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Glyphosate is a phosphonomethyl amino acid derivative present in a number of non-
selective and systemic herbicides. During the last years the use of glyphosate-based
herbicide (GBH) has been increasing exponentially around the world, including Argentina.
This fact added to the detection of glyphosate, and its main metabolite, amino
methylphosphonic acid (AMPA), in environmental matrices such as soil, sediments, and
food, has generated great concern about its risks for humans, animals, and environment.
During the last years, there were controversy and intense debate regarding the
toxicological effects of these compounds associated with the endocrine system,
cancer, reproduction, and development. The mechanisms of action of GBH and their
metabolites are still under investigation, although recent findings have shown that they
could comprise epigenetic modifications. These are reversible mechanisms linked to
tissue-specific silencing of gene expression, genomic imprinting, and tumor growth.
Particularly, glyphosate, GBH, and AMPA have been reported to produce changes in
global DNA methylation, methylation of specific genes, histone modification, and
differential expression of non-coding RNAs in human cells and rodents. Importantly, the
epigenome could be heritable and could lead to disease long after the exposure has
ended. This mini-review summarizes the epigenetic changes produced by glyphosate,
GBHs, and AMPA in humans and rodents and proposes it as a potential mechanism of
action through which these chemical compounds could alter body functions.

Keywords: glyphosate, amino methylphosphonic acid (AMPA), epigenetic, DNA methylation, histone
modifications, miRNA
Abbreviations: 5mC, 5-methylcytosine; AMPA, (aminomethyl)phosphonic acid; ATZ, atrazine; circRNAs, circular RNAs;
DNMT, DNA methyltransferase; EFSA, European Food Safety Authority; EPA, Environmental Protection Agency; ER,
estrogen receptor; F, Filial; GBHs, glyphosate-based herbicides; GD, gestational day; HDAC, histone deacetylase; miRNA,
microRNA; PBMC, peripheral blood mononuclear cell; PND, postnatal day.
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INTRODUCTION

Epigenetics is defined as ‘molecular factors and processes around
DNA that regulate genome activity, independent of DNA sequence,
and are mitotically stable’ (1). Epigenetic modifications include
DNAmethylation, post-translational modifications of histones, and
differential expression of non-coding RNAs. Epigenetic processes
may be related to silencing/activating of gene expression, genomic
imprinting, and pathology development (2–6). Moreover, epigenetic
marks could be maintained over time and be transmitted
transgenerationally in second, third, and fourth generations (7).

The epigenome is influenced by both genetic (e.g. single
nucleotide polymorphisms) and environmental factors (8–10).
In this sense, several studies indicate that pesticides can exert
toxicity through epigenetic changes [reviewed in (11)]. Among
environmental chemicals, glyphosate-based herbicides (GBHs)
have been one of the most intensively used pollutants over the
last two decades. The herbicide glyphosate, N-(phosphonomethyl)
glycine, is a biocide with a broad-spectrum activity since its mode
of action is by inhibiting the enzyme 5-enolpyruvylshikimate-3-
phosphate synthase, involved in the biosynthesis of aromatic
compounds in plants and microorganisms (12). Monitoring
studies have evidenced the presence of glyphosate residues and
its main metabolite, (aminomethyl) phosphonic acid (AMPA), in
surface water, sediments, and soil (13–16), respirable dust emitted
by agricultural soil (17), a variety of crops at harvest and processed
food (18–20), human urine samples (21, 22), maternal and
umbilical cord serum (23), and breast milk samples (24). The
widespread presence of these compounds shows that there is a risk
of environmental exposure and concern about their possible effects
on the environment and human health.

Several studies have reported adverse effects of GBH and
glyphosate exposure on female and male murine reproductive
systems, at both low and environmentally relevant doses,
including disruption of the hypothalamic–pituitary-axis (25),
uterine and ovary abnormalities, pre- and post-implantation
embryo losses [reviewed in (26)] and testicular lesions (27).
Supporting these results, in vitro studies found alterations in
sperm motility and mitochondrial functions in human sperm
cells (28, 29), as well as increased death of TM4 Sertoli cells (30)
and disruption of blood–testis barrier integrity (31). However,
there have been controversy and debate regarding the toxicological
effects of these compounds. While the International Agency for
Research on Cancer (IARC) concluded in March 2015 that the
herbicide and its formulated products are probably carcinogenic in
humans (IARC Group 2A) (IARC 2015, https://www.iarc.fr); the
European Food Safety Authority (EFSA) decided that ‘glyphosate
is unlikely to pose a carcinogenic risk to humans’ (EFSA 2015)
(32). In 2017, the Environmental Protection Agency (EPA) issued
a Draft Human Risk Assessment for Glyphosate, which concluded
that glyphosate is not likely to be carcinogenic in humans. In 2019,
the EPA released a Glyphosate Proposed Interim Registration
Review Decision for public comments and, in 2020, released the
Interim Registration Review Decision. The EPA continues to find
that there are no risks to public health when glyphosate is used in
accordance with its current label (EPA 2020 https://www.epa.gov).
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The mechanisms of action of GBH and their metabolites are
still under investigation. It has been reported that they could
comprise interference with Ca+ ion-channels and peptide/steroid
hormone response [reviewed in (11)]. More recently, epigenetic
mechanisms have been also proposed as possible mediator of the
action of these compounds (Table 1). This mini-review
summarizes the current evidence about glyphosate-, GBH- and
AMPA-induced epigenetic modifications in humans and rodents
and proposes them as potential mechanisms through which these
compounds could alter body functions.
EPIGENETIC MECHANISMS

DNAmethylation is one of themost studied epigeneticmodification.
It occurs when DNA methyltransferases (DNMTs) transfer, in a
reversible way, methyl groups from S-adenyl methionine to the fifth
carbon of a cytosine residue, that is followed by a guanosine (CpG
site), to form 5-methylcytosine (5mC) (43). The frequency of CpG
sites is higher than expected in clusters known asCpG Island that are
generally located in the promoter regions of genes. When these sites
are methylated, transcription factors are not able to bind to the
promoter regions, and the gene expression decreased. On the
contrary, if these sites are demethylated, transcription is activated
and gene expression is increased (9, 44).

Histone methylation could help to direct DNA methylation
patterns, and DNA methylation seems to serve as a template for
rebuilding histone modification patterns following DNA replication
(45). Histone modification occurs on specific amino acid residues,
changing the structure of chromatin and leading, together with the
DNA methylation, to the activation or suppression of gene
transcription (46). These biomarkers are known to be involved in
the regulation of a broad range of biological processes, including
DNA double-strand break repair (47). Trimethylated histone H3K9
(H3K9me3) and H3K27me3 are associated with decreased
transcriptional activity and heterochromatin condensation (48). On
the contrary, histone acetylation, in particular, increased acetylation
of the H4 tail, is strongly linked to open, transcriptionally active
regions of the chromatin (47).

DNA methylation also regulates microRNA (miRNA) biogenesis
(49). miRNAs are small, non-coding RNAs that are recognized as
endogenous regulators of post-transcriptional gene expression (5).
Under normal physiological conditions, miRNAs function by
safeguarding biological processes including cell cycle, proliferation,
differentiation, and apoptosis. De-regulation of a single or small subset
of miRNAs was reported to have a profound effect on the expression
pattern of several hundred mRNAs which propels the cells towards
transformation (6), leading to the development and progression of
pathological conditions.Bothhyper-andhypomethylationofmiRNAs
represent new levels of complexity in gene regulation (50).

EPIGENETIC CHANGES AND
GLYPHOSATE-BASED HERBICIDES

Several studies indicate that epigenetic mechanisms could mediate
toxicity from pesticides. For example, methoxychlor induced
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changes in DNA methylation in rat ovary (51) and sperm (52).
Moreover, dichlorodiphenyltrichloroethane (DDT)modifiedDNA
methylation in rat hypothalamus (53). Atrazine (ATZ) was
reported to dysregulate histone modification in mouse sperm (54,
55) and miRNA levels in rat brain and blood (56).

More recently, epigenetic processes in mammals have been
also described after the exposure of glyphosate, GBH, and
AMPA. To analyze the published data, we conducted a review
of scientific publications on PubMed and Google Scholar
searches using the following search terms: “glyphosate” or
“GBH” or “AMPA” AND “epigenetic” or “DNA methylation”
or “histone modification” or “miRNA”AND “human” or “rat” or
“mice”. From these searches, eleven articles were found. Below,
these works are described and discussed in detail.

Glyphosate and AMPA Induced DNA
Methylation Changes in Human Cells
Tumor suppressor genes and proto-oncogenes play critical roles in
cell cycle regulation, apoptosis, and cell senescence.Moreover, p16,
p53, and p21 have important functions in the DNA-damage repair
pathways which are among the most frequently compromised
pathways in pathological conditions such as tumor growth (57).
In this sense, most cancers have inactivating mutations in one or
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more proteins that normally function to restrict progression
through the G1 stage of the cell cycle (e.g.: p16), and in proteins
such as p53 that normally function at crucial cell-cycle checkpoints,
stopping the cycle if a previous step has occurred incorrectly or if
DNA has been damaged (58). In fact, the hypermethylation of p16
and p53 promoter regions is an epigenetic pattern frequently
observed in human cancer development, and this condition is
generally associated with reduced methylation level of global
genomic DNA (59).

The effect of glyphosate on DNA methylation was first
reported by Kwiatkowska et al. (33) in vitro (Table 1). These
authors showed that high concentrations of glyphosate (from
84.54 to 1690 mg/ml) induce DNA lesions in peripheral blood
mononuclear cells (PBMCs), decreased global 5mC percentage,
and increased methylation of p53 promoter. Recently, similar
results were reported, even at lower doses of glyphosate and
AMPA (100–1,000 times lesser), in PBMC cells (34, 60)
(Table 1). Importantly, they found that the hypermethylation
of p16, p53, and p21 genes was able to downregulate their mRNA
expression and activate proto-oncogenes, which could lead to
genomic alterations, downstream function dysregulation, and
cancer development risk. Supporting these possible effects, it was
later reported by Santovito et al. (61) that human lymphocytes
TABLE 1 | Epigenetic modifications induced by glyphosate, glyphosate-based herbicides (GBH) and amino methylphosphonic acid (AMPA).

Compound Modification Tissue/Cell Main Effects

Humans
Glyphosate DNA methylation (33) PBMC Decrease global 5mC percentage

Increase methylation of p53 promoter
Glyphosate DNA methylation (34) PBMC Decrease global 5mC percentage

Change methylation pattern of p21 and p53 promoters
Alter the expression genes involved in regulation of cell cycle (CCND1, p16, P21, and P53)
and apoptosis (BCL2)

Glyphosate DNA methylation (35) MCF10A cells DNA hypomethylation occurring via TET pathway
Changes in methylation patterns of MTRNRL2 and DUX4 genes
Exposure to glyphosate and miRNA 182-5p induced tumor development in 50% mice
TET inhibitor prevents tumor formation in glyphosate-miR 182-5p-cells

AMPA and
Glyphosate

DNA methylation and histone
modification (36)

PBMC Changes in the expression of DNMT1 and HDAC3 by glyphosate and AMPA
Changes in the expression of DMNT3A by glyphosate

AMPA DNA methylation (36) PBMC Decrease global 5mC percentage
Change methylation pattern of p21 and p53 promoters
Increase the expression of CCND1

Rodents
GBH DNA methylation (37) Rat mammary

gland
Alter mammary gland development
Decrease ERa protein and mRNA expression (transcripts OS, O, OT, and E1)
Changes in methylation patterns of ERa promoters in post-puberal animals

GBH DNA methylation and histone
modification (38)

Rat uterus Increase ERa mRNA during pre-implantation period
Increase the relative abundance of ERa-O transcript variant
Alter methylation status and histone post-transductional modifications in the O promoter of
ERa gene.

GBH miRNA (39) Mouse brain
(PFC)

55 upregulated and 19 downregulated miRNAs
Alter Wnt/b-catenin and Notch pathways

GBH circRNA (40) Mouse brain
(Hip)

330 upregulated and 333 downregulated circRNAs

Glyphosate DNA methylation (41) Rat sperm Increase pathologies in F2 and F3 (prostate, ovarian and kidney diseases, obesity, birth
abnormalities, and tumor growth)
DMRs in sperm

Glyphosate DNA methylation and histone
modification (42)

Rat sperm DMRs and DHRs in F3 generation.
DHRs, Differential histone retention sites; DMRs, Differential DNA methylation sites; DNMT, DNA methyltransferase; HDAC, histone deacetylase; PBMCs, Peripheral Blood Mononuclear
Cells; PFC, Prefrontal Cortex; Hip, Hippocampus.
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exposed to lower glyphosate concentrations (0.025–0.500 mg/ml)
increased the frequency of chromosomal aberration and
micronuclei. Later, Woźniak et al. (36) found that glyphosate
changes the expression of DNMT1, DMNT3A, and histone
deacetylase (HDAC) 3, while AMPA changes the expression
of DNMT1 and HDAC3 in PBMCs. These enzymes are involved
in the regulation of chromatin architecture and, thus, could affect
methylation patterns and histone modification, leading to
changes in gene expression. On the other hand, Duforestel
et al. (35) found that glyphosate triggered a significant
reduction in DNA methylation and increased ten-eleven
translocation (TET) 3 activity in MCF10A cells. TET enzymes
oxidize 5-methylcytosines and reverse methylation. Combining
glyphosate with enhanced expression of miRNA 182-5p
(associated with breast cancer) induced tumor development in
mice, suggesting that DNA hypomethylation occurring via the
TET pathway primes cells for oncogenic response in the presence
of another potential risk factor (35).

Although controversies have grown about the carcinogenicity
and toxicity consequence of glyphosate, effects have been shown
on skin cancer promotion in mice and proliferation of human
breast cells (62, 63). Taking into account the role of this herbicide
as a “probable human carcinogen”, it would be interesting to
analyze if the epigenetic changes of tumor suppressor genes
observed in vitro could be replicated in in vivo models and if
these molecular alterations could explain, at least in part, some of
the adverse effects produce by glyphosate.

GBH Modifies the Methylation Status of
the Estrogen Receptor a in Rats
Estrogens, a class of steroid hormones, regulate the growth,
development, and physiology of the human reproductive system
(64). They are produced principally by the gonads and placenta,
but have multiple physiological functions on target organs such as
the uterus, hypothalamus, pituitary, bone, mammary tissue, and
liver (65). Estrogen signaling is mainly mediated through the
classic nuclear receptor, estrogen receptor (ER) a. The expression
of ERa occurs through different promoters depending on the
tissue and physiological or developmental stages. In rats, five
promoters have been described that result in transcripts with
different 5′ untranslated regions derived from exons OS, ON, O,
OT, and E1 (66). Importantly, the loss of expression, which is
frequently observed in breast cancer, and the presence of triple
negative tumors are often associated with hypermethylation of ER
regulatory regions (37).

Several works report how the exposure to glyphosate alter the
ER expression in vivo (67, 68) and in vitro (69–72), although the
regulation mechanisms involved are still under study. Recently,
Gomez et al. (37) and Lorenz et al. (38) found that developmental
exposure to GBH (Filial 0, F0) from gestational day (GD) 9 until
weaning induces epigenetic changes in ERa of F1 rats (Table 1).
The first group reported that standard diet supplemented with a
GBH in two doses, 3.50 and 350 mg of glyphosate/kg bw/day,
decreased the expression of OS, O, OT, and E1 transcripts in
male mammary glands at postnatal day (PND) 60. These changes
were accompanied by an increased in the DNA methylation of
their promoter regions (73). Along the same line, Lorenz et al.
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(38) found, in a similar model, that perinatal exposure to GBH in
a dose of 350 mg of glyphosate/kg bw/day, upregulated the
expression of ERa mRNA in the pregnant rat uterus (F1) at
GD5 (preimplantation period). This change was associated with
an increase in the abundance of the O transcript variant and a
decrease in DNA methylation of its promoter. Supporting these
transcriptional changes, histone H4 acetylation and H3K9me3
were enriched in the O promoter in GBH-exposed rats, whereas
H3K27me3 was decreased.

These studies proposed that the adverse observed effects of
GBH on mammary gland growth (37, 73–75), embryo
implantation (76), uterine development and reproduction (67,
68, 77), could be mediated, at least in part, by aberrant DNA
methylation and histone acetylation/methylation of ERa gene. In
this sense, the disruption of ER was previously related to male
and female outcomes, including infertility, abnormal uterine and
sperm maturation, atypical ovarian functions, and implantation
deficits (78). These results require particular attention since all
the epigenetic alterations mentioned above were observed after
the GBH exposure has ended, suggesting that this exposure
during sensitive periods of development (gestation) could
perturb epigenetic programming and could have a long-lasting
impact later in life. So far, it is necessary to clarify whether these
effects could be due to the active principle (glyphosate), the co-
formulants, or a combination of both, since previous studies have
shown that commercial formulations are more toxic than
glyphosate alone (79). In addition, it would be interesting to
consider different administration routes, timings of exposure,
and time points as conditioning factors.

Glyphosate Induced Epigenetic
Transgenerational Inheritance
Epigenetic transgenerational inheritance is a non-genetic form of
inheritance that allows environmental factors to produce epigenetic
alterations in the germline (sperm or egg) at critical periods of
development that could be passed to subsequent generations,
leading to pathologies or phenotypic variation in the absence of
continued direct exposures (41). DNAmethylation reprogramming
could occur in the early embryo following fertilization (80), in the
primordial germ cells in early gonadal development (81) or, even,
during adult spermatogenesis in the testis (1).

Recently, Deepika Kubsad et al. (41) studied the
transgenerational effect of glyphosate exposure (25mg/kg bw/day)
on pregnant rats (F0) during GD8 to 14. They found that this
exposure produced in F1, F2, and F3 differential DNA methylation
regions (DMRs) in the sperm (Table 1). DMR associated gene
categories were mainly related to transcription, signaling,
metabolism, receptors, and cytokines and include metabolic and
cancer pathways. Negligible pathology was observed in the F0 and
F1 generations, while a significant increase in prostate, kidney
and ovarian diseases, obesity, and parturition (birth)
abnormalities was observed in the F2 generation grand-offspring
and F3 generation great-grand-offspring. Tumor development was
also monitored inmales and females and found to increase in the F2
generation glyphosate female lineage; the most predominant were
mammary adenomas. In another work from the same group, sperm
from F3 generation was studied for DMRs and differential histone
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retention sites (DHRs), that were correlated with known pathology
specific-associated genes (42) (Table 1). Interestingly, overlapping
sets of DMRs and DHRs were identified that were common for all
the pathologies. These results support previous works that found
adverse effects related to fetal parameters and structural congenital
anomalies after perinatal exposure of GBH (F0) in second-
generation of rats (F2) (76, 82, 83). However, Deepika Kubsad
et al. (41) and Maamar et al. (42) reported for the first time that
transgenerational inheritance of disease in rodents could be
produced by DMRs and DHRs in the male germline, and these
sites could potentially act as a biomarkers for specific diseases. Based
on these findings, further studies are needed to deepen on the
generational toxicology of glyphosate, in the disease etiology of the
future generations.

Maternal Exposure to GBH Alter the Non-
Coding RNAs Profile in the Rat Offspring
The effect of GBH onmiRNAs was recently reported by Hua ji et al.
(39) who studied the effect of glyphosate exposure (1% Roundup;
equivalent to 50 mg/kg bw/day) during pregnancy and lactation
(GD14 to PND7) in the offspring brain (Table 1). A miRNA
Frontiers in Endocrinology | www.frontiersin.org 5
microarray detected 55 upregulated (i.e: miR-711, miR-27b-3p,
miR-142a-3p) and 19 downregulated (i.e: miR-34b-5p) miRNAs
in the prefrontal cortex of mice at PND28 after maternal exposure.
In addition, they reported abnormalities of the Wnt/b-catenin and
Notch pathways in these animals that correspond with the
dysregulation found in miRNA patterns. This support previous
works that showed a disruption of Wnt proteins by neonatal
exposure to GBH (2 mg/kg bw/day) from PND1 to PND7, in rat
uterus (PND21) and implantation sites (GD9) (68, 77). In addition,
exposure to glyphosate also produced a downregulation of these
pathways in neuron cultures (84). In a second work and using the
samemodel of exposure, these authors also found that circular RNA
(circRNA) profile was significantly altered in the hippocampus of
perinatal glyphosate exposure group (40) (Table 1). circRNAs are a
special class of non-coding RNAs which may interact with miRNAs
to regulate gene expression. The altered miRNA and circRNAs were
related to biological functions, including neurogenesis, neuron
differentiation, brain development, stress-associated steroid
metabolism pathways, among others.

Some of the miRNAs and their target genes disrupted by
glyphosate exposure were also reported to be involved in
FIGURE 1 | Possible mechanism that links the exposure to herbicides, the epigenome modification and the observed phenotypes. Chromosomes are composed of
chromatin wrapped around proteins called histone; modifications of histone tails and DNA methylation control transcriptional access to DNA. Non-coding RNAs also
regulate transcription. The exposure of herbicides, such as glyposhate (Gly), glyphosate-based herbicides (GBH) and, its main metabolite, (aminomethyl) phosphonic
acid (AMPA) could alter the epigenome and could produce the silencing/activating of numerous genes, including estrogen receptor (ER), p16, p21, p53, and Wnt.
This could result in the disruption of physiological functions and the promotion of health outcomes.
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pathological conditions, such as neurological disorders, prostate
cancer and breast cancer (40, 85–88). Particularly, miR-34b-5p
affects Numbl and Notch1 genes, which are involved in the Notch
signaling pathway. In addition, the 3′-untranslated regions of b-
catenin and Lef-1, which are involved in theWnt signaling, contain
miR-34 binding sites and are sensitive to miR-34b-dependent
regulation. Abnormal activation of the Wnt/b-catenin or Notch
pathways may serve an important role in the pathogenesis of
various reproductive outcomes, including preeclampsia (85),
embryo implantation (86), endometriosis (87), and ovarian
tumors (88). Taking all together, these findings provide a new
basis for identifying themechanismof actionof glyphosate-induced
neurotoxicity in thedevelopingbrainandcould serve as abeginning
for elucidating the more general mechanisms of GBH toxicity in
human and animal models. In addition, more investigations are
needed to clarify the interaction between circRNAs, miRNAs, and
genes as possible target of glyphosate exposure.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Recent findings have shown that the exposure of glyphosate, GBH,
or AMPA could affect epigenetic mechanisms. These include the
decrease of global DNA methylation, alterations in the
methylation pattern of specific regions, including ER and tumor
suppressor genes, histone modifications, and differential
expression of non-coding RNAs involved in, for example, Wnt
and Notch pathways. These epigenetic markers have been
involved in several physiological and pathological processes that
Frontiers in Endocrinology | www.frontiersin.org 6
were also reported after glyphosate, GBH, or AMPA exposure in
animal models. In this sense, several lines of evidence indicate that
the exposure to these compounds could alter the epigenome,
disrupting the mRNA expression and protein levels of key genes
involved in normal functions and thus, producing negative
consequences (Figure 1). These epigenetic alterations could be
heritable and could have a manifestation in health impacts and
disease after the exposure has ended. Overall, more studies are
needed to identify epigenetic targets, to define how they are
dysregulated in human disease and their functional role, and to
determine the critical windows of vulnerability by herbicide
exposures. These points would influence environmental risk
assessment and contribute to the development of prevention
strategies for health outcomes.
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