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Shock-induced plasticity in nanocrystalline iron: Large-scale molecular dynamics simulations
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Large-scale nonequilibrium molecular dynamics (MD) simulations of shock waves in nanocrystalline iron
show evidence of plasticity before the polymorphic transformation takes place. The atomistic structure in
the shock direction shows an elastic precursor, plastic deformation, and shock-induced phase transformation
from bcc to hcp iron. In this Rapid Communication, large-scale MD models show that the shock response
of iron is highly related to the ramp time of the applied shocks. For long ramp times we observe significant
plastic relaxation and formation of microstructure defects. Pressure-induced phase transformations in iron are
accompanied by stress relaxation achieving almost fully relaxed three-dimensional hydrostatic final states. The
evolution of the stress relaxation is in agreement with theory and experiments. Analysis of the x-ray diffraction
patterns calculated from the atomistic structure using the Debye equation revealed pronounced anisotropy of the
line broadening that is caused by stacking faults in hcp Fe and by dislocations in bcc Fe.
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In-depth knowledge of the crystal structure and its changes
under high pressures plays a crucial role in understanding the
mechanical properties of heavily deformed metallic materials.
Structure changes in iron are of particular importance, because
iron is one of the most common metals and undergoes several
phase transitions at high temperatures and high pressure. For
these reasons, the study of iron under extreme conditions is
essential not only for industry but also for geological and
astronomical applications. Iron transforms from the body-
centered-cubic crystal structure (bcc/α) Fe to face-centered-
cubic (fcc/γ ) Fe at high temperatures and hexagonal-close-
packed (hcp/ε) Fe at high pressures [1,2].

The pressure-induced phase transformation in iron has
been attracting considerable interest since the hcp phase has
been discovered by wave-profile measurements [1]. Strong-
shock experiments performed on polycrystalline iron [1,3]
demonstrated that the free surface velocity profile can be
divided into three regions consisting of an elastic wave, a plas-
tic wave, and a diffusionless phase transformation. Recently,
this has been confirmed by high-quality x-ray diffraction
data of the subnanosecond dynamics of laser-shocked poly-
crystalline iron [4]. Continuous models are able to describe
the polymorphism of iron under high pressure [5,6]. These
models emphasize the major role of plastic deformation on the
morphological evolution. In shock experiments, timescales
are sufficiently short, thus large-scale molecular dynamics
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(MD) simulations can help in understanding the deformation
processes and in improving mesoscale models.

Large-scale molecular dynamics simulations were already
used to study shock waves in iron single crystals [7,8],
bicrystals [9], and polycrystals [10–12]. For single crystals, it
was shown that the phase transformation proceeds differently
in different crystallographic directions [8]. However, large-
scale MD simulations of nanocrystalline iron by Kadau et al.
[10] showed no evidence of dislocation activity in the bcc
phase before the α/ε phase transformation. The Voter [13]
potential used in their study shows, in contrast to experiments,
a significant fraction of fcc under high pressure. Gunkelmann
et al. [12] performed MD simulations of piston-driven shock
waves using a modified Ackland potential [11] and found that
the shocked material exhibits a dominant hcp phase. However,
due to the limited computing power, the authors were not able
to carry out a detailed study of the plastic deformation includ-
ing the analysis of dislocation density and three-dimensional
(3D) plastic relaxation. Also, the relationship between the
shear stress and the phase fraction of the two phases fcc and
hcp was not identified.

Caspersen et al. [14] used a multiscale model containing a
quantum-mechanics-based multiwell energy function count-
ing for the bcc and hcp phases of Fe to reveal the essential
role of the shear stress in the α/ε transition. The result from
Ref. [14] is in agreement with the finding of Shao et al. [15]
showing the relationships between shear deformations and
hcp and fcc fractions during the martensitic transformation
process in iron under high pressure. Nonequilibrium MD
(NEMD) simulations of shock waves in a 1-μm-long Cu fcc
single crystal [16] have shown that the stress upon uniaxial
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compression relaxes to a nearly hydrostatic state where the
dislocation velocity drops to zero. Their result is in agreement
with x-ray diffraction experiments [17,18]. The shear stress
and dislocation density reach a maximum simultaneously, and
the ramp time significantly influences the lateral relaxation
[16]. So far, however, little is known about this phenomenon
in iron.

The aim of this Rapid Communication is to unravel plas-
tic relaxations at the subnanosecond timescale in shock-
compressed iron by large-scale NEMD simulations of shock
wave propagation through 0.89-μm-thick nanocrystalline
iron. The sample consisting of 265.5 million atoms and 396
grains with a mean diameter of 20 nm was relaxed at 800 K,
followed by an annealing procedure of 100 ps to the desired
temperature of 300 K at zero pressure. The momentum mirror
method [19] was adopted to simulate the shock. A piston with
a velocity of 0.75 km/s was applied to generate the shock
wave using two different ramp times of 20 and 50 ps. The
piston velocity was increased linearly from zero to the desired
value during this time. Periodic boundary conditions were
applied in the x and y directions of the sample, while free
boundaries were assumed in the shock direction (along the z
axis). The simulations were carried out by using the scalable
parallel short-range molecular dynamics (SPaSM) code [20],
and the Ackland potential [11] featuring the α → ε phase
transformation at a pressure of 13.75 GPa.

The centrosymmetry analysis [21] was used to detect crys-
tallographic defects by identifying disordered local crystal
structures, such as line and planar defects. Snapshots showing
noncentrosymmetric atoms for 20- and 50-ps ramp simula-
tions are shown in Figs. 1(a) and 1(b), respectively. Both cases
display clearly three regions: the defective structure on the
left (new phases and grain boundaries), a short period of the
transition area, and bcc grains on the right. For the 20-ps ramp,
the new phases (disordered or close-packed crystal structure)
extend over a larger area than for 50 ps. From Figs. 1(c) and
1(d), we observe that the effective grain size is much smaller
in the hcp due to planar faults. The longitudinal pressure Pzz

and the shear stress Pshear in Fig. 1(e) provide information
on the response of the sample behind the shock front. For
both simulations, the shock velocity measured from the time
difference of the shock front is 5.5 km/s, and the longitudinal
stress in the daughter phases is 31 GPa, which is in agreement
with MD results by Kadau et al. [10] and close to experimental
data [22].

The pressure and stress profiles show three stages of ma-
terial response during the passage of the shock wave from
left to right (Fig. 1). The colored areas on top of the black
curve and below the blue curve represent these three distinct
states for 20- and 50-ps ramp simulations (elastic wave in
blue, plasticity in green, and transition period in yellow).
These waves are defined by sudden changes in the stress
profile dividing the material into three sections, the so-called
three-wave structure of the shock [12]. There are only a
few theoretical and experimental studies which evaluate the
shear stress in iron under shock loading. By using large-scale
MD simulations of shock waves though copper, Bringa et al.
[16] reported a rapid increase of the shear stress before the
nucleation of dislocations and lattice relaxations at a sub-
nanosecond timescale.

FIG. 1. Response of nanocrystalline iron under shock loading af-
ter 120 ps. In snapshots of the sample with the ramp times (a) tramp =
20 ps and (b) 50 ps, noncentrosymmetric atoms are highlighted; the
black area is the background of the simulation domain. In (c) and (d),
the grains are colored according to their local orientation with respect
to the shock direction. (e) shows the longitudinal pressure and shear
stress along the shock wave direction, Pshear = 1

2 [Pzz − 1
2 (Pxx + Pyy )].

Elastic, plastic, and transition periods are plotted as blue, green, and
yellow areas. For the 20-ps ramp, these areas are shown above the
black dashed line, and for the 50-ps simulation below the blue dashed
line. (f) Density along the sample; the distribution of energies is
embedded in (g). The energy per atom and transition stages of both
simulations are almost identical except at the beginning of the phase
transition. Here, the energy per atom for the 50-ps ramp is 0.01 eV
less than for the other case.

Statistical analysis of the atomic positions obtained from
the MD simulation was done through the calculation of the
x-ray diffraction (XRD) patterns and their analysis. For the
calculation, a routine [23–25] was used that is based on
the Debye scattering equation [26]. The sample regions, ex-
posed to a pressure of about 30 GPa, contained hcp Fe as the
dominant phase (two bottom curves in Fig. 2). In the part
of the sample which was exposed to pressures between 30
and 20 GPa, a mixture of different fractions of hcp and bcc
was identified (three upper curves in Fig. 2). For hcp Fe, the
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FIG. 2. XRD patterns calculated using the Debye equation [26]
for slabs cut from the sample displayed in Fig. 1(d). The thickness
of the slabs in the z direction was 30 nm; their starting positions
were 100, 130, 330, 360, and 390 nm (from bottom to top). Vertical
lines indicate positions of the diffraction lines from hcp Fe (dashed
lines) and bcc Fe (solid lines). Diffraction indices are attached. The
x-ray wavelength used for calculation of the XRD patterns was
0.140 891 nm. The intensities are plotted in a square-root scale.

Rietveld analysis of the XRD patterns using MAUD

[27] revealed lattice parameters a = 0.245 55(2) nm and
c = 0.399 26(5) nm (in the 30 GPa region) and a =
0.246 19(9) nm and c = 0.393 88(8) nm (in the 20–25 GPa
region). The lattice parameter a decreases with increasing
pressure as expected. According to Refs. [28,29], the refined
values correspond to hydrostatic pressures of approximately
17 and 14 GPa. The lattice parameter c shows an opposite
trend. This is related to the change of the c/a ratio from 1.60
at 20–25 GPa to 1.63 at 30 GPa that accompanies marten-
sitic phase transformations and interactions between adjacent
phases [30]. The value of c/a = 1.603 is typically reported
for ε-Fe [28,29], where c/a = 2

√
2/

√
3 = 1.633 corresponds

to a pseudocubic hcp structure [29].
In both bcc and hcp, the line broadening depends strongly

on diffraction indices. In hcp, this anisotropy of the line
broadening indicates that the main microstructure defects are
stacking faults (SFs) on the lattice planes {0001}hcp, which
broaden the diffraction lines with h − k = 3n ± 1 (n inte-
ger) increasingly with increasing diffraction index l [31,32].
The broadening of diffraction lines 112̄0 and 112̄2, which
are not affected by these SFs, stems from dislocations. A
relatively small broadening of the hcp diffraction lines 002
and 004 is caused by the crystallographic coherence of the
bcc and hcp structures having the orientation relationship
{110}bcc ‖ {0001}hcp. This coherence leads to a “narrowing”
of the corresponding diffraction lines, because XRD does

not recognize the (110)bcc/(0001)hcp interface as a crystallite
boundary. Consequently, the hcp crystallites appear larger in
the [0001] direction than in reality [33]. Concurrently, the
crystallographic coherence between bcc and hcp implies a
heteroepitaxy at the {110}bcc/{0001}hcp interfaces leading to
a distortion of the bcc elementary cell that is visible in the
shift of the bcc diffraction lines 200 (2θ = 60◦) and 211 (2θ =
75.5◦) in opposite directions from the expected positions.
The crystallographic anisotropy of the line broadening in bcc
Fe indicates the presence of dislocations. The microstructure
observed agrees with recent laser-shock experiments on single
and polycrystalline iron [4,34].

From Fig. 1(e), we observe an increase of the shear stress
as expected, followed by fluctuations around a shear stress
of 2.5 GPa, before it decreases to a small value. This is
evidence of hydrostatic compression because fully relaxed 3D
states are characterized by roughly zero shear stress. In the
simulated XRD patterns, the residual hydrostatic compression
of the crystal lattice is evidenced by the stabilization of hcp Fe
and by the observed dependence of the lattice parameter ahcp

on the pressure [cf. Fig. 1(e)]. The shear stress facilitates the
phase transition α → ε and the formation of microstructure
defects.

The elastic limit and the onset of the phase transformation
highly depend on the ramp time. The longitudinal pressure
Pzz shows that the elastic limit of the 50-ps ramp reaches
a pressure of 6.94 GPa after 6.6 ps behind the shock front.
The elastic limit for the 20-ps ramp simulation is 5.81 GPa
higher than for the 50-ps ramp, where the period of plasticity
is 2.5 times longer than for the 20-ps ramp. The onset of
the phase transformation increases with increasing ramp time.
The shear stress amplitude for both simulations is comparable.
Following the peak shear stress we observe a sharp plunge
at the beginning of the transition process. The longitudinal
pressure Pzz decreases sharply during the phase transformation
in iron. Our result supports the finding of Amadou et al.
[35] showing that for ramp compressed samples, the shear
stress plays a significant role for the phase transformation
in iron single crystals. Our finding is also in agreement with
comparable NEMD simulations for fcc materials [16]. At the
beginning and at the end of the transition, the density of iron
in the two simulations is identical, but the energy of the longer
ramp time is 0.01 eV lower at the transition as shown in
Figs. 1(f) and 1(g).

A snapshot of the local crystal structure at the transition
area of the 50-ps ramp simulation shown in Fig. 3(a) provides
closer insight into the transition zone. During the plastic
deformation, the hcp phase nucleates at the grain boundaries.
In some grains, many hcp clusters form and extend, until they
encounter other dense clusters or grain boundaries. In other
regions, the hcp clusters stretch across the whole parent grain.
In accordance with Ref. [37], the centrosymmetry analysis
interprets SFs in hcp as laths of the fcc phase [Fig. 3(a)].

In Fig. 3(b), a slice of thickness 7 nm in the plastically
deformed region is displayed. We observe straight screw
dislocations nucleating at grain boundaries and crossing the
grains. In addition, several dislocation loops and vacancies
appear. Dislocations in Fig. 3(b) are detected by the dis-
location extraction algorithm [38] implemented in the open
visualization tool (OVITO) [36]. The algorithm detects many
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FIG. 3. Phases and microstructure defects in the transition area
at 120 ps. (a) Snapshot of a simulation with tramp = 50 ps. Atoms are
colored according to the local crystal structure—blue: bcc; green:
fcc; yellow: hcp; gray: disordered atoms. (b) A 7-nm-thick slice of
the sample showing the propagation of dislocations of type 1

2 〈111〉.
Only atoms of the grain boundaries and disordered atoms are shown.
The color code indicates the depth of the atoms. The visualization
has been done by OVITO [36]. (c) and (d) Dislocation densities for
a ramp time tramp of 50 and 20 ps (left and right). Only dislocation
segments which are generated by the shock wave are used to cal-
culate the dislocation density. Background color: Blue, green, and
yellow represent elastic, plastic, and transition periods of the sample.
(e) and (f) Snapshots of the transition area where dislocations with
proceeding laths of the fcc phase are shown.

types of dislocations at the atomistic scale, but it also detects a
large number of dislocation segments as spiderlike dislocation
networks belonging to the initial grain boundary structure
[11]. In this work, only dislocations which were formed in
the bulk during shock propagation are selected to calculate
the dislocation density, while the dislocations at the grain
boundaries were removed.

Experiments [39,40] proved that dislocations are generated
behind the shock front in both fcc and bcc. The relaxation
during the plastic response of the material is associated with
dislocation kinetics [40]. Two diagnostic techniques [41],
transmission electron microscopy and in situ x-ray diffraction,
are used to analyze the plastic response during hydrostatic
compression of iron single crystals. The experiments dis-
closed a high dislocation density in the parent material. In
agreement with experiments [41], Figs. 3(c) and 3(d) give

high dislocation densities in bcc along the samples for 20-
and 50-ps ramp simulations. Unfortunately, there is no theory
predicting how dislocations evolve under the rapid rise of
shear stress in shock waves. This information can only be
obtained by MD simulations.

The dislocation density reaches nearly 2 × 1016 m−2 for
both simulations, which is high for a small grain size of
20 nm. The nucleation of dislocations starts at grain bound-
aries at the beginning of the plastic response, and is followed
by their pileup. In some grains, we observe strong dislocation
activation. The dislocation pile-up at around 120 nm behind
the shock front results in two peaks in the dislocation den-
sity during the plastic period of the 50-ps ramp simulation
[Fig. 3(c)]. Glide planes of these dislocations are parallel to
each other as shown in Figs. 3(e) and 3(f). In the parent (bcc)
phase, most of the dislocation segments belong to the Burgers
vector family of 1

2 〈111〉.
The local crystal structures and dislocations in the sample

at several picoseconds, 14.5 ps for the 20-ps ramp and 23.5 ps
for the 50-ps ramp, after the passage of the shock front
demonstrate the mobility of dislocations in a high-density
environment. The volume ratio V/V0 varies from 0.93 to 0.87.
The movement of dislocations is correlated with the formation
of hcp as shown in Figs. 3(e) and 3(f).

In conclusion, this Rapid Communication has examined
the nature of nanocrystalline iron under strong shock waves
on a subnanosecond timescale. The findings clearly indicate
that the plasticity interval increases linearly with increasing
ramp time. During the elastic wave, the shear stress is in-
creasing and the high longitudinal and shear stresses initiate
nucleation and pileup of dislocations. The peak shear stress
and dislocation density are identical for 20- and 50-ps ramp
simulations. The propagation of the hcp phase results in the
reduction of shear stress leading to quasihydrostatic compres-
sion. The increase of the hcp phase fraction behind the shock
front is evidence of the stability of hcp under strong shock
compression. The mobility of dislocations in hcp Fe is highly
related to the formation of SFs.

Kadau et al. [10] emphasized that the shock sample has
to be long enough in order to be able to observe the entire in-
elastic response of the nanocrystalline structure and to capture
the relaxation process from uniaxial or elastic compression
to quasihydrostatic compression. Therefore, large-scale shock
simulations as presented here are necessary to understand
the plastic response of shock-loaded iron to explore different
regimes of materials dynamics at extreme conditions. Due to
this massive scale approach structural features at the trans-
formation can be understood in more detail and we clearly
observe 3D plastic relaxation. The simulated x-ray results are
important for the design of shock experiments and they play
a crucial role in the evaluation of MD simulations applying
an embedded atom method (EAM) potential and in their
comparison with the results of diffraction experiments.

Future simulations will cover the recovery of samples
through shock release. Wang et al. [42] revealed a signif-
icant recovery of the bcc grains and observed significant
twinning changing the microstructure of the samples. Simu-
lations of homogeneous uniaxial compression and recovery
using our potential have shown that the phase transforma-
tion helps to drive twinning [43]. This might be different
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in nonequilibrium MD shock recovery simulations of
nanocrystals, where the transient wave profile might change
the unloaded microstructure.
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