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Abstract Two complementary decoherence formalisms, Environment Induced Decoher-
ence (EID) for open systems and Self Induced Decoherence (SID) for close systems are
compared under a common General Theoretical Formalism for Decoherence (GTFD). The
differences and similarities of EID and SID are studied, e.g. that the main difference is that
EID only considers the relevant information of the proper system S and neglects the rest,
while SID considers all possible information available from a certain class of measurement
instruments and neglects the non-available information.

Keywords Decoherence · Preferred basis · Relaxation time · Decoherence time

1 Introduction

In papers [1] and [2] we have begun a unified study of decoherence in open and closed
systems, with or without dissipation. In this paper we continue this study focused in some
important details of a common formalism on this subject. As considered in [1, 3], and [4]
decoherence is a particular case of one of the phenomenon of quantum mechanics: irre-
versibility. Decoherence is just an example of an irreversible process.

The problem of irreversibility is that when a quantum state ρ(t) follows a unitary evolu-
tion given by the time-operator U (t) = e−i H

�
t , the unitary nature of this evolution prevents

the state to reach equilibrium when t → ∞. Therefore, if the non-unitary evolution towards
equilibrium is to be accounted for, a further element must be added to the unitary evolu-
tion. From the most general viewpoint, this element consists in the splitting of the maximal
information about the system into both a relevant part and an irrelevant part: whereas the
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irrelevant part is disregarded, the relevant part is retained and its evolution may reach a final
equilibrium situation. It is important to observe that from the more general point of view,
when we speak about the relevant part and the irrelevant one we are referring to part of the
information of the system and it does not imply a separation into groups of particles that
belong to the system. This last case would only be a particular way of separating the max-
imal system information. From our perspective since the split into relevant and irrelevant
part can be performed in many ways, with no privileged decomposition, there is no need of
an unequivocal criterion for deciding where to place the cut between “the” system and “the”
environment. In paper [5] we argue that decoherence is a relative phenomenon, better un-
derstood from a closed-system perspective according to which the split of a closed quantum
system into an open subsystem and its environment is just a way of selecting a particular
space of relevant observables of the whole closed system.

In operators language: the maximal information about the system is given by the space
of all potentially possible observables O, i.e. self adjoint operators in a Hilbert space. The
splitting of this maximal information into both a relevant part and an irrelevant one is done
by choosing the observed part of the system and ignore the rest. Then, usually we select
a particular subspace OR , of the space O, as the set that gets the relevant information.
Moreover, we want to emphasize that choosing to observe a part of the system does not
necessarily imply a loss of dimensionality.

We have already mentioned in [1] that, to explain decoherence, in all its possible versions,
it is necessary to choose a space of relevant observables. In this paper we will develop two
examples:

1. In the Self Induced Decoherence (SID) (see [1, 2, 6–13], and [14, 15]) approach the
choice of OR ∈ OR corresponds to the van Hove observables OV H ∈ OV H (as it is defined
below in Eq. (42)). This choice of the relevant observables removes the non-relevant
observables from the space O. This choice does not imply that we necessarily ignore the
information about some particles, or that we only observe one subsystem. But we can
just ignore the information of some observables. In this particular example there is no
reduction of the “size” of OR = OV H , precisely

dim(O) = dim(OV H ) (1)

because OV H is a dense space [16, 17]. In this paper we consider the case of systems
with continuous spectrum, for the discrete case (particles with spin) see [18].

2. Another choice of OR ∈ OR can be the Environment Induced Decoherence (EID) choice
(see [1, 19–26]), where the space of observables is decomposed in O = OS ⊗ OE and the
relevant observables are:

OR = OS ⊗ IE (2)

where OS only gets information from a subspace OS and IE is the unit operator of the
correspondent space OE . In cases like this, many authors call S the factor space of the
system and E the factor space of the environment. EID is a formalism with many choices
since we can define different S and E.

The expectation values 〈OR〉ρ(t) = Tr(ρ(t)OR) of the observables OR ∈ OR in the state
ρ(t) express the relevant information about the system. Of course, the decision about which
observables are to be considered as relevant depends on the particular purposes of each
situation; but without this decision irreversible evolutions cannot be described.

Based on these ideas the phenomenon of decoherence can be expressed in a general way
leading to a General Theoretical Framework for Decoherence (GTFD) that was presented in
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a previous paper (see [1] and [27]). According to this general framework, the phenomenon
of decoherence can be explained in four general steps:

1. First step. The space OR of relevant observables is defined.
2. Second step. The expectation value 〈OR〉ρ(t), for any OR ∈ OR , is obtained. This step can

be formulated in two different but equivalent ways:

• 〈OR〉ρ(t) is computed as the expectation value of OR in the unitarily evolving state
ρ(t).

• A coarse-grained state ρG(t) is defined with a non-unitary evolution. The quantum sys-
tem state and the coarse-grained state are not equal and they evolve in a different way
because we only consider the relevant observables (see [28] for details). The coarse-
grained state is a state such that if we compute the mean value of a relevant observable
using the quantum system state, then this value must be the same as the mean value
obtained from the same observable using the coarse-grained state, i.e.

〈OR〉ρ(t) = 〈OR〉ρG(t) for any OR ∈ OR (3)

3. Third step. In many cases (see paper [29]) it is proved that 〈OR〉ρ(t) = 〈OR〉ρG(t) reaches
a final equilibrium value 〈OR〉ρ∗ :

lim
t→∞〈OR〉ρ(t) = lim

t→∞〈OR〉ρG(t) = 〈OR〉ρ∗ (4)

This also means that the coarse-grained state ρG(t) evolves towards a final equilibrium
state:

lim
t→∞〈OR〉ρG(t) = 〈OR〉ρG∗ (5)

This is possible because in an infinite dimensional Poincare system time is infinite. The
final equilibrium state ρG∗ is obviously diagonal in its own eigenbasis, which turns out to
be the final preferred basis. But, from Eqs. (4) or (5) we cannot say that limt→∞ ρ(t) = ρ∗
or limt→∞ ρG(t) = ρG∗. But rigorously the unitarily evolving quantum state ρ(t) of the
whole system only has a weak convergence (see [28]) or weak limit, symbolized as:

W − lim
t→∞ ρ(t) = ρ∗ (6)

This formula is simply another way to formulate Eq. (5). As a consequence, the coarse-
grained state ρG(t) also has a weak limit, as follows from Eq. (5):

W − lim
t→∞ρG(t) = ρG∗ (7)

The meaning of Eqs. (6) and (7) is that although the off-diagonal terms of ρ(t) never van-
ish through the unitary evolution, the system reaches equilibrium from an observational
point of view, that is, from the viewpoint given by any relevant observable OR ∈ OR .

4. Fourth step. Also a moving preferred basis {|j (t)〉P } must be defined as we will see in
Sect. 1.2. This basis is the eigen basis of certain state ρP (t) such that

lim
t→∞〈OR〉(ρR(t)−ρP (t)) = 0, ∀OR ∈ OR (8)

The characteristic time for this limit is the tD , the decoherence time (see [2] for details).
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Then our General Theoretical Framework for Decoherence (GTFD) is introduced but we
are unable to use it until we will specify the OR for each particular case. Only then we will
find the ρG evolution for EID and SID.

In this paper we show how the GTFD improves the understanding of approaches EID,
SID and decoherence in general. In Sect. 2 we will present a general theoretical formalism
for decoherence. Section 2 is devoted to EID and Sect. 3 to SID. Section 4 deals with the
physical relevance of EID and SID and contains what would be the main conclusion of the
paper. Section 5 deals with the characteristic times. We present our conclusion in Sect. 6.

1.1 Coarse-Grained Process

We will call coarse-graining to a process such that we can select a part of the information of
the system under study and only consider the physical quantities that correspond to the se-
lected information. Thus, considering only one part of the complete system, we can reduce,
in some cases, the number of degrees of freedom that we use in the description. In quantum
mechanics such a process leads, to the elimination of some components of the state. This
process can be understood as the projection of the Hilbert space, associated with the com-
plete system, on a smaller subsystem that contains relevant observables. If in the complete
system the state operator is ρ(t) and O is the space of all possible observable then, there is a
subspace of relevant observable OR observables that contains those that provide the physical
information.

Thus, we have explained the first step of Sect. 1. Precisely, we define the coarse-grained
state ρG(t), associated with the relevant subsystem, to a state ρG(t) such that it would satisfy
Eq. (3). The space where the operators act are specified case by case (see e.g. Eqs. (26)
and (43)). This ρG(t)1 would contain the maximal possible information that can be obtained
from the observables of OR . Is important to observe that the condition 〈OR〉ρ(t) = 〈OR〉ρG(t)

does not imply that ρ(t) = ρG(t).

1.2 The Coarse-Grained State as a Projection in the Complete State

As a consequence of the definition (3), a coarse-graining usually implies a projection whose
action is to eliminate some components of the state vector corresponding to the thinner
description. If this idea is generalized, coarse-graining can be conceived as a projection that
defines the properties of the relevant observables and also as a consequence the space of
states. In this subsection we will prove that the coarse-grained state ρG(t) can be conceived
as the projection of the complete state ρ(t) on the relevant observables subspace OR . Let us
use the notation 〈O〉ρ = (ρ|O) inspired in the algebraic formalism which was initiated by
the Brussels school in [30]. Let the basis of OR be {|Oα

R)}, where α is, e.g., a continuous
index that identifies the basis elements and let us define a projector on OR as

π =
∫ ∣∣Oα

R

)(
ρα

∣∣dα (9)

Let O′
R be a space of the linear functional on OR , the states are a linear combination of

functionals (ρα|, satisfying:2

(
ρα|Oβ

R

) = δ(α − β) (10)

1See the mathematical definition in Eq. (35).
2If we were working in a finite dimensional space O, we could choose α = (i, j), β = (k, l), |Oα

R
) = |i〉〈j |,

(ρβ | = |k〉〈l| so (ρβ |Oα
R

) = Tr(|i〉〈j |k〉〈l|) = δjkδil .
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It is clear that π is a projector, because π2 = π . Then we can define:

(ρG| = (ρ|π (11)

Therefore,

(
ρG|Oβ

R

) = (ρ|π ∣∣Oβ

R

) = (ρ|
∫ ∣∣Oα

R

)(
ρα|Oβ

R

)
dα

= (ρ|
∫ ∣∣Oα

R

)
δ(α − β)dα = (

ρ|Oβ

R

)
(12)

i.e. Eq. (3) since 〈O〉ρ = (ρ|O). Thus, making linear combinations of the |Oα
R), we obtain:

〈OR〉ρ = (ρ|OR) = (ρ|π |OR) = (ρG|OR) = 〈OR〉ρG
∀OR ∈ OR (13)

i.e. Eq. (3). This demonstration is also valid for discrete spectra [18].
It is interesting to remark, that the lost of irrelevant information, just described, is some-

how, similar to the one that appears in thermodynamics. In a classical mechanical system
we know the position and velocity of all its particles. From a thermodynamical point of
view this information is excessive and cannot be handled. Moreover we are just interested in
some macroscopic magnitudes and their relation through thermodynamical equations. Then
we must introduce a coarse graining to eliminate the excess of information i.e. the position
and velocity of all the molecules.

1.3 The Evolution of the Coarse-Grained State and Its Limit as a Projection of the
Complete State

The just defined ρG(t) is the result of the projection of the state ρ(t) onto the space OR of
relevant observables (see Eq. (11)). Now we prove that the final state ρG∗ of ρG(t) is the
result of the projection of the final state ρ∗ of ρ(t) onto OR . In fact we have:

(
ρG(t)

∣∣OR

) = (
ρ(t)

∣∣π ∣∣OR

) =
∫ (

ρ(t)
∣∣Oα

R

)(
ρα

∣∣OR

)
dα (14)

So, using Eq. (6) (if this limit exists, as in the case of SID and EID):

lim
t→∞

(
ρG(t)|OR

) = lim
t→∞

(
ρ(t)

∣∣π ∣∣OR

) = lim
t→∞

∫ (
ρ(t)

∣∣Oα
R

)(
ρα

∣∣OR

)
dα

=
∫ (

ρ∗
∣∣Oα

R

)(
ρα

∣∣OR

)
dα = (

ρ∗
∣∣π ∣∣Oα

R

) = (ρG∗|OR) (15)

where we have defined

(ρG∗| = (ρ∗|π (16)

This limit only exists for concrete examples, for example SID and EID cases. From Eq. (15)
we obtain

W − lim
t→∞

(
ρG(t)

∣∣ = (ρG∗| (17)
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1.4 The Master Equation as a Projection of Liouville Equation

As we said in Sect. 1, the second step of GTFD can be formulated computing the expectation
value of OR in the unitarily evolving state ρ(t) e.g. 〈OR〉ρ(t) or computing the expectation
value of OR in the non-unitarily evolving state ρG(t) e.g. 〈OR〉ρG(t), where ρG(t) follows a
non-unitary evolution governed by a master equation. In this subsection we show how the
master equation can be written as a projected Liouville equation. In fact, let us consider the
equation:

i�
d

dt
|ρ) = [H,ρ] = L|ρ) (18)

where L is the Liouville “superoperator”. Let us project this equation as

i�
d

dt
π |ρ) = πL|ρ) (19)

where L is the Liouville “superoperator” (see definition in [31]). Now in general [π,L] �= 0,
in fact we define

[π,L] = N (20)

So

i�
d

dt
π |ρ) = Lπ |ρ) + N |ρ) (21)

As π |ρ) = |ρG), then we have

i�
d

dt
|ρG) = L|ρG) + N |ρ) (22)

This is the general form of a master equation. Clearly (22) is the Liouville equation with
a extra term that in general, transforms the unitary evolution of the coarse-grained state |ρG)

in a non-unitary evolution.
For practical purposes the master equation will be presented in a more intuitive way.

Precisely: if the projector π is known, we only need the operator N = [π,L] and we can use
it in Eq. (21). Of course in this case we can define π = P and Q = I − P and we can write
the last equation as the system

i�
d

dt
P |ρ) = PLP |ρ) + PLQ|ρ) (23)

i�
d

dt
Q|ρ) = QLP |ρ) + QLQ|ρ) (24)

and solve this system by well-known methods (e.g. the Nakayima Zwanzig method [32, 33])
that yield a non-unitary evolution and finally they lead us to Eq. (17).

2 EID as Particular Case of the GTFD

In paper [1] we shown how the three first steps of the GTFD fit perfectly with EID. In EID
a system S (usually a small system of macroscopic nature) and an environment E (usually a
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big system of microscopic nature)3 are defined (in more or less arbitrary way) and the closed
system becomes U = E ∪ S. Then we have the observable subspaces OE and OS and the
operator

OU = OS ⊗ OE (25)

where the relevant observables OR read

OR = OS ⊗ IE (26)

As U = E ∪ S the corresponding spaces are HU = HS ⊗ HE . Let {|i〉} be the basis of HS ,
let {|α〉} be the basis of HE , therefore {|i, α〉} is the basis of HU , Under these conditions
as we are only interested in the relevant information that the observable OR sees, i.e. in the
mean values

〈OR〉ρ =
∑
ijαβ

ρiα,jβOS ij δαβ =
∑
ij

(∑
α

ρiα,jα

)
Oij = 〈OS〉ρS

(27)

where

ρS = TrEρ (28)

In many cases it can be proved that this ρS(t) evolves in a non-unitary way and it reaches
equilibrium [29].

2.1 The EID Projector

Let {|ijαβ) = |i, α〉〈j,β|} the basis of HU ⊗ HU , then the EID projector reads

PS = 1√
n

∑
ijαβ

|ijαα)(ijββ| (29)

In fact the generic state of HU ⊗ HU is

(ρ| =
∑
ijαβ

ρijαβ(ijαβ| (30)

then

(ρ|PS = 1√
n

∑
ijαβhkγ δ

ρhkγ δ(hkγ δ|ijαα)(ijββ|

= 1√
n

∑
ijδ

ρijδδ(ij |
∑

β

(ββ| = 1√
n

∑
ijδ

ρijδδ(ij | (31)

since
∑

β(ββ| = ∑
β |β〉〈β| = 1, and ρS,ij = ∑

δ ρijδδ = (TrSρ)ij finally

(ρ|PS = 1√
n

∑
ijδ

ρS,ij (ij | (32)

3In fact, decoherence is one of the steps of the classical limit for macroscopic systems.
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On the other hand

P 2
S = 1

n

∑
ijαβi′j ′α′β

|ijαα)
(
ijββ|i ′j ′α′α′)(i ′j ′β ′β ′∣∣′ = PS = 1

n

∑
ijαβ ′

∣∣ijαα
)(

ijββ ′∣∣∑
α′β

δα′β

= PS (33)

so PS is a projector.

2.2 The Coarse-Grained State in EID

To obtain the coarse-grained state in EID we must project the complete state on space O′
S .

So:

(ρG| = (ρ|PS (34)

Note that the dimension of the space that contains (ρG| is equal that the dimension of the
space that contains (ρ| but this does not happen with (ρG| and (ρS | because ρS = TrEρ.
If we want to recover ρG starting from ρS , we have: from the second step of GTFD that
〈OR〉ρ(t) = 〈OR〉ρG(t), and frpm (27) that 〈OR〉ρ = 〈OS〉ρS

where OR = OS ⊗ IE . Then we
can define:

ρG = ρS ⊗ IE

Tr(IE)
(35)

Then

〈OR〉ρ(t) = 〈OR〉ρG(t) = 〈OS ⊗ IE〉ρG(t) = Tr

(
(OS ⊗ IE)

(
ρS ⊗ IE

Tr(IE)

))

= Tr(OSρS)Tr(IE)

Tr(IE)
= Tr(OSρS) = 〈OS〉ρS(t) (36)

If we want to find the final coarse-grained state we can proceed proving, case by case, in
each system or example that

lim
t→∞

(
ρ(t)|OR

) = (ρ∗|OR), ∀OR ∈ OR or W − lim
t→∞

(
ρ(t)

∣∣ = (ρ∗| (37)

then

lim
t→∞

(
ρ(t)

∣∣π ∣∣OR

) = (ρ∗|π |OR), thus lim
t→∞

(
ρG(t)

∣∣OR

) = (ρG∗|OR), (38)

We can use Eq. (38) and now we have enough equations to find (ρG∗|OR) and therefore
to find all the relevant coordinates of (ρG∗|. So for any OR ∈ OR we have

W − lim
t→∞

(
ρG(t)

∣∣ = (ρR∗| (39)

The characteristic time of this evolution is tR that can be computed using the poles technique.
The decoherence time tD < tR can also be computed with the same technique. The two times
can be also computed case-by-case in several models [2, 34, 35].
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2.3 Comments: EID Dissipative Environment

The intuitive explanation of EID is dissipation. EID would be, in principle, a dissipative
formalism, since in many models the microscopic S gives its energy to the macroscopic E

where this energy is stored. The kinetic energy of S becomes zero and S reaches equilibrium
and classical motion stops in the macroscopic-collective variables of S. Decoherence is
produced before equilibrium and it is proved that, for macroscopic systems, the decoherence
time is a small fraction of the relaxation time (see [1] and [2])

I. A trivial example: This trivial example will become quite persuasive when we compare
it with the SID analog.

Let us consider a (small) stone S and a (big) poll E. The stone (which initially has
all the energy) falls into the motionless pool, creating big waves of big wave length and
low frequency in the water. The evolution makes that waves would become smaller and
smaller and their frequencies grow, ending in microscopic (thermal) waves, while the
stone stops its motion and reaches equilibrium.4 The stone has dissipated its energy into
the pool. Essentially, in this example we see that big-low-frequency-macroscopic waves
end in small-high-frequency-microscopic waves where the energy is dissipated.

Then, essentially we have two processes:
a. Macro to Micro dissipation. The energy of the macroscopic waves “dissipates” into

those of microscopic word.
b. Evolution of the motion from low frequencies to high frequencies. The macroscopic

wave has low frequency while the microscopic one has high frequency.
We do not say that classical dissipation leads to quantum dissipation, but this is a

good analogy to understand the phenomena.
II. For more general (non-trivial) example (see [36], 3.2, p. 48). In Zwanzig’s general for-

malism of the master equation we have relevant channels (corresponding to relevant
observables) and irrelevant channels (corresponding to irrelevant observables) and the
information goes to deeper and deeper spaces of irrelevant channels. So information is
dissipated in this case.

3 SID as Particular Case of the GTFD

In SID approach the game is played in the complete set of commuting observables (CSCO)
that contains the Hamiltonian H of the closed system U and the constants of motion Ci such
that [H,Ci] = 0. The corresponding basis is {|ω,ci〉}, being these states stationary, and

H =
∫

ω
∑

i

|ω,ci〉〈ω,ci |dω (40)

We will see that in this case we can directly obtain a state equilibrium limit ρ(t) → ρ∗.
Then, as we will see, all the characters of the play: state, energy, etc. are constants of the
motion, and therefore there is no energy transfer and no dissipation in the {|ω,ci〉} context
(SID is not a dissipative formalism). This is the main difference with EID.

Nevertheless point “b” of Sect. 2.3. I allows us to see a crucial resemblance with EID:

4Following the laws of the thermodynamic, the total energy is conserved, but the mechanical energy is “de-
graded” in heat.
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The observables are (for simplicity we forget the ci indices)

O =
∫

Õ
(
ω,ω′)∣∣ω,ω′)dωdω′ (41)

where |ω,ω′) = |ω〉〈ω′| and Õ(ω,ω′) is any kernel or distribution. The relevant observables
are those obtained by the van Hove choice [16, 17]:5

Õ
(
ω,ω′) = O(ω)δ

(
ω − ω′) + O

(
ω,ω′) (42)

where O(ω,ω′) is a regular function, precisely O(ω,ω′) ∈ L
2(ω − ω′). Then we define a

OR =
∫

O(ω)|ω)dω +
∫

O
(
ω,ω′)∣∣ω,ω′)dωdω′ (43)

where |ω) = |ω〉〈ω|, |ω,ω′) = |ω〉〈ω′| and the states read

ρR =
∫

ρ(ω)(ω|dω +
∫

ρ
(
ω,ω′)(ω,ω′∣∣dωdω′ (44)

where (ω|, (ω,ω′| is the cobasis of |ω), |ω,ω′), where ρ(ω,ω′) is also a regular function,
i.e. ρ(ω,ω′) ∈ L

1(ω − ω′), and

ρR(ω) = ρ∗
R(ω), ρR(ω) ≥ 0,

∫
ρR(ω)dω = 1 (45)

Then:

〈OR〉ρR(t) = (ρR|OR)

=
∫

ρ(ω)O(ω)dω +
∫ ∫

ρ
(
ω′,ω

)
O

(
ω,ω′) exp

[
−i

(ω − ω′)
�

t

]
dωdω′ (46)

and

lim
t→∞〈OR〉ρR(t) = lim

t→∞(ρR|OR) =
∫

ρ(ω)O(ω)dω (47)

since ρ(ω′,ω)O(ω,ω′) ∈ L
1(ω − ω′).

In the particular case O = H (a particular van Hove observables) equation (43) reads:

H =
∫

ω|ω)dω (48)

and

〈H 〉ρ(t) =
∫

ρ(ω)ωdω (49)

Therefore the energy of the system remains constant in time and it is only concentrated in the
diagonal terms ρ(ω). Thus, there is no energy transfer. Anyhow the van Hove observables

5The non-rigorous δ(ω − ω′) will soon disappear from this text. In fact the formalism below is precisely a
way to eliminate this δ(ω − ω′). We will use this heuristic object “δ(ω − ω′)” just to give some examples
below.
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see the motion in the states ρ(t) and therefore there is no quantum equilibrium at the initial
stage.

We can follow the “more general example” at the end of the last section but now in the
SID case. But upon a time there was a myth that said that dissipation was necessary for the
quantum states to reach equilibrium and decoherence. Then as the states of a closed system
cannot dissipate, because they have no environment, they can neither decohere nor reach
equilibrium. The origin of this myth was a confusion between classical objects and quantum
states. In fact, to reach equilibrium a classical object, e.g., needs friction to dissipate its
kinetic energy in an environment. But a quantum state is not a classical object. So today
this myth is dissipated (see [29], p. 93) but somehow the prejudice about closed systems
subsists. To be didactic let us consider a closed system. The mean energy of a quantum state
ρ(t) in an arbitrary basis is:

(
ρ(t)

∣∣H ) =
∑
ij

ρij (t)Hji =
∑

i

ρii(t)Hii +
∑
i �=j

ρij (t)Hji

where the first term of the r.h.s. would be the mean energy of the diagonal terms ρii(t) and
the second term the non-diagonal ones ρij (t). But in the energy eigenbasis this equation
simply reads

(
ρ(t)|H ) =

∑
i

ρiiωi

where ωi are the eigenvalues of H . Namely in the Hamiltonian basis the energy is concen-
trated in the constant diagonal terms and the variable non-diagonal terms do not contribute
to the mean energy and therefore their vanishing (according to SID) is irrelevant for the
energy balance.

For all these reasons decoherence is clearly unrelated with dissipation, at least in closed
systems.

c. SID decoherence is originated in the physical phenomenon of destructive interference
among the off diagonal terms of ρ(t) or its mathematical version: the Riemann-Lebesgue
theorem (also illustrated by [37]). Therefore SID is both physically and mathematically
motivated. But nowadays SID has not a direct experimental verification but it has indirect
proves as we will see. Also there is computational experiments as the Casati and Prosen
model [38, 39]. Nevertheless there is a very long list of physical theories that were intro-
duced, adopted, and even popularized before their experimental verification took place
(e.g. Superstrings theory). Then the essential requirement for a (provisional) theoretical
physical formalism is just that they would be soundly physically motivated.

3.1 The Algebraic Formalism

We can repeat this explanation in algebraic language [14]: The characteristic algebra A of
the operators (see the complete version in [40]) contains the space of the self-adjoints ob-
servables O which in turn contains the minimal subalgebra Ã of the operators that commute
with the Hamiltonian H (that we can consider as the typical “diagonal” operators algebra).
Then we have:

Ã ⊂ O ⊂ A (50)

Now we can make the quotient

A/Ã = Vnd (51)
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where Vnd would represent the set of equivalence classes of operators that do not commute
with H (the “non-diagonal operators”). These equivalence classes read

[a] = a + Ã, a ∈ A (52)

So we can decompose A as:

A =Ã + Vnd (53)

But Eq. (52) is not a direct sum, since we can add an arbitrary a ∈ Ã from the first term of
the r.h.s. of the last equation and substrate a from the second term.

At this point we can ask ourselves which the observables are that really matter in the case
of SID under an evolution e−iH t . Certainly the observables that commute with H which
are contained in Ã (and correspond to diagonal matrices ∼“δ(ω − ω′)” of Eq. (42)). The
observables that do not commute with H correspond to the off-diagonal terms contained in
Vnd . These terms, must vanish when t → ∞, so they must be endowed with mathematical
properties adequated to produce this limit. Riemann-Lebesgue theorem tells us that this fact
takes place if functions O(ω,ω′), and therefore ρ(ω,ω′), are L1, in such a way that, via
the Schwartz inequality the Riemann-Lebesgue theorem could be used as explained above.
Then we add this property to Vnd . So we define a sub algebra of A (that can be called a van
Hove algebra [16, 17] since it is inspired in the works of this author) as:

Avh=Ã ⊕ Vr ⊂ A (54)

where the vector space Vr is the space of operators of Eq. (43) with O(ω) = 0 and
O(ω,ω′) ∈ L2(ω − ω′) as required under Eq. (42). Moreover OR= V vhS , the space of self-
adjoint operators of Avh, which can be constructed in such a way to be dense in VS (because
any distribution can be approximated by regular functions). Therefore, essentially the intro-
duced restriction is the minimal possible coarse-graining. Now the ⊕ of Eq. (54) is a direct
sum because Ã contains the factor “δ(ω − ω′)” and Vr contains just regular functions and a
kernel cannot be both a distribution δ and a regular function. Moreover, as our observables
must be self-adjoint the space of observables must be the just defined

OR= V vhS=Ã ⊕ VrS ⊂ VS (55)

where VrS is the space of the self-adjoint operators of Vr . This decomposition corresponds
to the one in Eq. (43) where VrS only contains regular self-adjoint operators (namely
O(ω′,ω)∗ = O(ω,ω′)). Restriction (55) is just the choice (coarse-graining) of the relevant
measurement apparatuses for our problem, those that measure the diagonal terms in Ã and
those that measure the non-diagonal terms that vanish when t → ∞ in VrS .6 Under Eq. (43)
we have called |ω) = |ω〉〈ω| the vectors of the basis of Ã and |ω,ω′) = |ω〉〈ω′| those of VrS .
Then a generic observable of OR reads as in Eq. (43).

The states must be considered as linear functionals over the space O (O′ the dual of
space O):

O′
R = V ′

vhS = Ã′ ⊕ V ′
rS ⊂ O′ (56)

Therefore the state reads as in Eq. (44). The space of these generalized states (satisfying
Eq. (45)) is the convex space SR⊂ O′

R . Now the mean value is given by Eq. (46) and we

6See [43] Sect. 8.2 (p. 210) for the definition of these observables.

Author's personal copy



Int J Theor Phys (2013) 52:1379–1398 1391

can obtain the limits (38) or (39). This is the simple trick that allows us to deal with the
singularities (i.e. the “δ(ω − ω′)”) in a rigorous mathematical way and to obtain correct
physical results. Essentially we have defined a new observable space OR (that contains the
observables OR of Eq. (43)) and a space of states SR that are adapted to solve our problem.

The algebraic approach has several applications in many chapters of physics. The most
important are ARQFT [41] and Statistical Mechanics [42]. The approach presented here
could be useful for defining decoherence into these fields.

3.2 The Projector into the Space of Regular Functions

Let us consider the rigged Hilbert space or Gel’fand triplet

Φ ⊂ H ⊂ Φ ′ (57)

where Φ is the test function space, H is a Hilbert space, and Φ ′ is the dual space of Φ .
Let

F ∈ Φ ′, F : Φ → R, F [ϕ] = x ∈ R (58)

be a functional or distribution on a space of test function Φ so ϕ ∈ Φ [1].7 A regular function
f (x) ∈ H can be used to define a generalized function (or distribution) as a functional

Ff [ϕ] =
∫

f (x)ϕ(x)dx (59)

where f (x) ∈ H, and ϕ(x) ∈ Φ . Then, if {ei(x)} is a basis of H we can decompose f (x)

and ϕ(x) as

f (x) =
∑

i

fiei(x), ϕ(x) =
∑

i

ϕiei(x) (60)

Then we can also define a projector acting in a generalized function on the space of regular
functions H as

πF = f̃F (x) (61)

where

f̃F (x) =
∑

i

F
[
ei(x)

]
ei(x) (62)

Then f̃F (x) is a H function if ∑
i

∣∣F [
ei(x)

]∣∣2
< ∞ (63)

But in general it will not be the case and it may happen that
∑

i

∣∣F [
ei(x)

]∣∣2 ∼ ∞ (64)

We will assume that we can approximate a distribution F with a Hilbert space function
f (x) (which can be written in a distribution form as Ff [ϕ] as close as we wish). Then we

7More precisely Φ ⊂ H ⊂ Φ× , and F : Φ → C in the complex case, where Φ× is the anti-dual space
(see [48]).
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can assume that the space of functions of H is dense in the space of distributions Φ ′ in an
adequate topology [44]. This mathematical idea will be enough for our physical purposes.
Of course this fact must be demonstrated case by case choosing mathematical structure with
adequate properties. Moreover we can study the problem using an algebra A and obtaining
the space H using the GNS theorem and its generalization (see [45]). E.g. in paper [46] a
detailed example can be found based in the algebra L(S(R+)) (also see a detailed example
in [47]).

So F [ei(x)] can be approximated by a fi satisfying

∑
i

|fi |2 < ∞ (65)

as close as we can and define a function

f (x) =
∑

i

fiei(x) (66)

(this choice can be called a smoothing process) and defines an operator π such that

πF = f (67)

Now, from Eq. (59) we have

Ff [ϕ] =
∫

f (x)ϕ(x)dx (68)

Thus

Ff

[
ei(x)

] =
∫

f (x)ei(x)dx = fi (69)

and from Eq. (62)

πFf [ϕ] =
∑

i

fiei(x) = f (x) (70)

and we have that ∑
i

|fi |2 < ∞ (71)

Then the projection of a H function is a H function and π2 = π , so π is a projector and we
have defined the projection

π : Φ ′ → H (72)

In a bra-ket language {ei(x)} becomes the basis {|ei〉} with cobasis is {〈ei |} and the func-
tional F [ϕ] is a bra 〈F |. Then

〈ei |ej 〉 = δij , π =
∑

i

|ei〉〈ei | and therefore π2 = π (73)

and

〈F |π = 〈f |, π =
∑

i

〈f |ei〉〈ei | (74)

namely Eq. (62) where we have smoothed the 〈F |ei〉 to become the 〈f |ei〉.

Author's personal copy



Int J Theor Phys (2013) 52:1379–1398 1393

3.3 The SID Projector

We can define the projector π of SID such that

π |O) = |OR) and (ρR| = (ρ|π (75)

To begin with, we just stress that, intuitively, functions that oscillate with infinite frequency
can be associated with some kind of distributions. Then these functions or distributions never
reach equilibrium because they do not suffer the destructive interference that would produce
the factor exp[−i (ω−ω′)

�
t] in an infinite time. Precisely these distributions are the ones that

are not taken into account by the van Hove observables.
From what we have explained in Sect. 3.2, in this case the projector π reads

π : O → OR = VvhS=Ã ⊕ VrS ⊂ O, π : O′ → O′
R = V ′

vhS = Ã′ ⊕ V ′
rS ⊂ O′ (76)

Moreover at the end of calculation we have seen that the decohered states (namely the states
that are candidates to become classical states when � → 0) only belong to space Ã′ (with
basis {(ω|}, see Eq. (44)). So the formalism yields the definition of an important projector π

that projects the states over the sub space O′
R= V ′

vhS . We can call π the classical projector
because when t → ∞ and � → 0, then O′

R= V ′
vhS → Ã′ so π projects on the “classical

world” (see [49]).
Then according to the formalism of Sect. 3.2. we can define the projector π as

π |O) = |OR) =
∫

|ω)(ω|dω +
∫ ∫

ω �=ω′

∣∣ω,ω′)(ω,ω′∣∣dωdω′ (77)

and we can say that if |O) and (ρ| are generic operators or states the relevant ones will be

π |O) = |OR) =
∫

O(ω)|ω)dω +
∫ ∫

ω �=ω′
O

(
ω,ω′)∣∣ω,ω′)dωdω′ (78)

and

(ρR| = (ρ|π =
∫

ρ(ω)(ω|dω +
∫ ∫

ω �=ω′
ρ
(
ω,ω′)e−i(ω−ω′)t(ω,ω′∣∣dωdω′ (79)

and since (ω|, (ω,ω′| is the cobasis of |ω), |ω,ω′), the product results

(ρ|OR) = (ρ|π |O) = (ρR|O) =
∫

ρ(ω)O(ω)dω +
∫ ∫

ρ
(
ω′,ω

)
O

(
ω,ω′)dωdω′ (80)

Where we require that O(ω,ω′) ∈ L2(ω − ω′), then ρ(ω′,ω) ∈ L2(ω − ω′), and from the
Schwarz inequality ρ(ω′,ω)O(ω,ω′) ∈ L1(ω − ω′), and precisely this is the condition to
use Riemann-Lebesgue theorem.

3.4 The Coarse-Grained State in SID

To obtain the coarse-grained state of SID we must project the complete state on a van Hove
space O′

V H . So with a similar notation as the one of Sect. 2.2, we have:

(ρG| = (ρ|PV H (81)
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Note that, in this case, dim(ρG| = dim(ρ| but, unlike EID, dim(ρG| = dim(ρV H | because
ρV H �= TrI ρ where I is the unit operator. If we want to recover ρG starting from ρV H , we
need to do nothing because in this case ρG = ρV H . From the second step of GTFD we have
that 〈OR〉ρ(t) = 〈OR〉ρG(t), then

〈OR〉ρ(t) = 〈OR〉ρG(t) = 〈OV H 〉ρG(t) = Tr(OV H ρG)

= Tr(OV H ρV H ) = 〈OV H 〉ρV H (t) (82)

Let us now find the final coarse-grained state. In SID, using the Riemann-Lebesgue theorem,
it is proved that

lim
t→∞

(
ρ(t)|OR

) = (ρ∗|OR), ∀OR ∈ OR or W − lim
t→∞

(
ρ(t)

∣∣ = (ρ∗| (83)

Then

lim
t→∞

(
ρ(t)

∣∣π |O) = (ρ∗|π |O), thus lim
t→∞

(
ρ(t)

∣∣OR

) = (ρ∗|OR), (84)

From (ρ∗|OR) of Eq. (84) we can deduce that, according to the Riezs theorem, all the
coordinates of (ρ∗| e.g. in the finite space we have dim OR = dim O = n we could take n

independent |Oi
R) i = 1,2, . . . , n and since we have n equations (ρ∗|OR) = certain known

mean value we could obtain all the coordinates of (ρ∗| in space O. So for all OR ∈ OR we
have

W − lim
t→∞

(
ρ(t)

∣∣ = (ρ∗| (85)

4 Physical Relevance of EID and SID Observables

In the previous sections we have shown how the EID formalism fits perfectly in the GTFD.
The main concept in this framework is the coarse graining, as explained in Sect. 1.1. But
a question remains: if there is a loss of information with physical relevance in a coarse
graining evolution. We have explained that the coarse graining is produced if we choose a
space of relevant observables OS of EID. All this is well known.

We will now consider the case of SID where the relevant observables are the van Hove ob-
servables, of Eq. (43), that belong to a space OR . Then the corresponding states, of Eq. (44),
belongs to a space O′

R . Equations (43) and (44) show that in SID a particular choice and
their consequences are introduced

(i) O(ω,ω′) is a regular function (i.e. O(ω,ω′) ∈ L
2 ) and not a generic distribution. This

makes OR = OV H . This is the restriction.
(ii) ρ(ω,ω′) is also a regular function since it belongs to a O′

R = O′
V H (and therefore also

ρ(ω,ω′) ∈ L
2), this is the consequence. Then, we must ask ourselves if the obtained

spaces OV H and O′
V H are generic enough to take into account all physical reality. Below

we give an argument to prove that it is so.

Let us consider the Hamiltonian of the system:

|H) =
∫ ∞

0
ω|ω)dω (86)
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and a particular observable |Z) = |z〉〈z| where 〈z|z〉 = 1, i.e. |Z) a is projector. As it is a
usual observable we have that:

|Z) =
∫ ∞

0

∫ ∞

0
Z̃

(
ω,ω′)∣∣ω,ω′)dωdω′ (87)

without any loss of generality we can write this equation as:

|Z) =
∫ ∞

0
Z(ω)|ω)dω +

∫ ∞

0

∫ ∞

0
Z

(
ω,ω′)∣∣ω,ω′)dωdω′ (88)

where Z(ω) is a regular function and Z(ω,ω′) is a distribution (a “δ(ω − ω′)” is hidden in
|ω)); Z(ω) and Z(ω,ω′) represent the diagonal and non-diagonal components of the observ-
able |Z) which, in principle, it is not a van Hove observable. The non-diagonal components
can be written as:

〈
ZND

〉
ρω′ω

= 〈z|ρω′ω|z〉 = 〈
z
∣∣ω′〉〈ω|z〉

= 〈ω|z〉〈z∣∣ω′〉 = Z
(
ω,ω′) (89)

The usual procedure to measure Z(ω,ω′) is to divide the plane (ω,ω′) in squares of area
�ω�ω′. For each one of these squares, i.e. for the square of the center (ωk,ωl) a state
(ρωkωl

| = |ωk〉〈ωl | can be prepared, and then, after the repetitions of many measurements
the mean value Z(ωk,ωl) = 〈z|ωk〉〈ωl |z〉 is computed. Once Z(ωk,ωl) is chosen for each
pair (ωk,ωl) a regular function f (ω,ω′) is defined such that it interpolates all the measured
values. With this function we define:

|ZV H ) =
∫ ∞

0
Z(ω)|ω)dω +

∫ ∞

0

∫ ∞

0
f

(
ω,ω′)∣∣ω,ω′)dωdω′ (90)

which is a van Hove function since Z(ω) and f (ω,ω′) are regular functions. Of course
|ZV H ) is not exactly |Z), but the central point is that �ω is maximal accuracy of the en-
ergy measurement instruments then |ZV H ) is indistinguishable of |Z) from the experimental
point of view. Then combining projectors, we can conclude that for any observable (accord-
ing to the decomposition spectral theorem) there is a van Hove observable that is obser-
vationally indistinguishable from the former. Thus the van Hove observables can give an
account of reality. A similar argument can be used in the case of states. As a consequence
the observables and states that do not belong to the van Hove spaces cannot be character-
ized experimentally since they are beyond the measurement precision. Then SID is able to
describe the physical reality with the measurement precision of nowadays.

Of course in EID, the criterion to neglect information is completely different. All the
information that is irrelevant for the proper system S is neglected.

5 Characteristic Times

After this consideration we must complete the subject defining the characteristic times:
1. In EID there is a moving preferred basis8 for the relevant subsystem and the off diag-

onal terms vanish in this basis in a characteristic time, known as the decoherence time tD ,

8In each example of EID this preferred basis is defined unambiguously, a general definition can be found
in [2].

Author's personal copy



1396 Int J Theor Phys (2013) 52:1379–1398

that we will call the proper system decoherence time in the moving pointer basis tDS .9 This
is of course a quantum reasoning related with a quantum state, ρS(t) of EID.

We also have a time where the relevant proper subsystem stops its motion, at a time tR ,
that we will call the relaxation time of the proper subsystem tRS , In this case we are in the
usual grounds.

We know that for macroscopic bodies

tDS � tRS

2. In SID there is a final pointer basis (the eigenbasis of H ) for the closed system and
the off diagonal terms vanish in this basis in a characteristic time known as the relaxation
time that we will call the proper system decoherence time of the “universe” tRU . This time is
studied in [6–14] and [50]. In SID there is also a moving preferred basis introduced in [50]
and the corresponding decoherence time tDU .

Of course we can prove that

tDS < tRS, tUS < tDR

and as proved in [2] and [50]

tDS < tDU , tDS < tRU

This is only a general description about the characteristic times, a complete study about
this issue can be found in [2, 34, 35] and [51].

6 Conclusion

1. Comparing EID and SID we can discuss the application of the these two formalisms. In
the case of EID its experimental consequence and its general success to explain many
physical phenomena is well known so it is useless to list all its applications. This is not
the case of the new arrived SID. Besides we can list some important facts.
(a) It explains the classical limit in the case of closed system as cosmological sys-

tems (see paper [52–55]) and other interesting closed systems, like the Casati-Prosen
model [38, 39]. It also gives a closed-system solution to the Mott problem [52].

(b) It may help to understand some formal aspects of quantum chaos [56].
(c) It explains the classical limit in the case of the Modal Hamiltonian Interpretation

of quantum mechanic [57], a new member of the group of modal interpretations
that began with the work of van Frassen. This interpretation satisfies all the Mermin
desiderata [58].

(d) That closed systems reach an equilibrium at Khalfin time was experimentally proved
in [59].

2. With this paper we have completed papers [1, 2] and we define the main common features
of all decoherence formalisms, the choice of relevant observables, for the case of EID and
SID.

3. We have also shown that EID and SID are perfectly compatible with the GTFD.
4. We have proved that coarse graining appears both in EID and in SID because some

information has been neglected. In EID the neglected information is the one that does
not come from the proper system S. In SID it is the information that cannot be obtained
by any available physical device.

9See the discussion about tDS in paper [2].
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