


WAAUP

27th Conference of the World Association for the Advancement of Veterinary Parasitology

JULY 7 - 11, 2019 | MADISON, WI, USA

Dedicated to the legacy of Professor Arlie C. Todd

Sifting and Winnowing the Evidence in Veterinary Parasitology

Abstract Book

Joint meeting with the 64th American Association of Veterinary Parasitologists Annual Meeting & the 63rd Annual Livestock Insect Workers Conference

www.WAAVP2019.com #WAAVP2019

Table of Contents

Table of Contents				
Keynote Presentation		84-89 89-92	OA22 Molecular Tools II OA23 Leishmania	
4	Keynote Presentation Demystifying One Health: Sifting and Winnowing	92-97	OA24 Nematode Molecular Tools, Resistance II	
	the Role of Veterinary Parasitology	97-101 101-104	OA25 IAFWP Symposium OA26 Canine Helminths II	
Plenary Lectures		104-108 108-111	OA27 Epidemiology OA28 Alternative Treatments for	
6-7	PL1.0 Evolving Approaches to Drug Discovery	111-113 114-116	Parasites in Ruminants I OA29 Unusual Protozoa OA30 IAFWP Symposium	
8-9	PL2.0 Genes and Genomics in Parasite Control	116-118	OA31 Anthelmintic Resistance in Ruminants	
10-11	PL3.0 Leishmaniasis, Leishvet and One Health	119-122 122-125	OA32 Avian Parasites OA33 Equine Cyathostomes I	
12-13	PL4.0 Veterinary Entomology: Outbreak and Advancements	125-128	OA34 Flies and Fly Control in Ruminants	
Oral Sessions		128-131 131-135	OA35 Ruminant Trematodes I OA36 Treatment and Control of GI Nematodes in Ruminants	
15-18 18-21	OA01 Canine Heartworm I OA02 Diagnosis and Decision	136-139	OA37 Poultry Coccidia, Aquatic Infections	
	Support for GI Nematodes in Ruminants I	139-144 144-148	OA38 Equine Cyathostomes II OA39 Insecticide and Acaricide	
21-24 25-28	OA03 North American Ticks OA04 Coccidia	149-152	Resistance in Ruminants OA40 Zoonoses	
28-30	OA05 Worldwide Vector-Borne Infections in Companion Animals	153-155	OA41 Biology and Pathology of GI Nematodes in Ruminants	
30-35 35-38	OA06 Canine Heartworm II OA07 Host Responses Against	155-158 159-161	OA42 Diagnostic Techniques OA43 Equine Parasites	
39-42	Helminths in Ruminants OA08 Tick Disease Transmission	161-164 164-167	OA44 Canine Arthropods OA45 Ruminant Trematodes II	
43-46	OA09 Wildlife Parasites	168-171	OA46 Gastrointestinal Protozoa in	
46-49	OA10 New Tools and Big Data for	171 175	Ruminants	
	Evaluating Intestinal Parasite Infections in Companion Animals	171-175 175-179	OA47 Wildlife Helminths OA48 Equine Ascarids	
50-52	OA11 Canine Protozoa	179-183	OA49 Ticks on Cattle	
53-56	OA12 Diagnosis and Decision Support for GI Nematodes in Ruminants II	183-187	OA50 Alternative treatments for Parasites in Ruminants II	
56-59 60-62	OA13 Flea and Tick Treatment OA14 Protozoan Parasites	Poster	Sessions	
62-65	OA15 Education	189-234	PS01 Poster Session 1	

189-234	PS01 Poster Session 1
234-280	PS02 Poster Session 2
280-326	PS03 Poster Session 3

65-68

68-71

71-74

74-78

78-80

80-84

OA16 Canine Helminths

OA17 Molecular Tools I

OA20 IAFWP Symposium

OA21 Cat Parasitisms

OA19 Nematode Molecular Tools,

OA18 Leishmania

Resistance I

gene. The pipeline retrieves sequences from NCBI annotated with the provided marker, identifies the correct region using a hidden markov model (using barrnap, https://github.com/tseemann/barrnap) or covariance model (using infernal) and formats them for common pipelines like RDP, dada2 and mothur. This pipeline provides speed and flexibility beyond what is available in public databases. markerDB is available at https://github.com/ucvm/markerDB.

PS03.75 Evaluation of the Preventive Efficacy of a Permethrin-Fipronil Based Spot-On (Effitix® Spot-On) for Canine Leishmnaniosis and Dirofilariosis in a Highly Endemic Area in Greece: An Open Field Trial

Dr. Elias Papadopoulos¹, Dr. Olga Karteri², **Dr. Vanessa Chala**³, Dr. Christelle Navarro³ ¹Aristotle University of Thessaloniki, Greece, ²Virbac Greece, Greece, ³Virbac, Global Medical Department, France

Canine dirofilariosis (Dirofilaria immitis) and leishmaniosis (Leishmania genus) are two vector borne diseases, occurring worldwide including now in northern countries(1)(2). Therefore affordable and efficient options are needed to struggle against reservoirs carriage, to protect both animals and humans health. Thirty privately owned dogs, living outdoor, in a highly endemic area of northern Greece (Serres), were recruited. In clinic diagnostic tests (Speed LeishK /Diro, Virbac BVT, La Sevne sur Mer, FRANCE) were used to screen and exclude positive carriers (detection of anti leishmania's kinesin antibodies and antigens from adult filaria) before enrollment. Each dog was treated with Effitix® (Permethrin 44.88% - Fipronil 6.01%) following manufacturer recommendations, at inclusion time, then on a monthly base, over 18 months (from June 2017 to November 2018). Dogs were monthly blood sampled to follow their status.

Amoung the 30 dogs, one accidently died, two were found to be dirofilariosis positive (in August and September respectively: which implied a contamination prior to enrollment), three additional leishmaniosis infected dogs were removed from the study; all were excluded accordingly from the

analysis regarding Dirofilariosis. At the end of the study 22 out of 24 dogs remained clinically healthy with negative testing, giving a protection of 91.7% against Dirofilariosis. Regarding leishmaniosis, the 4 dirofilariosis infected dogs as well as the car accident were removed from the calculations; at the end of the study, 22 of them remained negative, giving an 88% protection against leishmaniosis.

Those encouraging results show Effitix®spoton can be one efficient option to prevent Dirofilariosis and Leishmanisosis transmissions; results would need to be confirmed on larger scale with a control population.

PS03.76 Evolution of the Efficacy of a Combined Moxidectin-Levamisole Treatment Against Resistant Gastrointestinal Nematodes in Lambs

Lic. Sonia Luque¹, Dr. Mercedes Lloberas², MV Patricia Cardozo², Prof. Carlos Lanusse¹, Prof. Guillermo Virkel¹, Lic. Cristina Farias¹, MV Paula Viviani¹, Prof. Adrian Lifschitz¹, **Dr. Luis Alvarez**¹

¹Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Argentina, ²Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina

Nematodicidal combinations can be a valid strategy to achieve effective nematode control in the presence of drug resistance. The aim of the current trial was to evaluate the pharmaco-parasitological outcome after the continuous use of moxidectin (MXD) and levamisole (LEV) as a combined treatment in lambs naturally parasitized with ivermectinresistant gastrointestinal nematodes. Forty (40) lambs were divided into four groups (n=10): untreated control and subcutaneously treated with either MXD (0.2 mg/kg), LEV (8 mg/kg) or with MXD+LEV (0.2 and 8 mg/kg, respectively). Blood samples were collected at different times up to 1 (LEV) or 14 (MXD) days post-treatment. LEV and MXD plasma concentrations were measured by HPLC. Faecal samples were collected on days 0, 7, and 14 post-treatment to perform the

faecal egg count reduction tests (FECRT). No significant pharmacokinetic (PK) adverse changes were observed for either MXD or LEV after their co-administration in sheep. The clinical efficacy of the MXD+LEV combination was evaluated after its continuous use (3 treatments/year) over five (5) years at the same farm. The initial anthelmintic efficacies (1st year) were 99% (MXD), 85% (LEV) and 100% (MXD+LEV). Following repeated annual treatments over five years, the clinical response for the combined treatment reached 87% efficacy. The combination reached efficacies of 100% (1st year) and 98.5% (5th year) against Haemonchus contortus. Teladorsagia spp. and Trichostrongylus spp. were the main nematode genera surviving the individual and combined treatments. The coadministration of MXD+LEV during five years resulted in a significant higher anthelmintic effect compared to MXD or LEV given alone. Even when MXD and LEV individual efficacies were reduced during the five-year period, the combined treatment maintains acceptable efficacy levels against H. contortus.

PS03.77 Polymorphisms in the Acetylcholinesterase 3 Gene in Cattle Fever Ticks (Rhipicephalus Microplus), Isolates from Uruguay and Southern Brazil

Br. Florencia Bariani¹, Dr. Guilherme M. Klafke², **Dr. Eleonor Castro-Janer**¹

¹Udelar-school Of Veterinary, Montevideo, Uruguay, ²Instituto de Pesquisas Veterinarias Desiderio Finamor, Secretaria da Agricultura do Estado do Rio Grande do Sul, Eldorado do Sul, Brazil

The objective of this study was to identify mutations in acetylcholinesterase 3 gene (BmAchE3) of cattle fever ticks (CFT - Rhipicephalus microplus) previously associated with resistance to organophosphates (OP) in field isolates of CFT obtained in Uruguay and Rio Grande do Sul state, Southern Brazil. CFT populations (n=24) were submitted to the larval packet test with ethion in order to characterize phenotypic resistance. To identify nucleotide polymorphisms in BmAchE3, we amplified and sequenced a segment of 308 bp where three mutations (I48L, I54V and R86Q)

were found in OP-resistant ticks. In total, the genomic DNA of 134 individuals from susceptible and resistant populations were analyzed. The I54V mutation was found in 133 individuals, the R86Q in 131 and the I48L in 44 individuals. In all ticks that survived ethion exposure, mutations I54V and R86Q were detected. The I54V was found in only 20% of ethion-treated survivors. Both resistant and susceptible ticks presented any of these three mutations, including ticks form a susceptible reference strain (100% with I54V/R86Q). The results obtained in the present study disagree with previous published data associating these mutations with OP resistance in CFT. Mutations in other acetylcholinesterase genes (BmAchE1 and 2) and metabolic detoxification may also contribute with OP resistance in this tick species.

PS03.78 Anthelmintic Resistance and Common Worm Control Practices in Sheep Farms in Belgium

Prof. Edwin Claerebout¹, Ms. Nathalie De Wilde¹, Mrs. Eva Van Mael², Mr. Stijn Casaert¹, Dr. Fiona Vande Velde¹, Dr. Florian Roeber³, Ms. Pamela Vinueza Veloz¹, Prof. Bruno Levecke¹, Prof. Peter Geldhof¹

¹Ghent University, Merelbeke, Belgium, ²Animal Healthcare Centre Flanders, Lier, Belgium, ³AusDiagnostics Pty, Beaconsfield, Australia

In contrast to many other European countries, no data were available on the presence of anthelmintic resistance in gastrointestinal nematodes in sheep in Belgium. A faecal egg count reduction test was performed in 26 sheep farms (29 flocks) in Flanders, Northern Belgium. Results indicated widespread resistance against benzimidazoles (albendazole, fenbendazole and mebendazole), with treatment failure (FECR < 95 %) in all 8 flocks investigated. Haemonchus contortus and Teladorsagia circumcincta were the predominant species after treatment failure. Amino acid substitutions associated with benzimidazole resistance were detected at the codon positions 167 (8%) and 200 (92%) of the isotype-1 beta tubulin gene in H. contortus, codon positions 198 (47%) and 200 (43%) in T. circumcincta and position 200 (100%) in T. colubriformis. Resistance against