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[1] We use our mesopause region temperature data from El Leoncito (31.8°S, 69.3°W) to
illustrate how the increased length of the data set alone does not simplify trend analysis. This
is because the adequate interpretation of trend results does not only depend on the statistical
characteristics of the data time series. A longer data set may make unexpected features stand
out, which require an explanation before definite conclusions on long-term trends can be
drawn. While the rotational temperatures derived at El Leoncito from the OH(6–2) airglow
band appear rather homogeneous at first sight, the O2 temperatures measured with the same
instrument and optical filter exhibit features strongly reminiscent of Simpson’s classical
statistical paradox, in that straightforward trends derived from parts show signs opposite to
those of the complete data set. The resolution of this paradox requires more efforts to
diagnose and remove the impact of instrumental artifacts besides taking any other
geophysical variation that does not directly contribute to long-term change into account.
Intercomparison with other instruments is certainly useful but may warrant the elimination
of new uncertainties discovered in the act.
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1. Introduction

[2] It is a common notion that atmospheric trend analysis
requires long data sets in order to average over the
quasi-periodic fluctuations of shorter duration. To determine
the minimum data length required, it is popular to cite the for-
mulas by Tiao et al. [1990] and Weatherhead et al. [1998,
2002]. These formulas were originally designed for time series
of monthly mean ozone concentrations and to predict the
number of years necessary to detect a given linear trend if
the standard deviation of the month-to-month variations and
the autocorrelation, i.e., the quasi-deterministic relationship
between the monthly data (expressed as the lag term in an
autoregressive model of order 1) are known. As usual with
any statistical results, the conditions for their strict validity
are idealized, but, while generally plausible, they are hard to
ascertain precisely in any practical situation.
[3] Especially, the formulas mentioned provide no way to

distinguish atmospheric trends from instrumental drift. The
absence of such a drift seems to be one of the “reasonable
expectations” alluded to by Weatherhead et al. [2002] with
regard to their formula 3. It may be possible to reduce instru-
mental drift effects if many similar and well-intercalibrated
instruments are used so that the absence of drift becomes a

reasonable expectation. However, in general, the situation
is likely to be more complex. It is generally assumed that lon-
ger data sets automatically lead to better trend results.
However, this assumption is questionable on two grounds.
From the theoretical point of view, it can be argued that the
climatologically quiet time scale where the basic statistical
assumptions become true is possibly beyond the expected pe-
riod range [Lovejoy, 2013]. On the other hand, unexpected
instrumental artifacts, in addition to other geophysical varia-
tions, may show up in longer data sets, which need explana-
tions and eventually corrections before better trend results
can be derived from the data. It is this second case which
we will here focus on.
[4] So the purpose of this paper is not to present new trend

results but to discuss methodological difficulties inherent in
trend analysis with examples from a real data set. We discuss
the mesopause region temperature data from the El Leoncito
site in Argentina and some technical issues at somewhat
more detail than usually done in the literature, to illustrate
our point.

2. Data

[5] The data set that we will use here as an example is not
thought to be particularly fraught with difficulties for trend
analysis, and parts of it have in fact been used for this purpose
successfully, as we believe, in the past [Reisin and Scheer,
2002]. It consists of rotational temperatures from the OH
(6–2) Meinel and the O2b(0–1) Atmospheric airglow bands,
corresponding to nominal altitudes of 87 and 95 km, respec-
tively. An advantage of the retrieval of rotational tempera-
tures is that it only depends on the measurement of
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intensity ratios but not on absolute intensities. The data are
acquired with the tilting filter spectrometer designed specifi-
cally for long-term monitoring of atmospheric dynamics in
the mesopause region [Scheer, 1987; Scheer and Reisin,
1990, 2001]. The small number of optical components (one
interference filter, one lens) and moving parts (one filter
mount tiltable between 0° and 30°) makes this conceptually
simple instrument an instructive example for the present
purpose. Although parts of the instrumentation have been
improved and modernized several times in the past, the
optics and hardware configuration as well as the control logic
are still essentially the same. We here only consider the
temperatures (but not the airglow intensities) measured from
the astronomical observatory “Complejo Astronómico El
Leoncito” (31.8°S, 69.3°W) since the beginning of automatic
operation of the airglow instrument in 1998 until the end of
2011. For brevity, we will refer below to these temperatures
as the “LEO” data set.
[6] Note that both airglow emissions and even the spectral

background are observed with, and therefore depend on, only
one filter (the inclination of which defines wavelength). The
same filter has been used since 1996 (but had been acquired
7 years earlier so that potential aging effects should already
have diminished). After 2002, there were practically no ob-
servations until 2006, when the instrument was again
deployed after refurbishment, with a new photomultiplier,
and after a new spectral calibration. The new calibration
was mainly needed to reestablish the relation between motor
steps and filter tilt angle (and therefore, peak wavelength) af-
ter repairs in the tilt mechanism and also to take any other
eventual changes in spectral characteristics into account.
The unavoidable systematic errors in all the instrument
parameters determined in the calibration lead to a final uncer-
tainty in the derived rotational temperatures. This uncertainty
has been calculated based on plausible estimates of the differ-
ent contributing factors to be ±1.3K for OH and ±1.5K for
O2 temperatures [Reisin, 1987]. These systematic errors are
only approximate but nominally still applicable today.
While they are nearly negligible for most practical purposes,
their combination is expected to cause an unknown disconti-
nuity between the data before and after the data gap, which

may easily amount to several kelvins. More details about
the data acquisition and temperature retrieval will be given in
section 5.
[7] From 1998 to 2002, data were acquired during approx-

imately 200 nights per year, with data gaps distributed more
or less randomly. Since 2006, annual coverage rose from
about 300 to more than 350 nights per year. Therefore, for
both time spans, annual means can be expected to be approx-
imately unaffected by the seasonal variation (which, at any
rate, is small: only about 15K peak to peak [Scheer et al.,
2005]). Since each annual mean is based on between
64,000 and 114,000 individual, statistically independent
temperature samples (from each of the two airglow emis-
sions), the noise content (standard error) of each annual mean
is definitely not greater than a fraction of 0.1K and therefore
completely negligible compared to interannual variability.
This means that we can simplify arguments by dealing di-
rectly with annual mean temperatures.

3. Some Questionable Results

3.1. OH Temperature Trend

[8] The annual means of OH temperatures suggest a nega-
tive trend at first sight (see Figure 1). Indeed, a regression line
with slope �2.1 (±0.6) K/decade is consistent with the data.
According to formula 3 by Weatherhead et al. [2002],
7.8 years of data should be enough to define this trend “at a
90% significance level” (although this means that the uncer-
tainty of the slope would be considerable), and onemight think
that with our data span of 13 years, we are on the safe side.
[9] We could tentatively regard this as a valid result under

the following simplifying assumptions:
[10] 1. There is no solar cycle effect. This is plausible be-

cause of our previous findings for OH temperature using
the double peak structure of solar cycle 23 [Scheer
et al., 2005].
[11] 2. The deviations from the regression fit are random-like

fluctuations. Deviations for each year are smaller than ±1.5K,
which is attributable to unspecified interannual variations.
[12] 3. The systematic offset between the two data groups

can be ignored. However, this is a point for which we have
no evidence.
[13] The size of the trend is in the range of literature values

(and much smaller than our previous results based on earlier
data, from 1986 to 2001 [see Reisin and Scheer, 2002]),
which might add to a temptation to regard this as a plausible
new result. However, the major weakness of this “trend” lies
in its dependence on the unknown offset, i.e., the impossibil-
ity to ascertain assumption three. In addition, on closer in-
spection, we note that the mean slope of the data group
from 1998 to 2002 is different from that of the group from
2006 to 2011. While the first group suggests a trend of
�5.5 (±2.9) K/decade, the second group has a slightly posi-
tive mean slope of +0.8 (±2.1) K/decade.

3.2. O2 Temperature Trend

[14] The annual mean O2 temperatures might be expected to
be equally suitable for such a “simplified” trend analysis as the
OH temperatures, since they depend on the same optical com-
ponents of the same instrument and have been acquired virtu-
ally simultaneously. However, the corresponding figure
suggests a problem (Figure 2). The negative trend is nearly

Figure 1. Annual means of ground-based OH rotational
temperatures at El Leoncito (open circles for first group,
filled circles for second group) and fitted trend (dashed line).
The error bars represent the systematic instrument errors,
independently for each data group (see text).
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twice that for OH, but the big scatter of the data makes this
hardly significant. On the other hand, the two data groups each
signal an even much stronger positive trend, namely, +9.0K/
decade from 1998 to 2002 and +12.5K/decade from 2006 to
2011. Such a situation, when two groups of data show a statis-
tical behavior with one sign but the complete data set shows
the opposite behavior, has occasionally been encountered
in statistical surveys [Simpson, 1951] and is known as
“Simpson’s paradox.” We shall return to this topic below.
[15] Wemust also resist the temptation to use multiregression

analysis to fit not only a linear trend but also the supposed dis-
continuity created by the instrument modification. Such an
exercise would make us believe that either the more recent
data group should be raised by 12.5 (±0.4) K or the older data
group lowered by 15.7 (±0.3) K based on the assumption that
either the strong positive trend of 1998 to 2002, or the one of
2006 to 2011, respectively, be true. Of course, both alterna-
tives cannot hold simultaneously, and there is no hint at which
one we should prefer. At any rate, without solid additional
evidence, none may appear convincing.

3.3. Solar Cycle Effect on O2 Temperature

[16] The possibilities of numerical exercises are not yet
exhausted (if they ever could be), because previous results
for O2 temperature [Scheer et al., 2005; see also Beig et al.,
2008; Beig, 2011] suggest there might be a solar cycle effect,
even without a trend. And indeed, we can fit a sinusoid to the
data, which turns out to have a period of 12.2 years and an
amplitude of 4.15K (see Figure 3a). The period looks “attrac-
tive,” because it is not too far from the 11 years of a typical
solar activity cycle. The amplitude is not outside the range
of literature values, although about 70% greater than our pre-
vious result for O2 temperature [Scheer et al., 2005]. The
maximum near 2001 is also not at odds with the solar activity
of cycle 23 with its two peaks in mid-2000 and in early 2002.
However, the activity minimum was not in mid-2007, as the
fit suggests, but in late 2008 and early 2009 (Figure 3b), and
the present solar maximum is weak and its exact timing still
uncertain. So for sinusoidal fits in search of solar cycle ef-
fects, this seems to be a particularly unfortunate epoch.
[17] In situations like this, the scatter plot technique which

we have used in the past [Scheer et al., 2005] should be
expected to be more appropriate. However, the results of such

an approach do not lead to a definite answer (Figure 4). The
overall regression line with a slope of 6.2 (±0.9) K/100sfu
is faithful to the annual means of the first data group, where
all residuals are smaller than 0.8K. On the other hand, the
distribution of points in the second group is clearly unsuitable
for a linear fit (with most residuals between 1.4 and 2.7K). It
is obvious from Figure 4 that this situation cannot be improved
by any temperature offset between both groups. Nor does the
inclusion of temporal trends help, as numerical experiments
have shown. The introduction of time lags (i.e., a delayed
atmospheric response) would even increase the discrepancies.
So although both approaches suggest the presence of a solar
cycle effect, its contribution cannot presently be quantified with
reasonable confidence.

4. Model Uncertainty and Simpson’s Paradox

[18] But what is wrong with these putative results?
Formally, there is nothing wrong, since the least-squares fit
provides the best possible approximation to the data. And it
cannot be denied that the characteristics thus determined
might be defended on the ground of existing knowledge, as
mentioned. But this is where a logical weakness becomes ap-
parent, namely, a certain circularity of argument, since the
previous results also had to be defended on similar grounds.
The decision to fit a sinusoid, or a regression line and nothing

Figure 2. Annual means of ground-based O2 rotational
temperatures at El Leoncito (circles) and fitted trend (dashed
line). Symbols and error bars as in Figure 1.

Figure 3. (a) El Leoncito O2 temperatures (circles) and least-
squares fit of sinusoid; (b) monthly means of Penticton
observed F10.7 cm solar flux.
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else, or both, is then the critical step. However, selecting the
most appropriate mathematical description (the “model,” in
statistical terminology) is not an optimization problem in
the same sense as a least-squares fit is. This is because the de-
cision about what is appropriate must depend on context and
purpose. There is a relation to the “model uncertainty” prob-
lem which statisticians found difficult to bring under control.
This is clearly shown by the Chatfield [1995] paper that in-
cludes a debate among more than 30 professional statisticians
which reflects the range of opinions existing in the statistical
community on this topic, and also the consensus about the
failure to address, in theory and teaching, the problem of
choosing the “best model,” i.e., the most appropriate formal
description, to which the data are then fitted (while they
agreed on the seriousness of the consequences that arise from
wrong decisions).
[19] In the context of trends in mesopause region tempera-

ture time series, the model consists of a combination of solar
cycle, linear trend, and also instrumental artifacts. Some of
these factors may be assigned a zero coefficient, a priori, or
it may be left for the fitting algorithm to decide (at an addi-
tional cost in terms of required data length [Weatherhead
et al., 2002]).
[20] As mentioned above, the situation with LEO O2 tem-

perature looks like a strong case of Simpson’s paradox, when
conclusions drawn from part of the data change sign if the
complete data set is analyzed. Pearson et al. [1899] and
Pearson’s disciple, Yule [1903], first discussed weaker situa-
tions where the conclusions from parts of the data did change
appreciably but the differences did not involve a change of
sign. The behavior of our OH temperatures may qualify as
a case in this category of weaker differences (at the level of
the combined 1-σ errors given at the end of section 3.1).
Half a century later, Simpson [1951] published an example
of the more dramatic case, where it appeared necessary to
draw the opposite conclusion from the complete data set than
from any of the two parts of it, similarly to what we see in
O2 temperature.
[21] The discussion of the reasons for these discrepancies

and, more importantly, the question of which formal proce-
dure should be recommended to avoid the paradox in all

possible cases continues until present times. The most seri-
ous practical consequences of the paradox come from medi-
cal statistics, but its logical and philosophical basis is still a
topic of active investigation. Also, in other areas of science,
the consequences of wrong conclusions based on bad deci-
sions are serious enough to warrant all efforts to avoid them.
[22] According to Pearl [2009] (mainly chapter 6),

Simpson’s paradox is due to a purely statistical instead of
causal analysis, and the resolution of the paradox requires
the introduction of a formally correct treatment of causality
(J. Pearl is one of the main contributors to the development
of such a formalism). This view has been contested by
Bandyopadhyay et al. [2011], who, while agreeing that
Simpson’s paradox is not a logical paradox at all but just a
consequence of false human expectations, believe that a
mathematically correct treatment can always arrive at a con-
sistent description of what happens in parts of the data set and
in the combined version. In our view, Simpson’s paradox
appears to be just a special case of the general problem of
(statistical) model uncertainty.
[23] In the geophysical context as ours, causality of course

plays the key role, in that physical mechanisms must account
for all the quantitative description of reality that our data pre-
sumably refer to, and we cannot limit ourselves to an ortho-
dox statistical analysis with disregard to causality. In this
sense, there is nothing paradoxical in Simpson’s paradox.
As essential as it is to distinguish between geophysical trends
and instrumental drifts, it must also be as important for us to
be able to finally distinguish between natural and anthropo-
genic change. This distinction is not feasible by statistical
analysis but requires geophysical models that correctly quan-
tify all the relevant physical mechanisms (“models” is unfor-
tunately the same term as used in statistical analysis but refers
to an altogether different concept).

5. Search for Instrumental Artifacts

[24] “Instrumental artifacts” is a label for the consequences
of all the physical processes within the measuring system
which are not correctly taken into account in the data retrieval
process. Access to quicklook and other subsidiary data and
their inspection in search for clues about potential sources
of instrumental artifacts like drift and other anomalies may
be necessary to deal with instrumental effects. This, and re-
medial action in revised retrieval schemes, are normally only
accessible to the original investigators and unavailable to
mere data users. We shall here scrutinize some candidate
mechanisms for potential sources of artifacts in our tilting
filter spectrometer.
[25] The instrument samples the airglow spectrum at seven

spectral positions corresponding to predetermined wave-
lengths [Scheer and Reisin, 2001] to collect information on
relative spectral intensity of three positions of the P branch
of the OH band (at 846.72, 850.67, and 855.05 nm), three
positions on the short wavelength flank of the O2 band
(at 861.4, 862.3, and 863.2 nm), and one spectral background
position (at 857.4 nm). There is an approximately quadratic
relationship between wavelength and the number of motor
steps. This relation also depends slightly on filter tempera-
ture. The airglow samples are covered by 2656 motor steps
(for the more recent instrument configuration and a filter tem-
perature of 13°C).

Figure 4. El Leoncito O2 temperatures (circles) versus an-
nual means of Penticton observed F10.7 cm solar flux, and
the regression line through both data groups.
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[26] As the filter temperature follows changes in ambient
temperature, the filter tilt angle is adjusted to compensate
for these changes so that each sampling position (in terms
of the number of motor steps corresponding to a given tilt an-
gle) remains at its nominal wavelength. Ambient temperature
changes are monitored continuously, but spectral peak shifts
are also measured periodically by sampling at nine narrowly
spaced positions close to a reference peak of the OH spec-
trum (the one at 850.7 nm). This is done repeatedly in both
scan directions to arrive at statistically solid results free from
backlash and short-term drift, and then a parabola is fitted
through these nine samples to precisely determine peak posi-
tion. This and also the empirical relation between peak posi-
tion and filter temperature are used to correct the seven
airglow sampling positions. This is part of the normal data-
acquisition routine. The corresponding housekeeping data
are also saved as log files and used to derive further correc-
tions during the final rotational temperature retrieval.
[27] These archived housekeeping data can be used to look

for signs of possible long-term changes in instrument perfor-
mance. This can be done by computing the mean positioning
error for a data batch (i.e., over one or a few weeks) by
averaging the individual (often more than a dozen) nightly
positioning corrections.
[28] The results over a time span of nearly 2400 nights,

from 2006 to mid-2012, are shown in Figure 5. This plot rep-
resents the history of the positioning corrections that have ac-
tually been applied. There is clear evidence of a linear trend,
and the slope of the corresponding regression line is
1.98 × 10�3 (±8 × 10�5) steps/day. This is a very small effect,
but over the whole time span of Figure 5, a systematic posi-
tioning error of 4.5 steps would have accumulated.
Although this is only a very small fractional displacement
at any given sample position, if it had not been corrected
for, then its effect on O2 temperature would be quite notice-
able. For the older 1998–2002 data block (not shown), the
slope was 1.17 × 10-2 (±7 × 10-4) steps/day, that is, about a
factor of 6 greater than in the later years (although corrected
as well). The mean positioning errors seldom deviate more
than one motor step (corresponding to a linear displacement
of the tilt mechanism by only 3μm) from the linear trend

(the standard deviation with respect to this line is 0.78 steps).
The scatter about the trend line has not changed appreciably
over the years, and so there is no evidence for any other effect
than the very slow apparently mechanical drift, which the po-
sitioning correction was meant to have taken into account.
[29] If the drift were caused by an aging effect of the micro-

switch which defines the maximum tilt angle, then the pres-
ently used correction strategy should perfectly compensate
for this. If wear in other parts of the tilting mechanism were
the reason, the resulting higher-order deviations in the wave-
length calibration for a given filter temperature might affect
rotational temperatures, although more detailed knowledge
of the process causing the drift would be needed to quantify
the effect. Also, a drift in the thermistor used for monitoring
the filter temperature would not be automatically corrected
for, as would any differential change in filter characteristics.
However, it is hard to see how these hypothetical drifts could
have caused the factor of 6 difference in the slope of the
regression lines to the positioning data before and after the
instrument modification while, on the other hand, resulting
in the same order of O2 temperature drift (if the 9.0 to
12.5K/decade could at all be due to such an effect).
[30] The total spectral response of the instrument can be

judged by two spectra of a neon lamp recorded almost
13 years apart (in 1998 and in 2011), that is, bridging most
of the time span of the present data set (see Figure 6). The
shapes of the spectral peaks give a good idea of the instru-
ment function (spectral width). There is no evidence of any
remarkable change such as filter aging effects like differences
in the width of the instrument function, which could affect in-
strument performance. The small differences in the neon
spectra near 866 nm are too far from the three O2 sampling
positions, which lie between 861.4 and 863.2 nm, to affect
O2 temperature (the airglow sampling positions are marked
by the arrows in Figure 6). This means that apart from even-
tual subtle higher-order effects, there is no obvious hint as to
where the instrumental problem, if indeed there is one, might
be hidden.

6. Intercomparisons

[31] Intercomparison with satellite data used as transfer
standard is in principle an ideal way to resolve incompatibility

Figure 5. Mean sample position corrections for El Leoncito
airglow spectrometer from early 2006 until mid-2011, and
linear least-squares fit (see text for details).

Figure 6. Neon lamp spectra measured with El Leoncito
airglow spectrometer at the two dates shown. Arrows indi-
cate the sampling positions used for airglow observations.
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problems within a single data set, as in the present example.
However, as in a direct comparison of colocated ground-based
instruments, the other instrument adds its own “degrees of
freedom” in terms of potential instrumental drift effects to
the number of problems to be resolved. The more complex
the instrument hardware (and data retrieval), the more difficult
the situation may become.
[32] The data from the SABER (Sounding of the Atmosphere

using Broadband Emission Radiometry) instrument on the
TIMED (Thermosphere Ionosphere Mesosphere Energetics
and Dynamics) satellite should be suitable for such an
intercomparison. Among many other atmospheric parameters,
SABER also supplies temperatures in a wide altitude range that
includes both airglow layers. The technique depends on the
absolute photometry of incompletely thermalized CO2

emissions and involves a complex retrieval scheme [García-
Comas et al., 2008].
[33] In an early (although probably failed) attempt to deter-

mine the systematic uncertainty between both LEO data
groups, we used SABER version 1.07 temperatures during
4002 overpasses at El Leoncito within 1000 kmmiss distance
since the beginning of SABER data acquisition in early 2002
until the end of 2010. Each SABER temperature profile was
averaged with a Gaussian weight function approximating the
nominal peak altitude and typical shape of either the OH or
the O2 airglow layer. This leads to “airglow-equivalent”
SABER temperatures corresponding to the altitudes of 87
and 95 km, respectively. The resulting annual means of these
temperatures are shown in Figure 7 not only as average
(arithmetic means) but also as median values. We show both
variants, because we observed an unexpected pronounced
asymmetry of the temperature histogram for the OH layer
(see Figure 8a). This asymmetry is practically absent for O2

(Figure 8b). As a consequence of the asymmetry, the average
OH-equivalent temperatures are about 1K greater than the
corresponding medians. However, there is no systematic dif-
ference between averages and medians for O2 (i.e., at 95 km).
[34] The main message of Figure 7 is that the SABER

temperatures over El Leoncito exhibit strong negative trends
at both altitudes, namely, about �5K/decade at 87 km and

even nearly �9K/decade at 95 km. Without discussing the
geophysical plausibility of this behavior (which might be re-
lated to the decline of solar activity toward the end of solar
cycle 23 but also temperature trends and, eventually, instru-
mental drift or retrieval problems), we will just take it here
for granted in order to estimate the systematic uncertainty
between both LEO data groups.
[35] Only the SABER data of 2002 are available for com-

parison within the earlier LEO data group. For this year, the
annual mean O2 temperature was 8.2 (±0.5) K greater than
the average of the O2-equivalent SABER temperatures. The
comparison for the second LEO data group was done for
the years 2006 to 2010 and resulted in LEO O2 temperatures
8.0 (±1.1) K greater than the corresponding SABER result,
on average. So these two offsets are equal within error bars,
and we are led to deduce the systematic uncertainty between
both LEO data groups to be zero. However, the quality of this
putative result is poor because of the opposite trends in the
behavior of the LEO and SABER temperatures, which cause
the offset to grow from 5.1K in 2006 to 10.4K in 2010. This
is another example where more data do not lead to better sta-
tistics but do reveal more complexity.
[36] In an independent intercomparison for the Antarctic sta-

tion Davis (68°S, 78°E), French and Mulligan [2010] found a
strong positive trend in the bias of OH-equivalent SABER
V1.07 temperatures with respect to ground-based OH rota-
tional temperatures. This bias trend was 6.6 (±1.6) K/decade.

Figure 7. Annual means and medians of OH and O2 air-
glow-equivalent SABER temperatures during overpasses at
El Leoncito. Straight lines represent fits to the corresponding
points (points, lines, and labels in the top of the figure are
color coded).

Figure 8. Histograms of the scatter of SABER airglow-
equivalent temperatures about the linear trend fitted to the
annual means. (a) For OH-equivalent temperature (at 87 km);
(b) for O2-equivalent temperature (at 95 km). Ordinates
show numbers of cases within a 2.5K bin, from the total of
4002 overpasses.
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On the other hand, those authors found a small negative trend
in the bias of a different satellite instrument (Microwave
Limb Sounder on the Aura satellite), again with respect to their
ground-based observations. This contradiction was tentatively
blamed on possible SABER instrument drifts or retrieval prob-
lems of data version 1.07. The use of modeled atomic oxygen
mixing ratios in the temperature retrieval is a possible contrib-
utor to the uncertainty, as discussed by Smith et al. [2010]. The
forthcoming SABER temperature version 2.0 is expected to
improve in various aspects (as signaled by Stevens et al.
[2012], who used a prerelease V2.0), and it remains to be seen
whether, and how, the long-term variations will be affected.

7. Conclusions

[37] The airglow rotational temperatures obtained at the
nominal altitudes of 87 and 95 km, which fall into two sub-
sets separated by a 3 year data gap, after which some instru-
ment characteristics may have changed, serve to illustrate
the limitations of an acausal, purely statistical, analysis.
[38] Annual mean temperatures at 87 km from both subsets

(1998 to 2002 and 2006 to 2011) together show a rather
smooth negative trend of 2.1 (±0.6) K/decade. Although this
value does not include an adjustment for the unknown offset
between both data subsets, the quality of this fit does not look
so bad as to suggest the need to look for alternative statistical
models to better fit the data.
[39] For the corresponding data at 95 km, the situation is

different by offering several alternative views. While there
is a strongly negative trend, for the complete data set, this
has a poor statistical quality because of the strongly positive
trends for each subset. The situation looks like Simpson’s
paradox, to which the literature still does not provide univer-
sally acceptable, and implementable, solutions.For our data,
the discrepancy cannot be resolved by an ad hoc adjustment
between both data subsets.
[40] Another possibility, to fit a sinusoid to all the data, leads

to a period of 12.2 years, with one maximum close to the peak
of solar cycle 23 and an amplitude of about 4K. On the other
hand, a regression line fit to temperature versus solar radio flux,
which should better represent the solar cycle effect, surpris-
ingly gives much poorer results than the sinusoidal approach.
At this stage, it is not clear how the unknown offset (different
from the one at 87 km) between both data subsets, linear
trends, and eventual instrumental artifacts might lead to a more
satisfactory solar-geophysical interpretation of the data.
[41] We have searched for potential sources of instrument

drift as a contribution to the anomalous “Simpsonian” behav-
ior and discussed some instrumental characteristics in detail
but have not found a convincing cause.
[42] Intercomparison with satellite data is also inconclusive.

SABER overpass data at El Leoncito show a surprisingly
strong negative trend of about 9K/decade at 95 km (unprece-
dented in the literature) and also a smaller negative trend at
87 km. On the other hand, other evidence from the literature
casts doubt on the stability of SABERV1.07 temperature data,
which hopefully will be resolved in the next V2.0 data version.
[43] We think that although the examples discussed are

specific to one individual instrument, in principle data from
any source are likely to be subject to these or to other prob-
lems. Intercomparison and thorough analysis of the behavior
of each measuring system is definitely the route to follow, to

resolve uncertainties in trend analysis. However, we hope to
have made clear that this inevitably demands the elimination
of additional unknowns.
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