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A B S T R A C T   

Unplanned logging is one of the greatest current threats to native forests biodiversity. About 90% of the pied
mont forest in the Southern Andean Yungas has been converted to other land-use types and the remaining forests 
fragments are being intensively logged without management plans. Bird species, especially understory birds, are 
good indicators of forest diversity and integrity. The aim of this study was to identify understory bird species 
associated with changes in the forest structure caused by selective logging and to explore whether it is possible to 
use these species as a monitoring tool. We observed that Sittasomus griseicapillus, Turdus rufiventris, Lepidocolaptes 
angustirostris, Casiornis rufus, Thraupis sayaca, and Tolmomyias sulphurescens were associated to unlogged sites 
with higher density of timber-yielding and standing dead trees. Thamnophilus caerulescens, Leptotila megalura, 
Synallaxis scutata, Poecilotriccus plumbeiceps, and Catharus ustulatus were favoured by logging activities and 
associated with understory visual obstruction. Mean cut-off abundance thresholds were 2.74 ind/ha for the avian 
guild associated with unlogged forest and 1.79 ind/ha for the guild associated with logged forest. Sustainable 
forest management schemes need to retain the understory visual obstruction at values similar to those of 
unlogged forest (43.75%), together with an adequate density (≥10 ind/ha) of standing dead trees with at least 
19.5 cm in DBH, and a minimum of 210 ind/ha of timber tree species. Bird species identified in this study can be 
used in monitoring schemes to evaluate the implementation of these guidelines.   

1. Introduction 

Forests are the world’s dominant terrestrial ecosystem and human 
impact is causing their degradation (FAO, 2020). These ecosystems not 
only harbour the greatest species richness, but also sustain one-third of 
mankind through the ecosystem services they provide (IPBES, 2018). At 
least 400 million hectares of tropical and subtropical forests worldwide 
(53% of the total forest area) are under forest management (Blaser et al., 
2011). The lack of planning and sustainability criteria is leading to a 
rapid degradation of logging forests (Putz et al., 2012; Keenan et al., 
2015). Unplanned logging represents one of the greatest current threats 
to global biodiversity (Edwards et al., 2014; Burivalova et al., 2015). In 
general, the richness of invertebrates, amphibians and mammals decline 
with increasing logging intensity, and this effect varies depending on the 
taxonomic group and continental location (Burivalova et al., 2014). 

Birds in contrast, exhibit an opposite pattern, in which species richness 
increase with logging intensity (Burivalova et al., 2014). This pattern, 
however, is mostly driven by the influx of habitat generalists in heavily 
logged areas, in detriment of forest interior specialist species (Seker
cioglu, 2002; Edwards et al., 2011; Boyle and Sigel, 2015). 

Understory birds are among the most vulnerable species to selective 
logging without forest management (Thiollay, 1992; Fimbel et al., 
2001). This group of birds responds to disturbance-induced changes in 
vegetation structure and composition, and to resource availability 
(Zurita and Zuleta, 2009; Powell et al., 2015; Visco et al., 2015). Logging 
increases the understory light intensity and temperature, altering the 
habitat quality for understory birds (Chen et al., 1995; Patten and Smith- 
Patten, 2012). Habitat changes may exceed the birds physiological and 
behavioural tolerances, affecting population abundance and community 
composition (Barlow et al., 2006; Srinivasan and Banks-Leite, 2013). 
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Bird species react differently to changes produced by selective logging; 
some of them may benefit from these changes, whereas others may be 
negatively affected (Aleixo, 1999; Arcilla et al., 2015). 

Monitoring programs in logged forests are essential for attaining 
sustainable forest management (SFM). Thus, with a monitoring program 
it is possible to assess the forest management quality and adjust the 
impact levels within acceptable limits (Lindenmayer, 1999; Bicknell and 
Peres, 2010). Monitoring programs have provided valuable information 
over the years for the SFM (Abbott et al., 2009). The application of 
different monitoring techniques allows evaluating bird population pa
rameters such as occupancy, abundance, and behavioural traits (Pillay 
et al., 2019). The use of bird species in these monitoring programs is 
carried out assuming that responses of individual species may represent 
the response of other taxa within the community (Caro and O’Doherty, 
1999; Ikin et al., 2016). Another strategy consists of monitoring the 
entire bird assemblage, but it requires complex methods together with 
many financial and human resources (Danielsen et al., 2005; Favreau 
et al., 2006). An alternative strategy involves using a combination of 
species with different habitat requirements, taxonomy, and behaviour 
based on response guilds that may increase the effectiveness of moni
toring programs (Wilson, 1999; De Cáceres et al., 2012). Bird moni
toring does not substitute for indicators of stand structure and forest 
attributes (Lindenmayer, 1999), but provides a time and cost effective 
complementary method for validating and comparing the effect of 
different types of forest management (Politi and Rivera, 2019). Indicator 
variability serves to determine the ecological significance of any change 
or pattern in order to evaluate management performance (Carignan and 
Villard, 2002; Niemi and McDonald, 2004). 

Avian abundance thresholds are useful tools for assessing the impact 
of selective logging and the effectiveness of forest management plans. 
Bird response to habitat disturbance through the use of thresholds in
dicates that tropical species are more affected than temperate species 
(Melo et al., 2018). The threshold-based approach is booming because 
its results can be directly used in conservation strategies (Suding and 
Hobbs, 2009). Over the last decade, more countries have been adopting 
certified timber production, following the International Forest Stew
ardship Council (FSC) to achieve SFM (Blumroeder et al., 2019). Despite 
the SFM advantages, conventional practices continue to dominate the 
industry (Blaser et al., 2011; Politi and Rivera, 2019), making it neces
sary to establish simple tools like avian thresholds for monitoring 
vulnerable, threatened and productively important ecosystems, such as 
the piedmont forest of the Southern Yungas. 

In Neotropical forests, previous studies analysing the effects of se
lective logging on bird assemblages have mainly focused on predefined 
guilds (Zurita and Zuleta, 2009, Politi et al., 2012), functional groups 
(Ruggera et al., 2016b), and uncommon species (Schaaf et al., 2019). 
However, less attention has been given to the abundance patterns of the 
most common bird species or to the use of response guilds (Burivalova 
et al., 2014; Visco et al., 2015). Thus, our objective was to characterize 
forest types with and without logging and to identify common under
story bird species associated with forest structure in the piedmont forest 
of northwestern Argentina. 

2. Material and methods 

2.1. Study system 

This study was carried out in the piedmont forest of Salta and Jujuy 
provinces, in Argentina. The piedmont forest is the lowest altitudinal 
level of the Southern Yungas, ranging from 400 to 700 m.a.s.l. Due to its 
very high percentage of species and deciduous individuals (>70%), the 
piedmont forest is one of the most seasonal forest systems in South 
America (Prado and Gibbs, 1993, Mogni et al., 2015) exhibiting the 
greatest hydric contrasts between the rainy summers (with mean 
monthly rainfall above 100–300 mm) and the dry winter-spring period 
(below 10 mm), with variable annual rainfall (800–1000 mm) (Brown 

et al., 2001). Mean annual temperature varies between 18 and 20 ◦C, 
with a minimum of 13.6 ◦C and a maximum of 26.1 ◦C (Bianchi et al., 
2008). Estimates indicate that the floral richness of this level includes at 
least 278 woody species (Brown and Malizia, 2004). Distinctive tree 
species include Phyllostylon rhamnoides, Calycophyllum multiflorum, 
Handroanthus impetiginosus, Anadenanthera colubrina, Myroxylon perui
ferum, Cordia trichotoma, Amburana cearensis, Enterolobium con
tortisiliquum, and Myracrodruon urundeuva (Brown et al., 2001). 

The piedmont forest belongs to the Sierras Subandinas geological 
province. Soil types include entisols, inceptisols, alfisols, mollisols and 
aridisols irregularly distributed across the area. These soils are moder
ately developed and have a great spatial variability depending on lith
ological, geomorphological and climatic variations (Pereyra, 2012). The 
piedmont forest has the highest percentage of species exclusive to the 
Southern Yungas and it is the most threatened forest ecosystem in the 
Andean region (Brown, 2009). Its vulnerability is increasing since it is 
poorly represented in the system of protected areas. It is estimated that 
nearly 90% of the piedmont forest in Argentina has been transformed 
into agricultural lands (Brown and Malizia, 2004). Most of the remain
ing forests of this ecosystem (approximately 900.000 ha) are exploited 
by the forest industry (Brown et al., 2001). Selective logging without 
forest management and planning is currently one of the greatest threats 
to the Southern Andean Yungas of Argentina (Tejedor Garavito et al., 
2012; Politi and Rivera, 2019). Intensive selective logging of commer
cial species has led to a large proportion of forests being impoverished 
and simplified, with basal area values less than half of their potential 
(Brown and Malizia, 2004). In addition, logged sites present low species 
richness and an increase in the number of vines which reduce the 
commercial value of trees (Blundo and Malizia, 2009; Malizia et al., 
2009). To initiate logging, it is necessary to submit a management plan 
to the competent authorities (Balducci et al., 2012). On average, the 
volume of timber extraction is 4 m3/ha, ranging from a minimum of 
1 m3/ha to a maximum of 13 m3/ha. The largest volume of the harvested 
timber belongs to M. peruiferum, A. colubrina, C. multiflorum, 
P. rhamnoides, C. balansae and H. impetiginosus (Eliano et al., 2009; 
Balducci et al., 2012). 

A total of six study sites were included in our research (Fig. 1), three 
of which had not been logged for five years before the beginning of our 
study (2010) but had previously been logged for 45 years (logged sites). 
The other three sites had not been logged for 45 years (unlogged sites) 
before the study. At logged sites, wood extraction had been carried out 
selectively, without sustainability criteria. Elevation of sampled sites 
ranged from 550 y 650 m.a.s.l. and presented areas with steep slopes. At 
each site, we conducted fieldwork within a 100 ha grid that was 
embedded in a continuous forest matrix to avoid possible additional 
effects of other anthropic disturbances. We assumed that locations 
within each forest type have similar environmental characteristics and a 
reasonable distance from each other to ensure sampling independence. 
Unlogged sites were located at Finca Yuchán (23◦56′11′′S; 64◦54′59′′W), 
Finca San Martín (23◦45′58′′S; 64◦48′55′′W), and Calilegua National 
Park (23◦38′11′′S; 64◦35′15′′W), whereas logged sites pertained to Finca 
Higueritas (23◦56′42′′S; 64◦57′10′′W), Finca Río Seco (22◦27′16′′S; 
63◦58′47′′W), and Finca Itiyuro (22◦05′30′′S; 63◦45′04′′W). 

2.2. Habitat structure 

We assessed the vegetation structure in 86 circular plots of 12.6 m 
radius in each forest type, in coincidence with the bird point counts 
(Bibby et al., 2000). Thus, we established 30 circular plots per site in 
four locations (sites 1, 2, 5 and 6), and 26 plots in each of the remaining 
two sites (sites 3 and 4, Fig. 1). The visual obstruction of the understory 
was determined with a 2 m pole marked every 20 cm, and located 10 m 
away from the centre of the plot at the four cardinal points. In addition, 
we estimated the canopy cover by averaging 12 measurements obtained 
with a densitometer located at 1, 5, and 10 m away from the plot center, 
in the four cardinal points. We identified all trees >10 cm diameter at 
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Fig. 1. Location of unlogged study sites (black triangles) and logged sites (red triangles) in the Southern Yungas of Argentina. 1) Finca Yuchan, 2) Finca San Martín, 
3) Calilegua National Park, 4) Finca Higueritas, 5) Finca Río Seco, and 6) Finca Itiyuro. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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breast height (DBH) and recorded the DBH value, and total height of 
each tree (Higgins et al., 1996). In addition, we identified each tree to 
the species level and classified it according to its status into alive 
(healthy), decaying (at least with one dead primary or secondary 
branch), or dead (standing tree >1.6 m in height without leaves and 
with almost all its branches). According to their commercial forest value, 
trees species were categorized into valuable (Calycophyllum multiflorum, 
Cedrela balansae, Enterolobium contortisiliquum, Handroanthus impetigi
nosus, Myracrodruon urundeuva, Phyllostylon rhamnoides, and Amburana 
cearensis) and non-valuable timber (Blundo and Malizia, 2009). 

2.3. Bird surveys 

We conducted a total of 516 bird point counts (logged sites: 258; 
unlogged sites: 258) during three breeding seasons (2015–2017). We 
used 50 m fixed-radius point counts of 10 min duration (Bibby et al., 
2000). Thus, we sampled between 26 and 30 point counts at each site 
(30 point counts in sites 1, 2, 5, and 6, and 26 in sites 3 and 4, Fig. 1), all 
of which were located inside the forest at ≥150 m from roads or edges. 
Samplings were carried out during the morning (from 7:00 a.m. to 11:00 
a.m.) to match the peaking periods of bird activity. We identified and 
recorded the abundance of all bird species seen or heard. In this study, 
we considered to be understory all of those bird species which forage 
and nest in the understory (including ground-foraging/nesting species), 
regardless if they use another vegetation layer (Auer et al., 2007; 
Blendinger and Álvarez, 2009). Understory birds are the group with the 
highest population density within the piedmont forest bird assemblage 
(Politi et al., 2012). Although they are a small part of the species rich
ness, common species define the ecosystem structure and dynamics 
(Gaston, 2011). 

2.4. Statistical analysis 

2.4.1. Vegetation characterization 
We determined the density of tree species (ind/ha), basal area (m2/ 

ha), and the dominance value obtained from the basal area. The visual 
obstruction of the understory and the canopy cover were obtained by 
averaging of the vegetation marks. We compared the variables of the 
vegetation structure between logged and unlogged sites using the 
Kolmogorov-Smirnov test. A Mann Whitney U test was used to deter
mine whether or not there were significant differences in the dominance 
of tree species in logged and unlogged sites. 

2.4.2. Response guilds 
We used an Analysis of similarities (ANOSIM) to examine the dif

ferences between the assemblages of logged and unlogged sites. Addi
tionally, we use the Bray-Curtis index to calculate dissimilarity because 
it is more sensitive to differences in the most abundant species and less 
sensitive to uncommon species (Magurran and McGill, 2011). The sta
tistical significance of the ANOSIM was assessed using a permutation 
test with a significance level of α = 0.05. In order to obtain the response 
guilds of understory birds, we performed the dominance value species 
analysis (Pinzón and Spence, 2010) and the indicator species analysis 
(De Cáceres et al., 2012). The dominance value analysis is the result of 
obtaining a dominance index calculated from the proportional presence 
(w) and proportional abundance (PA) of each species per sampling unit. 
From the values of w and PA, we draw a graph to show the degree of 
dominance of the bird species (Pinzón and Spence, 2010). Common 
species are those which were dominant, sub-dominant or common 
species because of their dominance value index. In the indicator species 
analysis, species were determined based on the relationship between 
their frequency and abundance in logged or unlogged sites. This index 
varies between 0 and 100% and high values indicate a high abundance 
and occurrence of the species within logged or unlogged sites (Dufrêne 
and Legendre, 1997). A species was considered to be associated with 
logged or unlogged sites when its indicator value was statistically 

significant (p < 0.05) by a random permutation test. 
Response guilds of understory bird species for logged and unlogged 

sites had to meet two criteria to be classified: (1) be common species 
according to the dominance value analysis; and (2) be indicator species 
with an index ≥50 (IndVal = indicator value) and statistically signifi
cant. The Mann Whitney U test was used to compare the abundance of 
bird guilds between logged and unlogged sites. The potential of response 
guilds was tested to discriminate logged and unlogged sites by analysing 
the Receiver Operating Characteristic (ROC) curves (Dos Santos et al., 
2011). The ROC methodology is a valuable tool for objectively 
comparing the diagnostic capabilities of different tests as well as for 
obtaining decision thresholds. The purpose of the test is to classify in
dividuals in a population in two groups: one showing an event of interest 
and another one which does not (Zweig and Campbell, 1993). This 
discriminating ability is subject to the cut-off threshold (or threshold 
value) chosen amongst all the possible outcomes of the decision vari
able, i.e. the variable by whose outcome each individual is classified into 
one group or another. A desired property of the threshold value is high 
sensitivity and specificity (Dos Santos et al., 2011). 

2.4.3. Vegetation relationships with bird guilds 
We quantified the association between vegetation variables using 

correlation matrix, discarding those with high collinearity (r > 0.7). The 
variables discarded were tree DBH, total tree density and total basal area 
(Appendix A). To determine the most suitable direct gradient analysis, 
we first carried out a Detrended Correspondence Analysis (DCA). Then, 
due to the linear response of the response guilds, we performed a 
Redundancy Analysis (RDA) to evaluate the association between these 
guilds and the vegetation variables. Bird species abundance data were 
transformed using the Hellinger method (Legendre and Gallagher, 
2001). We calculated inertia and used a Monte Carlo test with 999 
permutations to test for the significance of the model, the RDA axes, and 
the vegetation variables (Legendre et al., 2011). The model was built 
only with the variables which were statistically significant (p < 0.05). 
The analyses were performed using the indicspecies, pROC, vegan, caret, 
and corrplot packages and the graphs were drawn with ggplot2 and ggord, 
for R version 4.0.1 (R Development Core Team 2020). 

3. Results 

3.1. Vegetation characterization 

In logged sites, we identified 47 tree species belonging to 25 families 
and in unlogged sites, 45 tree species corresponding to 22 families 
(Appendix A). Logged sites had significantly lower basal area of valuable 
timber species compared to unlogged sites (Appendix A). Logged sites 
also showed greater density and basal area of non-valuable timber 
species, average height of the trees, and visual obstruction of the un
derstory (Table 1). Unlogged sites, however, had a higher density of 
valuable timber species and standing dead trees. In addition, unlogged 
areas showed higher values in the DBH of standing dead trees, total basal 
area, and basal area of valuable timber species (Table 1). 

3.2. Response guilds 

We recorded 2051 individuals from 53 understory bird species in 
logged sites and 1706 individuals from 41 understory bird species in 
unlogged sites (Appendix B). Bird assemblages differed between logged 
and unlogged sites according to species composition and abundance 
(ANOSIM R = 0.34; p < 0.01). The dominant species in logged sites were 
Catharus ustulatus and Thamnophilus caerulescens; whereas in unlogged 
sites dominant species included Sittasomus griseicapillus and Lep
idocolaptes angustirostris. Additionally, two dominant understory bird 
species (Turdus rufiventris and Myothlypis bivittata) were found in both 
logged and unlogged sites (Appendix B). Common species in the logged 
sites were Leptotila megalura, Poecilotriccus plumbeiceps, Synallaxis 
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scutata, S. griseicapillus, and L. angustirostris; whereas in the unlogged 
sites common species included Casiornis rufus, T. caerulescens, Thraupis 
sayaca, and Tolmomyias sulphurescens. The remaining bird species were 
categorized as rare in the assemblages and we found no sub-dominant 
species. 

In total, 20 bird species showed a significant indicator value in log
ged sites (Appendix B). Five bird species with the highest indicator 
values made up the response guild of logged sites (T. caerulescens, 
L. megalura, S. scutata, P. plumbeiceps, and C. ustulatus). These bird spe
cies were the more abundant in logged sites compared to unlogged sites 
(3.38 ± 0.17 vs 1.40 ± 0.13, respectively; U = 5345; p < 0.01; Fig. 2). 
The response guild of unlogged sites was composed of six bird species 

(S. griseicapillus, T. rufiventris, L. angustirostris, C. rufus, T. sayaca, and 
T. sulphurescens) which were more abundant in unlogged sites compared 
to logged sites (3.53 ± 0.13 vs. 2.37 ± 0.12, respectively; U = 11248; 
p < 0.01; Fig. 2). 

The ROC curve analysis showed a level of accuracy of AUC = 0.84 
(95% CI = 0.78–0.89) for the response guild of logged sites (Fig. 3a) and 
AUC = 0.75 (95% CI = 0.68–0.81) for the unlogged sites response guild 
in (Fig. 3b). The ROC curves of response guilds in logged and in 
unlogged sites were significantly different (p < 0.01). The cut-off 
threshold value of average abundance was 1.79 ind/ha for the 
response guild from logged sites and 2.74 ind/ha for the bird species 
from unlogged sites. 

Table 1 
Structural variables of the vegetation (mean ± standard error) in logged (n = 86) and unlogged sites (n = 86) in the piedmont forest of the Argentinean Southern 
Yungas. Kolmogorov – Smirnov (KS) statistic values and their significance level (p). *indicates significant differences: ** = p < 0.01; * = p < 0.05.  

Variables of the vegetation  

Logged Unlogged KS p  

Tree density (ind/ha) 320 ± 11 348 ± 11 0.16  0.2   
Live 254 ± 9 273 ± 10  0.12 0.2   
Decaying 47 ± 4 51 ± 4  0.19 0.2   
Dead 19 ± 3 24 ± 3  0.21 <0.05 *  
Valuable 167 ± 11 250 ± 12  0.34 <0.01 **  
Non-valuable 153 ± 11 98 ± 7  0.29 <0.01 ** 

Diameter at breast height (cm) 27.7 ± 0.6 27.1 ± 0.3 0.08  0.2   
Live 26.7 ± 0.7 25.9 ± 0.4  0.12 0.2   
Decaying 25.3 ± 1.9 29.8 ± 0.4  0.20 0.1   
Dead 16.6 ± 1.9 22.6 ± 2.1  0.23 <0.02 *  
Valuable 34.4 ± 2.0 30.3 ± 0.6  0.14 0.2   
Non-valuable 21.0 ± 0.8 20.1 ± 0.9  0.15 0.2  

Basal area (m2/ha) 26.0 ± 1.8 26.4 ± 1.2 0.21  <0.05 *  
Live 19.0 ± 1.6 18.3 ± 0.9  0.09 0.2   
Decaying 5.3 ± 0.8 5.7 ± 0.8  0.17 0.2   
Dead 1.7 ± 0.3 2.4 ± 0.4  0.15 0.2   
Valuable 17.6 ± 1.7 21.8 ± 1.1  0.30 <0.01 **  
Non-valuable 8.4 ± 1.0 4.5 ± 0.5  0.26 <0.01 ** 

Total height of trees (m) 14.3 ± 0.4 13.0 ± 0.2 0.28  <0.01 ** 
Visual obstruction of the understory (%) 48.5 ± 2.3 40.6 ± 2.2 0.21  <0.05 * 
Canopy cover (%) 80.2 ± 1.6 82.8 ± 0.1 0.17  0.2   

Fig. 2. Abundance (mean ± standard error) of logged (a) and unlogged (b) understory bird response guilds in logged and unlogged sites of the piedmont forest of the 
Southern Yungas, Argentina. 
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3.3. Vegetation relationships 

The redundancy analysis (RDA) showed a significant relationship 
between the understory bird species of the response guilds and the forest 
structural variables (inertia: 1.29; p < 0.01). The first two axes were 
statistically significant (eigenvalue Axis 1 = 0.66, p < 0.01; Axis 
2 = 0.36, p < 0.01) explained 79% of the variation in the abundance of 
understory bird species (Fig. 4) In general, the bird species of the 
response guild from unlogged sites were associated with a higher density 
of valuable timber tree species and density of standing dead trees 
(explanatory variables: 0.45, p < 0.01; and 0.14, p < 0.01, respectively). 
The bird species of the response guild from logged sites were associated 
with a greater visual obstruction in the understory (0.18; p < 0.01). The 
cut-off threshold value for visual obstruction of the understory was 
43.75%, for the density of valuable timber trees was 210 ind/ha 
(>10 cm DBH), and for the density of standing dead trees was 10 ind/ha 
and a DBH of 19.5 cm. 

4. Discussion 

Selective logging activities as currently performed in the piedmont 
forest change the vegetation structure and the understory bird assem
blage. These changes are mainly reflected in the varying dominance of 
certain bird species and valuable timber species (Lambert, 1992; 
Stouffer et al., 2011). We found an association between understory bird 
species and vegetation characteristics, resulting in two response guilds. 
Variation in response may occur because even when birds depend on the 
same resources, selective logging may affect a common resource (e.g., 
standing dead trees), although not equally conditioning for all species in 
the guild (i.e., it greatly affects resource specialists). 

The conservation status of bird species from both response guilds is 
of Least Concern, both nationally (MAyDS and AA, 2017) and interna
tionally (IUCN, 2021) since they currently maintain stable populations 
and are all endemic to South America, except for Sittasomus griseicapillus, 
Tolmomyias sulphurescens, and Catharus ustulatus which have a broader 
distribution range (IUCN, 2021). The use of common species in moni
toring programs is beginning to gain relevance (Gregory and van Strien, 
2010; Lindenmayer et al., 2018), as small population declines can have 
important effects on the ecosystem processes and services. These effects, 
such as those produced by logging, can be quantified through the 
analysis of species abundance distribution (Baker et al., 2019). For 
example, T. sulphurescens and C. rufus are aerial-foliage insectivores and 
were more abundant in sites with less visual obstruction of the under
story, which suggests the need for certain sites to capture preys using 

aerial hunting techniques (Malizia et al., 2005). 
Bird species belonging to the response guild from logged forest (i.e., 

Thamnophilus caerulescens, Leptotila megalura, Catharus ustulatus, Poeci
lotriccus plumbeiceps, and Synallaxis scutata) were primarily associated 
with sites having greater understory visual obstruction, a feature that 
increases as canopy cover decreases in intensively logged forest (Blundo 
and Malizia, 2009). These species are foliage-insectivores (T. caeruslens, 
P. plumbeiceps and S. scutata), foliage frugivore-insectivores 
(C. ustulatus), and ground granivores (L. megalura), and are favored by 
increased foliage density (Malizia et al., 2005), as greater visual 
obstruction of the understory may decrease the risk of predation and 
increase food availability in this stratum (e.g., insects, fruits, seeds, etc.; 
Pacheco and Grau 1997; Zurita and Zuleta, 2009). These changes in
crease the resources available for forest bird species with greater 
ecological plasticity in logged forests (Greenberg, 1990; Webster and 
Lefebvre, 2001). 

Birds in the response guild from unlogged forests (i.e., Casiornis rufus, 
Thraupis sayaca, Tolmomyias sulphurescens, Turdus rufiventris, Lep
idocolaptes angustirostris, and Sittasomus griseicapillus) were related to 
sites with higher density of valuable timber species and standing dead 
trees, attributes that are more abundant in unlogged sites (Brown, 
2009). This guild is composed of three bird species (C. rufus, 
L. angustirostris, and S. griseicapillus) which use cavities of valuable 
timber trees as roosts and/or nests, mainly of Calycophylum multiflorum, 
standing dead trees, Amburana cearensis, and Anadenanthera colubrina 
(Schaaf, unpublished data). At logged sites, however, standing dead 
trees and C. multiflorum had a lower basal area, A. cearensis was not 
recorded, and only A. colubrina had a similar basal area in both logged 
and unlogged sites. Intensive selective logging may increase the sus
ceptibility to local extinction of valuable timber species, as in the case of 
A. cearensis (Politi et al. 2015). Moreover, other valuable timber species 
such as Phyllostylon rhamnoides and Myracrodruon urundeuva which are 
less frequently used by birds (Ruggera et al., 2016b), had lower basal 
areas in logged sites. Although non-cavity nesters in the unlogged forest 
response guild (i.e., T. sayaca, T. sulphurescens, and T. rufiventris) do not 
depend on valuable timber species for roosting or nesting, their associ
ation to sites with greater availability of these trees could result from 
increased habitat complexity and heterogeneity given by these species 
and with it, greater resource availability (Kupsch et al., 2019; Heidrich 
et al., 2020; Schnitzer et al., 2020). 

Two bird species (L. angustirostris and S. griseicapillus) have a 
specialized foraging behaviour and use standing dead trees as an 
important foraging resource (Rodrigues et al., 2016). In logged sites, 
standing dead trees are frequently removed (e.g., as a method of stand 

Fig. 3. Receiver Operating Characteristic (ROC) curves of the logged (a) and unlogged (b) understory bird response guilds in the piedmont forest of the Southern 
Yungas, Argentina. 
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sanitation practice or for charcoal use) and a small number of trees reach 
a senescent stage because part of the adult population is removed 
(Fredericksen et al., 2001). In logged sites there was 20% less of standing 
dead trees and their size were also reduced by 26%. Bird species of 
mature forests with specialized habitat requirements for nesting, food 
resources and foraging microhabitats are more vulnerable to changes in 
the vegetation structure (Sigel et al., 2006; Stratford and Stouffer, 2013; 
Edwards et al., 2013). 

Thraupis sayaca and Turdus rufiventris were strongly associated with a 
greater canopy cover, an attribute characterizing sites that have not 
been recently disturbed. Tolmomyias sulphurescens is only distributed in 
association with mature piedmont forests (Blendinger and Álvarez, 
2009) in coincidence with birds with greater habitat specialization 
which tend to avoid disturbed areas (Sigel et al., 2010). It has been 
shown that disturbed forests favour species using the middle-stratum 
(Walther, 2002), the forest edge and secondary forest (Blendinger and 
Álvarez, 2009) and also migratory species (Leisler, 1990, 1992; Conway 
et al., 1995) such as C. ustulatus and L. megalura, which were dominant in 
logged sites (Le Borgne et al., 2018). 

Changes generated by selective logging in bird species might affect 

ecological interactions, threatening the ecosystem integrity (Matuoka 
et al., 2020). The decrease in dominance of T. sayaca and T. rufiventris at 
logged sites might influence seed dispersal in the forest (Michel et al., 
2020) since both species are foliage frugivore-insectivores and are 
considered as core species in the seed dispersal network (Ruggera et al., 
2016a). The decrease in density of the furnariids S. griseicapillus and 
L. angustirostris may have a negative impact, affecting the wood quality 
since both species are insectivorous, feeding mainly on larvae and 
beetles associated with tree bark (Chapman and Rosenberg, 1991; 
Stouffer and Bierregaard, 1995). Therefore, these species might play an 
important role as biological controllers of the beetle populations which 
produce economic loss (Avery and Leslie, 2010; Bereczki et al., 2014). 

Selective logging increased the visual obstruction of the understory 
by 20% and this it is associated with the changes in the understory bird 
assemblages and should be managed to reduce the impact. This could 
maintain the density of species associated with mature forests which 
play a major role within the forest (Michel et al., 2020). The understory 
visual obstruction is a structural attribute which may decrease by 
reduced impact logging (Bicknell et al., 2015). Current studies show that 
reduced impact logging has fewer negative effects on biodiversity than 

Fig. 4. Ordination diagram showing the first two axes of the Redundancy Analysis (RDA) for understory bird species that formed the response guilds and their 
association to the vegetation structural variables in logged (orange) and unlogged sites (green) in the piedmont forest of the Southern Yungas. DT = density of 
valuable timber species; DD = density of standing dead trees; VOU = visual obstruction of the understory; CC = canopy cover; TH = tree height. Logged response 
guild species correspond to: tcae = Thamnophilus caerulescens, lmeg = Leptotila megalura, cust = Catharus ustulatus, pplu = Poecilotriccus plumbeiceps, sscu = Synallaxis 
scutata. Unlogged response guild species correspond to: truf = Turdus rufiventris, sgri = Sittasomus griseicapillus, tsay = Thraupis sayaca, cruf = Casiornis rufus, 
tsul = Tolmomyias sulphurescens, lang = Lepidocolaptes angustirostris. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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conventional logging (Bicknell et al., 2014; West et al., 2014). Reduced 
impact logging techniques decrease the open canopy areas and, conse
quently, the forest gaps, which favour greater understory visual 
obstruction (Putz et al., 2008; Putz et al., 2012). Management of the 
understory visual obstruction may also be used to promote the natural 
regeneration of commercially valuable tree species (Lieffers et al., 
1999). 

In the present study, we define abundance thresholds for the 
response guilds of the understory birds in order to propose schemes for 
monitoring the effect of logging. Both bird guilds showed opposite 
abundance patterns in response to logging activities. Politi et al. (2012) 
also found significant variation in the density of species in logged for
ests, some of which formed the guilds in the present study (i.e., 
L. angustirostris, S. griseicapillus, T. caerulescens and P. plumbeiceps). Other 
studies showed that bird thresholds determined by ROC curves were 
optimal for management and conservation strategies in logged forests 
(Guénette and Villard, 2005). The next step is to validate and calibrate 
response thresholds for different intensity of selective logging impact. 
Calibration may be necessary to account for geographic variation in 
vegetation types across the piedmont forest, such as the transition to the 
Chaco ecoregion (Brown, 2009). Due to the high transformation rate of 
the piedmont forest, we believe that determining the thresholds for 
several taxa will help integrate harvesting practices and biodiversity 
conservation to achieve sustainable forest management. 

5. Conclusions 

We found groups of understory bird species potentially useful for 
monitoring the impact of selective logging: a bird guild sensitive to 
logging (i.e., Sittasomus griseicapillus, Turdus rufiventris, Lepidocolaptes 
angustirostris, Casiornis rufus, Thraupis sayaca, and Tolmomyias sulphur
escens) and a bird guild favoured by logging (i.e., Thamnophilus caer
ulescens, Leptotila megalura, Synallaxis scutata, Poecilotriccus plumbeiceps, 
and Catharus ustulatus). 

Selective logging activities as currently performed in the piedmont 
forest modifies the tree structure and composition, changing the un
derstory visual obstruction. The decrease in density of valuable timber 
species and standing dead trees together with the increase in the un
derstory visual obstruction were the attributes that most influenced the 
understory bird assemblage. To ensure the conservation of understory 
birds in logging forests, it is necessary to implement schemes that 
minimize the negative impact of the activity in conjunction with 
monitoring programs that provide feedback for adaptive management 
(Chaves et al., 2017). 
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between protection and logging of the Endangered and valuable timber species 
Amburana cearensis in north-west Argentina. Oryx 49 (1), 111–117. https://doi.org/ 
10.1017/S0030605313000501. 

Powell, L.L., Cordeiro, N.J., Stratford, J.A., 2015. Ecology and conservation of avian 
insectivores of the rainforest understory: A pantropical perspective. Biol. Conserv. 
188, 1–10. https://doi.org/10.1016/j.biocon.2015.03.025. 

Prado, D.E., Gibbs, P.E., 1993. Patterns of species distributions in the dry seasonal forests 
of South America. Ann. Missouri Bot. Gard. 80, 902–927. https://doi.org/10.2307/ 
2399937. 

Putz, F.E., Sist, P., Fredericksen, T., Dykstra, D., 2008. Reduced-impact logging: 
challenges and opportunities. For. Ecol. Manage. 256 (7), 1427–1433. https://doi. 
org/10.1016/j.foreco.2008.03.036. 

Putz, F.E., Zuidema, P.A., Synnott, T., Peña-Claros, M., Pinard, M.A., Sheil, D., 
Vanclay, J.K., Sist, P., Gourlet-Fleury, S., Griscom, B., Palmer, J., Zagt, R., 2012. 
Sustaining conservation values in selectively logged tropical forests: the attained and 
the attainable. Conserv. Lett. 5, 296–303. https://doi.org/10.1111/j.1755- 
263X.2012.00242.x. 

R Development Core Team, 2020. R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: 
http://www.R-roject.org. 
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