `Q

)
`Q

)]
.

In the expressions above we have defined `Q = lnM2/Q2 and `F = lnM2/µ2F , while

γ
(i,j)
ab,N represent the corresponding (moments of the) splitting functions. The coefficients

A
(i,j)
c and B

(i,j)
c arise from the expansion of the Sudakov form factor,

Sc(M, b) = exp

{
−
∫ M2

b20/b
2

dq2

q2

[
Ac (αs, α) ln

M2

q2
+Bc (αs, α)

]}
, (2.21)

with
Ac (αs, α) =

(αs
π

)
A(1,0)
c +

(α
π

)
A(0,1)
c +

(αs
π

)(α
π

)
A(1,1)
c + . . . ,

Bc (αs, α) =
(αs
π

)
B(1,0)
c +

(α
π

)
B(0,1)
c +

(αs
π

)(α
π

)
B(1,1)
c + . . . ,

(2.22)
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and their explicit expression for quark-initiated case is given by

A(1,0)
q = CF , A(0,1)

q = e2q ,

B(1,0)
q = −3

2
CF , B(0,1)

q = −3

2
e2q , (2.23)

A(1,1)
q = 0 , B(1,1)

q =
CF e

2
q

8
(−3 + 24ζ2 − 48ζ3) .

Notice that we consider the electromagnetic coupling α as constant, in the sense that it

is not running with any of the scales related to the process. For that reason the QED

beta-function does not appear in the coefficients of eqs. (2.10)–(2.20). Eqs. (2.10)–(2.15)

were derived for first time in ref. [44], where the transverse-momentum resummation for

Z boson production combining QED and QCD was computed at NLO, considering the

corresponding logarithmic accuracy: next-to-leading logarithmic (NLL). Although results

in ref. [44] were only applied to the transverse momentum distribution of the Z boson,

the formalism is fully differential and can be used to compute any infra-red safe exclusive

distribution. It is worth noticing that for transverse-momentum resummation some novel

mixed effects appear affecting the distribution already at leading logarithmic (LL) accuracy

(see eqs. (7) and (11) of ref. [44]). Nevertheless, that contribution can only show up

after performing the fixed order expansion up to O(αsα) (see eq. (3) in ref. [44]) if the

electromagnetic coupling α is considered to be running, which is not the case in our current

study. In this paper we confirm the results presented in ref. [44] and we extend the fixed

order computation to the next perturbative order, the NNLO QCD⊗QED.

Finally we present the collinear functions, again for c = q, and the hard-virtual coeffi-

cients, the latter specifically for the DY case as they are a process-dependent quantity. The

separation between C and H coefficients is scheme dependent. Those presented here are

obtained in the so-called hard scheme [40]. Up to NLO in QCD and QED, the hard-virtual

coefficients take the form

HDY (1,0)
q = CF

(
π2

2
− 4

)
=
CF
e2q
HDY (0,1)
q , (2.24)

and the collinear functions are given by

C(1,0)
qq (z) =

CF
2

(1− z) =
CF
e2q
C(0,1)
qq (z) ,

C(1,0)
qg (z) =

1

2
z(1− z) = C(0,1)

qγ (z)
TR
e2qNC

, (2.25)

C(1,0)
gq (z) =

CF
2
z =

CF
e2q
C(0,1)
γq (z) .

The hard-virtual coefficient needed for the first order in the mixed QCD⊗QED expansion

takes the following form,

HDY (1,1)
q =

CF e
2
q

2

(
−15ζ3 +

511

16
− 67π2

12
+

17π4

45

)
, (2.26)
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while the needed collinear functions are given by the following expressions:

C
(1,1)
qq′ (z) = δqq′ e

2
qCF

{
1+z2

1−z

(
Li3(1−z)

2
+

1

2
Li2(z) log(1−z)+

3Li2(z) log(z)

2

− 5Li3(z)

2
+

3

4
log(z) log2(1−z)+

1

4
log2(z) log(1−z)− 1

12
π2 log(1−z)+

5ζ3
2

)

+(1−z)

(
−Li2(z)− 3

2
log(1−z) log(z)+

2π2

3
− 29

4

)
+

1

24
(1+z) log3(z)

+
1

1−z

(
1

8

(
−2z2+2z+3

)
log2(z)+

1

4

(
17z2−13z+4

)
log(z)

)
(2.27)

− z
4

log(1−z)− 1

4

[
(2π2−18)(1−z)−(1+z) logz

]}
,

C
(1,1)
qq′ (z) = δqq′ 2CF e

2
q

{
1+z2

1+z

(
3Li3(−z)

2
+Li3(z)+Li3

(
1

1+z

)
− Li2(−z) log(z)

2

− Li2(z) log(z)

2
− 1

24
log3(z)− 1

6
log3(1+z)+

1

4
log(1+z) log2(z)

+
π2

12
log(1+z)− 3ζ3

4

)
+(1−z)

(
Li2(z)

2
+

1

2
log(1−z) log(z)+

15

8

)
(2.28)

− 1

2
(1+z)(Li2(−z)+log(z) log(1+z))+

π2

24
(z−3)+

1

8
(11z+3)log(z)

}
,

C(1,1)
qg (z) = e2q

{(
2z2−2z+1

)(
ζ3−

Li3(1−z)

8
− Li3(z)

8
+

1

8
Li2(1−z) log(1−z)

+
Li2(z) log(z)

8
− 1

48
log3(1−z)+

1

16
log(z) log2(1−z)+

1

16
log2(z) log(1−z)

)
− 3z2

8
− 1

96

(
4z2−2z+1

)
log3(z)+

1

64

(
−8z2+12z+1

)
log2(z) (2.29)

+
1

32

(
−8z2+23z+8

)
log(z)+

5

24
π2(1−z)z+

11z

32
+

1

8
(1−z)z log2(1−z)

− 1

4
(1−z)z log(1−z) log(z)− 1

16
(3−4z)z log(1−z)− 9

32

− 1

4

[
z logz+

1

2

(
1−z2

)
+
(
π2−8

)
z(1−z)

]}
,

C(1,1)
qγ (z) = 2CFCAC

(1,1)
qg (z) . (2.30)

The results above provide all the ingredients needed for the application of the qT -

subtraction formalism to the calculation of mixed QCD⊗QED corrections. The same

coefficients are required by the transverse-momentum resummation formalism, considering

in this case the full dependence on the resummation scale Q.

In the following section we present our phenomenological results for the case of Z

boson production.
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Channel qq′ qg qγ gγ

qT -subtraction [pb] 52.6(4) −34.8(3) −1.41(1) 0.569(2)

Analytic (ref. [36]) [pb] 52.3 −35.0 −1.41 0.571

Table 1. The O(αsα) contribution to the inclusive on-shell Z production cross section for the dif-

ferent partonic channels. The results obtained using qT -subtraction are compared to the inclusive

predictions obtained in ref. [36]. Numerical uncertainties on the last digit are indicated in paren-

thesis for our predictions, while the uncertainties of the inclusive implementation are below the last

digits shown. The category denoted by qq′ includes all combinations of quarks and anti-quarks.

3 Phenomenological results

In order to obtain quantitative results, our calculation is implemented in two independent

parton-level Monte Carlo programs. One of them is based on MCFM [12] (including the

NNLO QCD corrections), suitably modified to deal with mixed corrections and to apply

the qT -subtraction formalism. The other is a private implementation, which relies on the

FKS subtraction method [45] to deal with the NLO-type divergencies (adapted to the

mixed QCD⊗QED case), and on analytic results for the relevant scattering amplitudes

obtained from ref. [46], plus an explicit calculation of the tree-level all-quarks channels

using FeynCalc 9.2.0 [47].

For our phenomenological analysis we consider nF = 5 massless quark flavours. We

work in the Gµ scheme for the EW couplings, using the input values Gµ = 1.16639 ×
10−5 GeV−2, MZ = 91.1876 GeV and MW = 80.385 GeV. The width of the Z boson is set

to the value ΓZ = 2.4952 GeV. For the parton luminosities and strong coupling, we use the

NNPDF3.1luxQED set with five flavours [48] through the LHAPDF interface [49], always

at NNLO accuracy, regardless the order of the calculation. Both renormalisation and

factorisation scales are set to the default value µR = µF = m`1`2 . For the cutoff parameter

of the subtraction method, qT,cut, we choose the central value qT,cut = 0.2 GeV. We checked

that our results are compatible within uncertainties when varying this parameter around

its central value by a factor of 2.

As a first check of our implementation, we computed the inclusive cross section for

the production of an on-shell Z boson, and compared to the predictions obtained from

the analytic results presented in ref. [36]. The corresponding O(αsα) contributions to the

cross section, split into quark-quark, quark-gluon, quark-photon and gluon-photon initiated

channels, are shown in table 1. As can be seen from the table, we can reach sub-percent

precision for these inclusive predictions, and we find full agreement with the analytic results

from ref. [36]. As an additional validation, we have computed the NNLO QCD differential

distributions using the public code Matrix [50], finding full agreement with our results.

For all of the differential distributions presented here, we consider the following set of

cuts,

pT,`1 > 25 GeV , pT,`2 > 20 GeV , |y|`1,2 < 2.5 , m`1`2 > 50 GeV, (3.1)
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Figure 1. Transverse momentum distributions for the hardest (left) and softer (right) lepton. The

upper panel shows the NLO QCD prediction, while the lower panel shows the NNLO QCD (blue),

NLO QED (green) and mixed (red) corrections, normalized to the NLO result.

where `1 and `2 represent the final-state hard and soft leptons respectively, ordered accord-

ing to their transverse momentum (pT,`1 > pT,`2). Since we consider only neutrinos in the

final state, there is no need to recombine collinear leptons and photons.

We start by presenting the transverse momentum distribution of the leptons in figure 1.

The kinematical dependence of the mixed corrections is highly non trivial. This feature is

also shared by the pure QCD and QED corrections, and it is expected due to the particular

features that these two distributions present at fixed order in perturbation theory. At LO

both leptons are back-to-back, and therefore the distributions are identical. The radiative

corrections produce the change of shape that render the pT,`1 spectrum harder than the pT,`2
one, producing therefore sizeable distortions in the distribution. Furthermore, some regions

of the phase space are almost not populated at LO, and therefore radiative corrections

become more relevant. This is the case for the region of pT,`2 below the lower cut on pT,`1 ,

which is directly not allowed for Born kinematics, or the region above pT,`1,2 ' MZ/2,

which does not receive contributions from the Z peak at LO.

From figure 1 we can observe that for pT,`1 < MZ/2 the mixed corrections are positive,

representing an increase of about 0.5% with respect to the NLO prediction. The corrections

then change sign, being of the order of −0.5% in the first bins after pT,`1 = MZ/2, which

corresponds to the expected Sudakov shoulder near the kinematic boundaries mentioned

in the previous paragraph [51]. The mixed corrections then result smaller at the tail of the

distribution. With respect to the softer lepton, we can observe that the corrections become

very large around and slightly above pT,`2 = MZ/2, a pattern shared by the NNLO QCD

corrections. In this region, the effect of the mixed QCD⊗QED contribution can reach the
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Figure 2. Rapidity distributions for the hardest (left) and softer (right) lepton. The upper panel

shows the NLO QCD prediction, while the lower panel shows the NNLO QCD (blue), NLO QED

(green) and mixed (red) corrections, normalized to the NLO result.

O(5%) with respect to the NLO QCD result. In addition, we can also observe a small

(negative) peak in the corrections around pT,`2 = 25 GeV, which is related to the presence

of a cut in pT,`1 , as mentioned before. Since the kinematic region around pT,`1 ' 50 GeV

(pT,`2 ' 20 GeV) is affected by integrable singularities of soft origin, it is possible to mimic

the effect of their corresponding all-order resummation by enlarging the bin size, recovering

the reliability of the computation around the peak.

We continue by presenting the rapidity distributions of the leptons, again ordered ac-

cording to their transverse momentum, in figure 2. In both cases, we can observe that the

mixed corrections are extremely small, and show a very mild dependence on the correspond-

ing kinematical variable. The reason for this particularly small value of the corrections is a

very strong cancellation between the main partonic channels, that is the qq̄ and qg initiated

processes, over the whole rapidity range under consideration, a pattern that can also be

observed for instance at the level of the total cross section. We note that this effect is

even stronger with the set of cuts in eq. (3.1), compared to the fully inclusive case, with

cancellations of about 90% between the different channels.

In figure 3 we present distributions for the lepton-pair system, specifically its transverse

momentum and rapidity. The mixed corrections are negative below pT,`1`2 ∼ 15 GeV, and

diverge in the pT,`1`2 → 0 limit. The sign of the mixed corrections in the low transverse

momentum region is the same as the one of the NNLO QCD corrections, as one can infer

from the sign of the logarithmic coefficient with highest power (see eq. (2.16) for the mixed

corrections and eq. (66) of ref. [43] for NNLO QCD). Above pT,`1`2 ∼ 15 GeV the mixed

corrections become positive, increasing the NLO QCD result by about 0.3%. In the same
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Figure 3. Lepton-pair transverse momentum (left) and rapidity (right) distributions. The upper

panel shows the NLO QCD prediction, while the lower panel shows the NNLO QCD (blue), NLO

QED (green) and mixed (red) corrections, normalized to the NLO result.

region the NLO QED corrections are of the order of 0.5%. As it is well known, at low-qT ,

the large logarithmic corrections to the cross section have to be treated with transverse

momentum resummation in order to recover the reliability of the prediction. This is true

not only for the transverse momentum distribution but for any observable which presents

a kinematical region directly related to qT = 0.

The mixed corrections for the lepton-pair rapidity present a kinematic dependence that

is similar to the one of the NNLO QCD contribution. They are negative for small |y|`1`2 ,

and become positive for larger values of rapidity. The overall size of the mixed corrections

is of course much smaller though, being of the order of 50 times smaller than the NNLO

QCD corrections.

Finally, we present in figure 4 the φ∗ and cos θ∗ distributions, defined as [52]

φ∗ = tan

(
π −∆Φ

2

)
sin θ∗

∆Φ = φ `1 − φ `2 (3.2)

cos θ∗ = tanh

(
y `1 − y `2

2

)
.

Since at LO the two leptons are back-to-back, the φ∗ distribution is trivial at that

order, and contributions with φ∗ 6= 0 only start at NLO. As in the case of the transverse

momentum, the small-φ∗ region is not well behaved at fixed order and it is necessary

the use of transverse resummation in order to recover the reliability of the prediction in

those kinematical regions. The pattern of corrections, not only for the mixed but also for
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Figure 4. The φ∗ distribution. The upper panel shows the NLO QCD prediction, while the lower

panel shows the NNLO QCD (blue), NLO QED (green) and mixed (red) corrections, normalized

to the NLO result.

the NNLO QCD and NLO QED contributions, is very similar to the one observed in the

pT,`1`2 distribution, in particular with the mixed corrections being negative at small φ∗ and

becoming positive for larger values, and about a factor of 2 smaller than the NLO QED

corrections in the tail of the distribution.

In the case of cos θ∗, the distribution is rather flat in the central region, and presents

a strong suppression for cos θ∗ = ±1, which is only populated by events with very large

and opposite rapidities of the corresponding leptons. This region is therefore particularly

suppressed by the presence of the cuts on y `1,2 , which directly forbid the region above

| cos θ∗| ∼ 0.987. From the lower panel of the figure we can observe that the perturbative

corrections are rather flat in the region where the bulk of the cross section is located,

and therefore they follow a pattern similar to the one observed for the total cross section.

In particular, the mixed QCD⊗QED corrections are extremely small, and become more

relevant only close to the boundaries, where they reach the 0.6% level (note that the last

bin of the distribution is larger and extends from | cos θ∗| = 0.8 to 1).

Before going to the summary, it is interesting to compare the size of the mixed

QCD⊗QED corrections computed here against the naive approximation in which QCD

and QED corrections factorize. Specifically, defining for a given bin

d∆(i,j) = dσ(i,j)/dσ(0,0) , (3.3)

the multiplicative approximation to the O(αsα) based on NLO QCD and QED predictions

is given by the product

dσ(1,1)approx = dσ(0,0)d∆(1,0)d∆(0,1) . (3.4)
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Figure 5. Comparison between the mixed QCD⊗QED corrections (red) and the naive factorisation

approximation (purple), for the transverse momentum of the hardest (left) and softer (center)

lepton, and the rapidity of the pair (right).

The naive approximation shown in eq. (3.4) was implemented in several studies using

fixed order numerical tools. Notice that experimental analyses, which use Monte Carlo

event generators [18, 25, 28] rely on a combination of a QCD generator, convoluted at fully

differential level, with QED parton showers, thus taking into account kinematic effects that

the proposed naive factorisation misses.

In figure 5 we present the mixed QCD⊗QED corrections together with the approxima-

tion defined by eq. (3.4), for the transverse momentum of the two leptons and the rapidity

of the pair. The results are normalized to the NLO QCD prediction, as in the lower panels

of the previous figures. We can observe that, in all cases, the multiplicative approach is a

rather poor approximation to the full results. This is in line with the observations made for

the total cross section in ref. [36]. The discrepancies, however, can be strongly enhanced

at the differential level. This can be seen for instance in the pT,`1 > MZ/2 region, where

the exact O(αsα) corrections are at the per-mille level, while the factorisation approxi-

mation predicts ∼ 7% corrections. The reason for this big discrepancy is the presence of

large K-factors at NLO (both in QCD and QED), associated to the fact that at LO this

region is only populated by events that are away from the Z peak. In the case of the

pT,`2 distribution, we can observe that the multiplicative approach has the wrong sign for

pT,`2 < MZ/2 (note that the approximation is not well defined for pT,`2 < 25 GeV due to

the cut in the hardest lepton), and fails to reproduce the correct size of the corrections

around the peak located in pT,`2 ∼MZ/2. Finally, for the rapidity of the lepton pair we can

see that the factorisation approximation predicts a rather flat K-factor, failing to describe

the kinematical dependence of the mixed corrections.

4 Summary

By using the abelianisation techniques [36–38], in this work we have extended the qT -

subtraction formalism in order to deal with the case of mixed QCD⊗QED corrections.
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The method can be applied to the fully exclusive calculation of the O(αsα) corrections

for the production of a colourless and neutral final state (e.g. Z and Higgs bosons, pho-

tons, neutrinos). We have provided all the relevant formulas for its implementation at

O(αsα). The coefficient functions and the hard virtual coefficients are also of value for

transverse momentum resummation and our expressions contain the full dependence on

the resummation scale Q.

We have applied the method to the production of an off-shell Z boson, and considered

its decay into a pair of neutrinos. We presented differential distributions for the final-state

leptons at the LHC, and found that the corrections can have a sizeable dependence on the

kinematics, and not necessarily following the pattern of the NNLO QCD corrections for

instance. The size of the corrections is typically very small and below 1%, though it can

be enhanced in some particular phase space regions. We note that our predictions are in

qualitative agreement with the corresponding results in ref. [41].

We have also compared the mixed QCD⊗QED contribution with the factorisation

approximation based on the product of QCD and QED K-factors. We have found that

this multiplicative approach is in general a bad approximation to the mixed corrections,

and the disagreement can be quite extreme for some differential distributions.

As a final remark, it is interesting to point out that recent developments have allowed

the application of the qT -subtraction method to the production of a heavy-quark pair at

NNLO in QCD [53–55] (see also its related application to NLO EW corrections for massive

lepton pair production in ref. [56]). Following similar abelianisation techniques to the ones

used in the present paper, the method could be extended to also deal with the mixed

QCD⊗QED corrections for the production of a massive charged (colourless) final state.
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