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Abstract. We study the set X of split operators acting in the Hilbert
space H:

X = {T ∈ B(H) : N(T ) ∩ R(T ) = {0} and N(T ) + R(T ) = H}.

Inside X , we consider the set Y:

Y = {T ∈ X : N(T ) ⊥ R(T )}.

Several characterizations of these sets are given. For instance T ∈ X if
and only if there exists an oblique projection Q whose range is N(T )
such that T + Q is invertible, if and only if T posseses a commuting
(necessarilly unique) pseudo-inverse S (i.e. TS = ST, TST = T and
STS = S). Analogous characterizations are given for Y. Two natural
maps are considered:

q : X → Q := {oblique projections in H}, q(T ) = PR(T )//N(T )

and

p : Y → P := {orthogonal projections in H}, p(T ) = PR(T ),

where PR(T )//N(T ) denotes the projection onto R(T ) with nullspace
N(T ), and PR(T ) denotes the orthogonal projection onto R(T ). These
maps are in general non continuous, subsets of continuity are studied.
For the map q these are: similarity orbits, and the subsets Xck ⊂ X of
operators with rank k < ∞, and XFk ⊂ X of Fredholm operators with
nullity k < ∞. For the map p there are analogous results. We show
that the interior of X is XF0 ∪ XF1 , and that Xck and XFk are arc-wise
connected differentiable manifolds.
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1. Introduction

Given a Hilbert space H we consider the set X of all bounded linear operators
T such that the image R(T ) and the nullspace N(T ) intersect at {0} and
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R(T ) +N(T ) = H; in symbols

X = {T ∈ B(H) : R(T )+̇N(T ) = H}.

A particular subset Y of X is the one corresponding to orthogonal decompo-
sitions:

Y = {T ∈ X : R(T ) ⊥ N(T )} = {T ∈ B(H) : R(T ) ⊕N(T ) = H}.

Elements in X are usually said to admit a group inverse [17], or to have
Drazin index 1 [2,8,11]. Elements of Y are called EP operators [4,7], or range-
Hermitian operators [3].

In this paper we study X and Y from a topological viewpoint, and
continuity properties of the natural mapping which assigns to each T ∈ X
the (non orthogonal) projection PR(T )//N(T ) with image R(T ) and nullspace
N(T ); if T ∈ Y, then N(T ) = R(T )⊥ and we write PR(T ). We denote by
Q(H) = Q the set of all (bounded and linear) projections in H, and by
P(H) = P ⊂ Q the subset of orthogonal projections.

The inclusion Y ↪→ X admits many right inverses X → Y which retract
X onto Y (in general, without continuity). Together with corresponding right
inverses of the inclusion P ↪→ Q there is a commutative diagram

X
ρ ��

q

��

Y
p

��
Q

θ �� P

,

where

q : X → Q,q(T ) = PR(T )//N(T ),

and

p : Y → P,p(T ) = PR(T ).

The horizontal maps ρ and θ are retractions related to the polar decomposi-
tion (see details below). The lack of continuity of q and p suggests considering
different “sets of continuity” in X and Y. Restricted to these sets, ρ is shown
to have remarkable topological properties. These sets are also differentiable
manifolds.

We describe the contents of the paper. Section 2 contains the defini-
tions of the retractions mentioned above and several useful properties and
characterizations of split operators. Section 3 studies continuity of the maps
q and p at certain subsets of X and Y. We treat at Section 4 the case of
similarity orbits. The main result here is that q is a locally trivial fibre bun-
dle from the similarity orbit of T ∈ X onto the connected component of
q(T ) = PR(T )//N(T ) in Q. At Section 5 we consider those operators of X
which are also Fredholm, or which are compact. This allows to identify the
interior of X . More precisely, if

XFk
= {T ∈ X : T is Fredholm with dimN(T ) = k},
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we prove that intX = XF0 ∪ XF1 , to us a quite surprising result. Section 6
contains an introduction to the study of the differential structure of subsets
of X . The last Section 7 contains results about the polar decomposition of
elements of X .

2. Definitions and Some Properties of X and Y
Let H be a Hilbert space and B(H) the space of bounded linear operators
in H. Denote by Q = Q(H) the space of idempotent operators, or oblique
projections, and P = P(H) ⊂ Q the space of orthogonal projections. If T ∈
B(H), let R(T ) denote the range of T , and N(T ) the nullspace of T . Put
α(T ) = dimN(T ). If S, T are closed linear subspaces of H, the notation
S+̇T = H means that the direct sum is H, and we shall write S ⊕ T = H if
the sum is orthogonal. We shall denote by PS the orthogonal projection onto
S, and by PS//T the idempotent with range S and nullspace T .

Note that if T ∈ X , the fact that R(T ) has a closed complement, implies
that it is also closed (see [18], Theorem 5.10). Selfadjoint operators with closed
range are examples of EP operators.

These sets are related by the following commuting square of natural
maps:

X
ρ ��

q

��

Y
p

��
Q

θ �� P

,

where

q : X → Q,q(T ) = PR(T )//N(T ),

and

p : Y → P,p(T ) = PR(T ).

The horizontal maps ρ and θ are orthogonalization maps, in fact retractions,
and are defined in the remark below.

We shall use several facts concerning idempotents and projections, the
proofs can be found in [6], or checked by direct computations.

Remark 2.1. Let Q ∈ Q, and put εQ = 2Q−1, which verifies ε2Q = 1. Consider
the polar decomposition

εQ = |εQ|UQ,

where UQ is a unitary operator. Then UQ is a selfadjoint symmetry

U∗
Q = UQ = U−1

Q ,

and

|εQ|UQ = UQ|εQ|−1.

In particular, εQ = |εQ|1/2UQ|εQ|−1/2.
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Using these facts, let

ρ : X → Y, ρ(T ) = |εq(T )|−1/2T |εq(T )|1/2,

and

θ : Q → P, θ(Q) =
1
2
(1 + UQ).

The map θ was considered in [6], and it is one of the many ways to or-
thogonalize an oblique projection. Note that given a selfadjoint symmetry
U, 1

2 (1 +U) recovers the projection onto the the eigenspace of U correspond-
ing to the eigenvalue +1. This map θ is indeed a retraction, and using the
above formulas, one has

θ(Q) =
1
2
(1 + |εQ|−1/2εQ|εQ|1/2) = |εQ|−1/2 1

2
(1 + εQ)|εQ|1/2

= |εQ|−1/2Q|εQ|1/2.

This implies that |εQ|−1/2(R(Q)) ⊥ |εQ|−1/2(N(Q)).
Note that ρ is well defined: this last formula implies that

R(ρ(T )) = R(|εq(T )|−1/2T |εq(T )|1/2) = |εq(T )|−1/2R(q(T ))

and

N(ρ(T )) = |εq(T )|−1/2N(T ) = |εq(T )|−1/2N(q(T ))

which are orthogonal subspaces which sum H. Moreover,

|εq(T )|−1/2R(q(T )) = R(|εq(T )|−1/2q(T )|εq(T )|1/2) = R(θ(q(T ))),

and similarly for the nullspace, which imples that

θ(q(T )) = PR(ρ(T )) = p(ρ(T )),

i.e. the square commutes. Finally, note that ρ is a retraction: if T ∈ Y, R(T ) ⊥
N(T ) and thus q(T ) = PR(T ) = p(T ). Then |εq(T )| = 1.

These maps are defined in terms of continuous (even smooth) maps in
the arguments p(T ) = PR(T ) and q(T ) = PR(T )//N(T ).

The following formula gives a characterization of the class X .

Proposition 2.2. Let T ∈ B(H), and k(T ) an oblique projection whose range
is the nullspace of T (for instance, k(T ) = PN(T )). Then T ∈ X if and only

T + k(T )

is invertible. In this case, one has that

q(T ) = PR(T )//N(T ) = T (T + k(T ))−1.

Proof. Suppose first that T ∈ X . In particular, R(T ) is closed. Since the
kernel of k(T ) is a supplement for N(T ), it follows that

T |N(k(T )) : N(k(T )) → R(T )

is an isomorphism. Then, on the decomposition H = N(k(T ))+̇N(T ), T +
k(T ) acts as T |N(k(T )) + idN(T ), onto H = R(T )+̇N(T ), and is clearly an
isomorphism.
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Conversely, suppose that T + k(T ) is invertible. Then

R(T ) = T (N(k(T )) = (T + k(T ))(N(k(T ))

is closed. Let ξ ∈ R(T ) ∩ N(T ). Then there exists a vector η, which can be
chosen in N(k(T )), such that ξ = T (−η) = k(T )ξ. Then

T (−η − ξ) = T (−η) = k(T )ξ = k(T )(ξ + η),

i.e. η + ξ ∈ N(T + k(T )) = {0}, or η = −ξ, which implies that they are
both zero. Pick ξ ∈ H, then there exists ξ ∈ H such that ξ = (T + k(T ))η.
Let η = η0 + η1 ∈ N(T )+̇N(k(T )). Then ξ = Tη1 + k(T )η0 = Tη1 + η0 ∈
R(T ) +N(T ).

Let us now prove the formula. As remarked above, T+k(T ) is an isomor-
phism mappingN(k(T )) onto R(T ), and acting as the identity onN(T ). Then
(T + k(T ))−1 acts as the identity on N(T ), and as the inverse of T |N(k(T ))

in R(T ). Let η ∈ R(T ), then η = Tξ for ξ ∈ N(k(T )),

T (T + k(T ))−1η = Tξ = η.

Clearly T (T + k(T ))−1(N(T )) = 0, which completes the proof. �

In particular, if T ∈ X ,

q(T ) = PR(T )//N(T ) = T (T + PN(T ))−1,

and this implies that continuity of the maps defined above depends on the
continuity of the maps T 	→ PR(T ) and T 	→ PN(T ). It is well known that these
maps are not continuous in B(H) (not even among closed range operators, as
it can be shown with trivial finite dimensional examples). In the next section,
we shall restrict our attention to subsets where they are continuous.

Let us show further characterizations of X and Y. In particular the first
property shows that elements of X have a commuting pseudo-inverse. The
following result, in a different and broader context was proved in [13]. We
include a proof.

Theorem 2.3. The following are equivalent
1. T ∈ X
2. There exists S ∈ B(H) such that TS = ST and TST = T , STS = S.
3. There exists P ∈ Q such that TP = 0 = PT and T + P is invertible.

Proof. Suppose that T ∈ X . Then R(T ) is closed and T0 = T |R(T ) : R(T ) →
R(T ) is invertible. Put S = T−1

0 q(T ) then TS = ST = q(T ) and TST =
T, STS = S. Hence T verifies 2.

Suppose that T verifies 2., and put P = I −TS. Then TP = PT = 0 =
SP = PS,

(T + P )(S + P ) = TS + P = TS + I − TS = I, and (T + P )−1 = S + P.

Hence, T verifies 3.
Suppose that T verifies 3. Since (T + P )P = P = P (T + P ) and T + P

is invertible, we have P = (T + P )−1P = P (T + P )−1. Let us show that
N(T ) = R(P ). If η = Pη ∈ R(P ), then Tη = TPη = O. Then R(P ) ⊆ N(T ).
For the other inclusion, if Tξ = 0 then (T+P−P )ξ = 0. Thus (T+P )ξ = Pξ
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and ξ = (T + P )−1Pξ = Pξ ∈ R(P ). In a similar fashion it is shown that
R(T ) = N(P ): if η ∈ R(T ) then η = Tξ and Pη = PTξ = 0 i.e η ∈ N(P ). If
Pξ = 0 then (T +P −T )ξ = 0. Thus (T +P )ξ = Tξ and ξ = (T +P )−1Tξ =
T (T + P )−1ξ ∈ R(T ).

Therefore H = R(P )+̇N(P ) = R(T )+̇N(T ), i.e T ∈ X . �

There is an analogous characterization for Y:

Theorem 2.4. The following are equivalent
1. T ∈ Y
2. There exists S ∈ B(H) such that TS = ST = (ST )∗ and TST = T,
STS = S.

3. There exists P ∈ P such that TP = 0 = PT and T + P is invertible.

Proof. The proof is essentially the same as above. Suppose that the first
property holds, and pick S = T †. Then S is a pseudo-inverse for T, TS =
PR(T ) and ST = PN(T )⊥ = PR(T ).

If the second property holds, as in the proof above, pick P = 1 − ST ,
which now is an orthogonal projection.

If the third property holds then, by the above theorem, T ∈ X , and as
in the proof above, the orthogonal projection P verifies N(P ) = N(T ) and
R(P ) = R(T ). Thus T ∈ Y. �

Remark 2.5. 1. If T ∈ X then the commuting pseudo-inverse S is in fact
unique.

Indeed, if S′ is another commuting pseudo-inverse for T , then by
Theorem 2.3, one has q(T ) = TS′ = S′T . Then

S′ = S′TS′ = S′q(T ) = S′TS = q(T )S = STS = S.

Let us denote it by S = s(T ).
2. T ∈ X (resp. T ∈ Y) if and only if T ∗ ∈ X (resp. T ∗ ∈ Y). Moreover,

apparently s(T ∗) = s(T )∗.
This is apparent using, for instance, property 2. in Theorem 2.3

(resp. 2.4). Analogously, if T ∈ Y, then also T ∗ ∈ Y.
3. Let T be a closed range operator. Then T ∈ X (resp. T ∈ Y) if and only

if T † ∈ X (resp. T † ∈ Y).
Indeed, since T, T ∗ have closed range, R(T †) = N(T )⊥ = R(T ∗)

and N(T †) = R(T )⊥ = N(T ∗). These two subspaces are complementary
because, for instance, T ∗ ∈ X . For the converse statement, use that
(T †)† = T .

4. Combining the first two statements, if T ∈ X , then

T † = s(T ∗T )T ∗ = T ∗s(TT ∗).

5. If T ∈ X and P ∈ Q such that PT = 0 = TP and T + P invertible,
then

S = s(T ) = (T + P )−1 − P

Also S = (T + P )−1(I − P )
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6. As remarked above, a selfadjoint operator belongs to Y (or for that
matter to X ) if and only if it has closed range. Indeed, if A∗ = A, then
N(A)⊥ = R(A).

In particular if T ∈ X , then T ∗T, TT ∗ ∈ Y, and for any P ∈
Q, P ∗P, PP ∗ ∈ Y.

7. If T ∈ X , then apparently Tn ∈ X , for n ≥ 1. The converse clearly does
not hold.

8. If T ∈ X is non invertible, then 0 ∈ σ(T ) is an isolated point. Define
f(z) = 0 in a neighborhood of 0 and f(z) = z−1 in a neighborhood of
σ(T )\{0}. Then f is a holomorphic function in a neighbourhood of σ(T )
and S = f(T ) (see for instance Theorem 10.10 in [18]). In particular
S lies in the Banach algebra generated by T . Put P = 1 − q(T ) =
1 − TS = 1 − ST , where S = s(T ) as above is the unique commuting
pseudo-inverse for T . Thus as remarked S = (T + P )−1(1 − P ). Using
the resolvent formula for 0 < |z| < γ(T ),

R(z, T ) =
1
z
P +

+∞∑

n=0

Sn+1zn.

Indeed, for such z,

R(z, T ) = (z − T )−1 = (z − T )−1P + (z − T )−1(1 − P )
= z−1P + (z − (T + P )−1(1 − P )

= z−1P +
∑

n≥0

zn(t+ P )−n−1(1 − P )

= z−1P +
∑

n≥0

zn(t+ P )−n−1(1 − P )n+1

= z−1P +
∑

n≥0

zn[(t+ P )−1(1 − P )]n+1 = z−1P +
∑

n≥0

znSn+1.

We prove now a type of perturbation result. More precisely, which con-
ditions on an operator T ∈ B(H) which is close to T0 ∈ X should be added,
in order to get T ∈ X .

Theorem 2.6. Let T0 ∈ X and T ∈ B(H) such that ‖T − T0‖ < 1
‖s(T0)‖ and

‖T 2 − T 2
0 ‖ < 1

‖s(T0)‖2 .
If either R(T ) ∩N(T0) = {0}, or N(T ) +R(T0) = H, then T ∈ X .

Proof. Suppose first that R(T )∩N(T0) = {0}. Note that ‖T −T0‖ < 1
‖S(T0)‖

implies that I + s(T0)(T − T0) and I + (T − T0)s(T0) are invertible.
Let P = I − s(T0)T0 = I − T0s(T0). We have

I + s(T0)(T − T0) = I − s(T0)T0 + s(T0)T = P + s(T0)T.

Thus

P [I+s(T0)(T−T0)]=P [P + s(T0)T ] = P and P [I+s(T0)(T−T0)]−1 = P.

Therefore,

s(T0)T [I+s(T0)(T−T0)]−1 =[P + s(T0)T − P ][I + s(T0)(T−T0)]−1 = I − P.
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Thus, if ξ ∈ H, then

T [I + s(T0)(T − T0)]−1Pξ ∈ R(T ) ∩N(s(T0)) = R(T ) ∩N(T0) = {0}.
Thus

T [I + s(T0)(T − T0)]−1P = 0.

Put

W = [I + s(T0)(T − T0)]−1s(T0).

Note that TWT = T :

TWT = T [I + s(T0)(T − T0)]−1s(T0)T = T [P + s(T0)T ]−1s(T0)T
= T [P + s(T0)T ]−1[P + s(T0)T − P ] = T − T [P + s(T0)T ]−1P = T.

Also, we have

WTW = [P + s(T0)T ]−1s(T0)TW = [P + s(T0)T ]−1[P + s(T0)T − P ]W
= [I − [P + s(T0)T ]−1]P ]W = W − [P + s(T0)T ]−1PW

= W − [P + s(T0)T ]−1Ps(T0) = W

Thus TWT = T and WTW = W .
Note that

I + s(T0)(T 2 − T 2
0 )s(T0) = I + s(T0)T 2s(T0) − s(T0)T 2

0 s(T0)
= I + s(T0)T 2s(T0) − s(T0)T0 = P + s(T0)T 2s(T0)

and

[P − s(T0)T ][I − TW −WT ][P + Ts(T0)] = P + s(T0)T 2s(T0)
= I + s(T0)(T 2 − T 2

0 )s(T0).

Since, [P − s(T0)T ], [P +Ts(T0)] and I+ s(T0)(T 2 −T 2
0 )s(T0) are invertible,

[I − TW −WT ] is invertible.
Since WT and TW are idempotents, this implies that

H = R(TW )+̇N(WT ) = R(T )+̇N(T ),

that is, T ∈ X .
If N(T ) + R(T0) = H, then R(T ∗) ∩ N(T ∗

0 ) = {0}. Since T ∗
0 ∈ X and

S(T ∗
0 ) = S(T0)∗ (see Remark 2.5), it follows that T ∗ satisfies the conditions

of the first part of this proof. Thus T ∗ ∈ X , and then T ∈ X . �

3. Continuity of the Maps

We shall study sets of continuity of the maps q and ρ. In general, they are
not continuous. Easy examples can be constructed in finite dimension

Remark 3.1. Note that if Tn → T , for Tn, T ∈ X , and Sn, S are their com-
muting pseudo-inverses, then

q(Tn) → q(T ) if and only if Sn → S.

Indeed, if Sn → S, clearly q(Tn) = TnSn → q(T ) = ST .
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Conversely, suppose q(Tn) → q(T ). If Pn = 1−q(Tn) and P = 1−q(T ),
clearly TnPn = 0 = PnTn, and Pn is an idempotent onto the nullspace of Tn,
and therefore by Proposition 2.2, since Tn ∈ X , Tn + Pn is invertible. Then
Sn = (Tn + Pn)−1 + Pn, and similarly for T . Then Sn → S.

Let us recall the definition of the reduced minimum modulus γ(T ) of
an operator:

γ(T ) = inf{r ≥ 0 : ‖Tξ‖ ≥ r‖ξ‖, for all ξ ∈ N(T )⊥}.
Clearly γ(T ) > 0 if and only if R(T ) is closed. Let us recall as well the
following facts and notations from [5], in the following remark.

Remark 3.2. Let T ∈ B(H) with closed range.
1. Let T ′ be a pseudo-inverse of T (i.e. TT ′T = T ). Then

γ(T ) =
1

‖T †‖ ≥ 1
‖T ′‖ .

2. For d > 0, let Rd = {B ∈ B(H) : γ(B) ≥ 1
d}. Then both maps

B 	→ PR(B) and B 	→ PN(B)

are continuous as maps from Rd to P, for any fixed d > 0.

To study the continuity of ρ and q, we shall need the following result
by Markus [14] (see also [15], Theorem 17, page 102):

Let Bn → B be a convergent sequence of closed rank operators, the
following are equivalent

1. γ(Bn) is uniformly bounded from below.
2. PN(Bn) → PN(B).
3. PR(Bn) → PR(B).

From this result follow two lemmas (3.3 and 3.4 below), which will be
useful.

This result is perhaps known, though we know no reference for it.

Lemma 3.3. Let An be a sequence of positive operators which converges to
A. Suppose that dim(R(An)) = dim(R(A)) = k < ∞. Then the reduced
minimum moduli of An, A are uniformly bounded from below, i.e. there exists
a constant d > 0 such that γ(An) ≥ d.

Proof. By hypothesis, the range projections PR(An) and PR(A) are unitarily
equivalent. Let Un be unitary operators such that

UnPR(A)U
∗
n = PR(An).

Thus the operators U∗
nAnUn, A have the same range R(A). Let Bn and B

be the restrictions of U∗
nAnUn and A to R(A) = N(A)⊥. Thus Bn, B are

invertible operators acting in the finite dimensional space R(A). Apparently

γ(An) = γ(U∗
nAnUn) = γ(Bn).

Suppose that γ(Bn) is not bounded from below, then there exists a subse-
quence, which we will denote Bj , such that γ(Bj) → 0. Note that ‖Bn‖ =
‖An‖ is uniformly bounded. Since Bj act in a finite dimensional space, it
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follows that there exists a subsequence of Bj , which we will denote by Bl,
such that Bl → C. Since γ(Bl) → 0 it follows that C, which is positive, is
not invertible.

On the other hand, extending C trivially in R(A)⊥, clearly U∗
l AlUl → C

in H. Note that U∗
l AlUl are closed range operators, which converge to A,

and such that R(U∗
l AlUl) = R(A). Thus we can apply (a trivial version of)

Markus Theorem cited above, to conclude that

γ(Al) = γ(U∗
l AlUl) → γ(A) > 0,

leading to a contradiction. �

The following Lemma is again a consequence of Markus’ Theorem:

Lemma 3.4. Let An be a sequence of (closed range) positive operators which
converges to A, such that dim(N(An)) = dim(N(A)) = k < ∞. Then there
exists d > 0 such that γ(An) ≥ d for all n ≥ 1.

Proof. Note that A ∈ X , and since it is positive, its commuting pseudo-
inverse coincides with its Moore-Penrose pseudo-inverse s(A) = A†.

AA† = A†A = q(A) = PR(A).

The sequence Bn = A†An converges to A†A = PR(A), which is a Fredholm
operator of index zero. It follows that there exists n0 such that for n ≥
n0, Bn is also a Fredholm operator of index zero. Moreover, since N(An) ⊂
N(A†An), using Kato’s theorem, one can choose n0 in order that n ≥ n0

implies

k = α(An) ≤ α(A†An) ≤ α(A†A) = α(A) = k.

In particular, N(A†An) = N(An). Note also that R(Bn) ⊂ R(A†) = R(A).
If n ≥ n0, R(Bn) has co-dimension k. These facts together imply that for
n ≥ n0, R(Bn) = R(A).

Note that for Bn = A†An, a trivial application of Markus Theorem
proves that the last statement holds trivially. Thus

PN(An) = PN(Bn) → PN(A).

Again using the Markus result, this time for An → A, it follows that γ(An)
is uniformly bounded from below. �

4. Similarity Orbits

Let Gl(H) be the group of invertible operators acting in H. Gl(H) acts in X
by similarity: if T ∈ X

GTG−1 ∈ X .
Indeed, R(GTG−1) = G(R(T )) and N(GTG−1) = G(N(T )). Moreover, the
map q : X → Q is equivariant with respect to this action:

G(R(T )+̇N(T )) = R(GTG−1)+̇N(GTG−1),
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and thus

q(GTG−1) = PG(R(T ))//G(N(T )) = GPR(T )//N(T )G
−1 = Gq(T )G−1.

Denote by ST0 the similarity orbit of T0,

ST0 = {GT0G
−1 : G ∈ Gl(H)}.

It is known that the similarity orbit of an oblique projection Q coincides with
the connected component QQ of Q in Q.

The following result will be useful, here and later. A set S ⊂ B(H) is
said to be similarity invariant if T ∈ S implies that GTG−1 ∈ S, for any
G ∈ Gl(H). We refer the reader to [9] for the definitions and basic facts on
fibre bundles.

Lemma 4.1. Let S be a subset of X which is similarity invariant. Suppose
also that

q|S : S → Q, q(T ) = PR(T )//N(T )

is continuous. Then the image of q|S is a union of connected components of
Q, and q|S is a locally trivial fibre bundle onto its image.

Proof. If Q = q(T ) for some T ∈ S, then for any G ∈ Gl(H),

GQG−1 = Gq(T )G−1 = q(GTG−1) ∈ q(S),

which proves the first assertion. Fix Q0 = q(T0) for T0 ∈ S.
Let us exhibit a trivialization of q|S on a neighbourhood of T0. Given

Q0, there exists r0 > 0 such that if Q ∈ Q verifies ‖Q−Q0‖ < rQ0 , then

σQ = QQ0 + (1 −Q)(1 −Q0) ∈ Gl(H).

Note that σQQ0 = QQ0 = QσQ, and thus Q = σQQ0σ
−1
Q , if ‖Q−Q0‖ < rQ0 .

Consider

BT0 = {T ∈ S : ‖q(T ) −Q0)‖ < rQ0},
the fiber space FQ0 over Q0, FQ0 = {S ∈ S : q(S) = Q0}. and

Φ=ΦT0 :BT0 → FQ0 × {Q ∈ Q : ‖Q−Q0‖ < rQ0},Φ(T )=(σ−1
q(T )Tσq(T ),q(T )).

Apparently T ∈ BQ0 means ‖q(T ) −Q0‖ < rQ0 and thus q(σ−1
q(T )Tσq(T )) =

σ−1
q(T )q(T )σq(T ) = Q0. Consider

Ψ : FQ0 × {Q ∈ Q : ‖Q−Q0‖ < rQ0} → S,Ψ(S,Q) = σQSσ
−1
Q .

Note that Ψ(S,Q) is similar to T0, because S ∈ S. Also

q(Ψ(S.Q)) = σQq(S)σ−1
Q = σQQ0σ

−1
Q = Q

Then

Φ(Ψ(S,Q))=Φ(σQSσ
−1
Q )=(σ−1

σQq(S)σ−1
Q

σQSσ
−1
Q σσQq(S)σ−1

Q
,q(σQq(S)σ−1

Q ))

= (S,Q),

and

Ψ(Φ(T )) = Ψ(σ−1
q(T )Tσq(T ),q(T )) = σq(T )σ

−1
q(T )Tσq(T )σ

−1
q(T ) = T. �

Fix T0 ∈ X , and put Q0 = q(T0).
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Proposition 4.2. The mapping

q : ST0 → QQ0 , q(T ) = PR(T )//N(T )

is continuous, onto and a locally trivial fibre bundle.

Proof. Let GnT0G
−1
n be a sequence in ST0 converging to T1 = G0T0G

−1
0 . Let

us show that

q(GnT0G
−1
n ) → q(T1).

By the continuity of the similarity action, and the equivariance of q, it suffices
to consider the case T1 = T0. We claim that there exists d > 0 such that
GnT0G

−1
n and T0 ∈ Rd, for all n ≥ 1, i.e. that the minimum modulus of

GnT0G
−1
n is bounded from below. To prove this, note that if S0 is a pseudo-

inverse for T0, then GnS0G
−1
n is a pseudo-inverse for GnT0G

−1
n . Therefore,

in view of the properties stated in Remark 3.2, it suffices to show that the
norms ‖GnS0G

−1
n ‖ are bounded from below. Suppose otherwise that there

exists a subsequence such that ‖Gn(k)S0G
−1
n(k)‖ → 0. Then in the expression

Gn(k)T0G
−1
n(k)Gn(k)S0G

−1
n(k)Gn(k)T0G

−1
n(k) = Gn(k)T0G

−1
n(k).

The right hand terms tend to T0, whereas the left hand terms tend to zero,
leading to a contradiction. Therefore all terms GnT0G

−1
n belong to a set Rd

for some d > 0, where q is continuous.
That q|ST0

is a locally trivial fibre bundle, follows form Lemma 4.1
above. �
Remark 4.3. If T0 ∈ X , the fiber FT0 consists of operators in the T = GT0G

−1

in the similarity orbit of T0 such that R(T ) = R(T0) and N(T ) = N(T0).
That is

G(N(T0)) = N(T0), G(R(T0)) = R(T0).

Denote by T̄0 the (invertible) operator T0|R(T0) as an operator in B(R(T0)).
Then FT0 identifies with the similarity orbit

{KT̄0K
−1 : K ∈ Gl(R(T0))}.

Proposition 4.4. Let T0 ∈ X . The map

ρ : ST0 → Y, ρ(T ) = |εq(T )|−1/2T |εq(T )|1/2

is continuous.

Proof. The map Q → Gl(H), Q 	→ |εQ| is apparently continuous. By the
above result, ST0 → Q, T 	→ q(T ) is continuous. �

Let U be a unitary operator in H. Then apparently, by uniqueness in
the polar decompostion,

|εq(UT0U∗)| = |εUq(T0)U∗ | = U |εq(T0)|U∗.

So that

ρ(UT0U
∗) = U |εq(T0)|−1/2U∗UT0U

∗U |εq(T0)|1/2U∗ = Uρ(T0)U∗.

In particular, this implies that the image ρ(ST0) of the above retraction,
contains the unitary orbit of ρ(T0).
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5. Fredholm and Compact Split Operators

Split operators which are also Fredholm have finite dimensional nullspace, and
therefore are special cases of zero index Fredholm operators. Split operators
which have finite dimensional range, are compact operators. The converse
of this latter statement is also apparent, split compact operators have finite
rank, since split operators are invertible when restricted to their ranges.

Let us first treat the compact case, and examine the continuity of the
maps ρ and q restricted to this class. Denote by

Xc = {T ∈ X : T is compact} = {T ∈ X : T has finite rank},

and

Xck
= {T ∈ X : dim(R(T )) = k}.

Thus Xc = ∪∞
k=0Xck

.

Proposition 5.1. Restricted to Xck
(k < ∞), the maps ρ and q are continuous.

Proof. Let Tn → T in Xck
. Then TnT

∗
n are positive operators of rank k, which

converge to TT ∗ which is also of rank k. By Lemma 3.3, γ(Tn) = γ(TnT
∗
n) is

uniformly bounded from below. Thus, by the same argument as in Theorem
4.1 and Proposition 4.4, the maps ρ and q are continuous. �

Remark 5.2. These maps are non continuous in the whole class Xc. Indeed, in
the case of q, one can easily find a sequence of finite (and fixed) rank operators
which converges to an operator of different (lesser) rank. If q were continuous,
one would have a sequence of idempotents of fixed rank, which converges to
an idempotent of lesser rank, which cannot happen (close idempotents are
similar).

As with the case of similarity orbits, continuity of the map q restricted
to Xck

implies that it is a fibre bundle.

Proposition 5.3. The restriction

qck
= q|Xck

: Xck
→ Qk = {Q ∈ Q : dim(R(Q)) = k}

is a locally trivial fibre bundle.

Proof. By Lemma 4.1 and the above result, it suffices to prove that the set
S = Xck

is similarity invariant, a fact which is apparent. �

Let us denote by

Yck
= Y ∩ Xck

= {T ∈ Y : dim(R(T )) = k}.

Proposition 5.4. The restriction

ρck
= ρ|Xck

: Xck
→ Yck

is a strong deformation retraction.
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Proof. First note that ρ(Xck
) = Yck

. Since ρ is a retraction and Yck
⊂ Xck

,
clearly Yck

⊂ ρ(Xck
). Note that by definition, ρ(T ) is similar to T . It follows

that

dim(R(ρ(T ))) = dim(R(T )),

and thus T ∈ Xck
implies that ρ(T ) ∈ Yck

. Recall that

ρ(T ) = |εq(T )|−1/2T |εq(T )|1/2.

Put

Rt(T ) = |εq(T )|−t/2T |εq(T )|t/2.

Since Xck
is similarity invariant, it follows that Rt(Xck

) ⊂ Xck
. If T ∈

Y, εq(T ) = 1, so that Rt(T ) = T . Apparently, regarded as a two variable
map

[0, 1] × Xck
� (t, T ) 	→ Rt(T ) ∈ Xck

,

it is continuous. Clearly, R0 = idXck
and R1 = ρ. �

Remark 5.5. In the case of qck
, the fibre FQ0 of this bundle over a given

Q0 ∈ Qk is

FQ0 = {T ∈ B(H) : R(T ) = R(Q0), N(T ) = N(Q0)} � Gl(R(Q0)) � Gl(k).

One can use this bundle to prove that Xck
is simply connected if k ≥ 2.

Indeed, in the next section we show that Xck
is arc-wise connected. Let us

write the tail of the homotopy exact sequence of the bundle qck
[9]:

0 = π1(Gl(k)) → π1(Xck
) → π1(Qk) → π0(Gl(k)) = 0.

On the other hand, π1(Qk) is trivial for k ≥ 2, using the homotopy exact
sequence of the bundle

U(H) → Qk, U 	→ UQ0U
∗

with fibre {U ∈ U(H) : UQ0 = Q0U} � U(R(Q0)) × U(N(Q0)) � U(k) ×
U(N(Q0)). Note that in this case, since dim(R(Q0)) = ∞, U(N(Q0)) and
U(H) are contractible by Kuiper’s Theorem [12]. Thus π1(Qk)=π1(U(k))=0.

We shall denote by

XF = {T ∈ X : T is a Fredholm operator}
the class of Fredholm split operators. Apparently, the Fredholm index of such
operators is zero. For a non negative integer k, denote by

XFk
= {T ∈ XF : dim(N(T )) = k}.

Clearly

XF = X ∩ F = X ∩ F+ = X ∩ F− = X ∩ F0 = ∪∞
k=0XFk

,

where F (resp.F+,F−,F0) denotes the class of Fredholm (resp. semi-Fredholm
operators of non negative index, semi-Fredholm operators of non positive
index, Fredholm operators of zero index). Note that
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X\XF = X\F = {T ∈ X : dim(N(T )) = ∞}.
If A is a Fredholm operator, denote

α(A) = dim(N(A)) and β(A) = dim(R(A)⊥).

The following Lemma will be useful.

Lemma 5.6. Let A be a Fredholm operator of index 0. The following are
equivalent:

1. A ∈ X .
2. α(A2) = α(A).
3. β(A2) = β(A).

Proof. Note that α(A2) = α(A) < ∞ means that N(A2) = N(A). Analo-
gously, β(A2) = β(A) means that R(A2) = R(A). It is a general fact on the
theory of the ascent and descent of an operator (see for instance [18]) that
N(A2) = N(A) and R(A2) = R(A) together are equivalent to the condition
H = N(A)+̇R(A). Thus it suffices to show that (under the zero index as-
sumption) α(A2) = α(A) if and only if β(A2) = β(A). Apparently, in general
α(A2) ≥ α(A) and β(A2) ≥ β(A).

If α(A2) = α(A),

0 = index(A) = α(A) − β(A)
= α(A2) − β(A) ≤ α(A2) − β(A2) = index(A2) = 0.

The other statement is similar. �

Proposition 5.7. The set

XF0 ∪ XF1

is open in B(H). Moreover, fix T0 ∈ XF0 ∪ XF1 . If

‖T − T0‖ < γ(T0) and ‖T 2 − T 2
0 ‖ < γ(T 2

0 ),

then T ∈ XF0 ∪ XF1 .

Proof. Clearly, the second statement implies that XF0 ∪XF1 is open in B(H).
T. Kato (see for instance [10]) proved that if A0 is a Fredholm operator

and ‖A − A0‖ < γ(A0), then A is also a Fredholm operator, index(A) =
index(A0) and

α(A) ≤ α(A0), β(A) ≤ β(A0).

Applying this result to T and T 2, one has that T is a Fredholm operator of
index 0, and

α(T ) ≤ α(T 2) ≤ α(T 2
0 ) = α(T0).

Note that α(T0) equals 0 or 1. If α(T0) = 0, T0 is invertible, and ‖T − T0‖ <
γ(T0) = ‖T−1

0 ‖−1 implies that T is also invertible, i.e.,

T ∈ Gl(H) = XF0 ⊂ XF0 ∪ XF1 .

If α(T0) = 1, by the above inequalities

0 ≤ α(T ) ≤ α(T 2) ≤ 1.
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If α(T ) = 0, T is invertible. If α(T ) = 1, then α(T ) = α(T 2) = 1, and by the
previous Lemma, T ∈ X . Therefore T ∈ XF1 . �

Let us denote by int(X ) the interior of X .

Theorem 5.8. int(X ) = XF0 ∪ XF1 .

Proof. By the above proposition, XF0 ∪ XF1 ⊂ int(X ). Let T in X such that
T /∈ XF0 ∪ XF1 . Then α(T ) ≥ 2 (and eventually equals +∞). There exist
ξ, ν ∈ N(T ), with ξ ⊥ ν and ‖ξ‖ = ‖ν‖ = 1. Consider Tδ = T + δ ξ⊗ ν. Note
that Tδξ = 0 and that Tδν = δξ, i.e. ξ ∈ N(Tδ) ∩ R(Tδ) and thus Tδ /∈ X .
Clearly ‖Tδ − T‖ = δ, and therefore T /∈ int(X ). �
Proposition 5.9. The maps q and ρ, when restricted to XFk

(k < ∞), are
continuous.

Proof. The proof follows as in the previous case, this time using Lemma
3.4. �
Proposition 5.10. The map

qFk
= q|XFk

: XFk
→ Q∞,k = {Q ∈ Q : dim(R(Q)⊥) = k}

is a locally trivial fibre bundle.

Proof. Using the above proposition, and Lemma 4.1, it suffices to show that
the set S = XFk

is similarity invariant, a fact which is apparent. Also it is
apparent that q(XFk

) is the connected component of Q consisting of idem-
potents with co-rank k, i.e. Q∞,k. �

Denote by

YFk
= Y ∩ XFk

= {T ∈ Y : α(T ) = k}.
The proof of the following result is similar as the proof of Proposition 5.4.

Proposition 5.11. The restriction

ρFk
= ρ|XFk

: XFk
→ YFk

is a strong deformation retraction.

Remark 5.12. The fibre of the bundle qFk
over a given Q0 ∈ Q∞,k is

FQ0 = {T ∈ X : R(T ) = R(Q0), N(T ) = N(Q0)} � Gl(R(Q0)).

If dim(H) = ∞, the fibre FQ0 is contractible in the norm topology, by
Kuiper’s theorem.

In the next section, it will be shown that XFk
and YFk

are arcwise
connected.

Therefore, using the exact sequence of homotopy groups induced by the
bundle qFk

, and the above proposition, one obtains that

πn(YFk) � πn(XFk
) � πn(Q∞,k).

On the other hand, the homotopy groups of Q∞,k can be examined using the
fibre bundle

tQ0 : Gl(H) → Q∞,k, πQ0(G) = GQ0G
−1,
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whose fibre is

GQ0 = {G ∈ Gl(H) : GQ0 = Q0G} � Gl(R(Q0)) ×Gl(N(Q0)).

Since dim(R(Q0)) = ∞ and dim(N(Q0)) = k, again by Kuiper’s theorem

πn(Q∞,k) � πn−1(Gl(k)).

6. Local Structure

The sets X and Y are connected. If T ∈ X , then tT is a continuous path in
the parameter t, which stays inside X , and connects T and 0. Similarly for
Y.

Other special subsets of X and Y considered here are also connected. For
instance (since Gl(H) and U(H) are connected), the unitary and similarity
orbits of elements in X or Y are connected.

We have also considered Yck
⊂ Xck

and YFk
⊂ XFk

of finite rank and
Fredholm split and EP operators. Let us add to this list

X∞ = {T ∈ X : dim(N(T )) = ∞, dim(R(T )) = ∞}

and

Y∞ = {T ∈ Y : dim(N(T )) = ∞, dim(R(T )) = ∞} = Y ∩ X∞.

Apparently, X = (∪∞
k=0Xck

) ∪ (∪∞
k=0XFk

) ∪ X∞, and similarly for Y.

Proposition 6.1. The sets Xck
,XFk

,X∞,Yck
,YFk

and Y∞ are arcwise con-
nected.

Proof. The proof is similar for all these sets, and is based in the following fact.
Let X∗ (resp. Y∗) denote any of the sets related to X (resp. Y). If T1, T2 lie in
X∗ (resp. Y∗), then q(T1) is similar to q(T2) (resp. p(T1) is unitarily equiva-
lent to p(T2)). This is clear, if T1, T2 lie in the same set, then dim(N(T1)) =
dim(N(T2)) and dim(R(T1)) = dim(R(T2)). Let us reason with X∗ (the
other case is analogous). Let G ∈ Gl(H) such that Gq(T1)G−1 = q(T2).
Then T1 and G−1T2G have the same nullspace and range. Then T1|R(T1) and
G−1T2G|R(T1) are invertible operators in B(R(T1). Since Gl(R(T1)) is con-
nected, there exists a continuous path K(t) ∈ Gl(R(T1)) such that K(0) =
T1|R(T1) and K(1) = G−1T2G|R(T1). Put

L(t) = K(t) ⊕ 0 in R(T1) ⊕N(T1) = H.

Then clearly L(t) is a continuous path in X∞, with L(0) = T1 and L(1) =
G−1T2G. Thus it suffices to find a path connecting G−1T2G and T2 in X∗.
This can be done taking G−1(t)T2G(t), where G(t) is a continuous path in
Gl(H) with G(0) = 1 and G(1) = G. �

To establish the local regularity of the these subsets, let us refine our
recollection of the geometric structure of P and Q (see [6,16])
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Remark 6.2. 1. The manifold Q has local charts induced by its reductive
structure. Explicitly, given Q0 ∈ Q, there exists an open set V in the
complemented subspace of Q0-co-diagonal operators

{X ∈ B(H) : Q0XQ0 = (1 −Q0)X(1 −Q0) = 0}

and rQ0 < 0, such that

exp : V → {Q ∈ Q : ‖Q−Q0‖ < rQ0}, exp(X) = eXQ0e
−X

is a diffeomorphism [16].
2. In the case of orthogonal projections, one can be more precise. If P0 ∈ P

exp : {X ∈ B(H) : X∗ = −X, P0XP0 = (1 − P0)X(1 − P0) = 0, |X| < π/2}
→ {P ∈ P : ‖P − P0‖ < 1}

is a diffeomorphism.

Theorem 6.3. The sets Xck
,XFk

,Yck
and YFk

are differentiable manifolds.
The subsets Xck

,XFk
are analytic manifolds, the subsets Yck

,YFk
are C∞

manifolds.

Proof. As above, denote by X∗,Y∗ any of the sets in the statement of this
theorem. Note that in this case, the sets X∞ and Y∞ are excluded. Pick
T0 ∈ X∗, and consider the set

W = {T ∈ X∗ : ‖q(T ) − q(T0)‖ < rQ0}.

From the results of the previous section, it is clear that W is an open subset
of X∗. This set will serve as a local chart for X∗ around T0. Consider the map

ϕ : W → V ×Gl(R(T0)), ϕ(T ) = (XT , e
−XT TeXT |R(T0)),

where XT = exp−1(q(T )), and exp is the homeomorphism of the above re-
mark. We claim that ϕ is a homeomorphism. First note that it is well defined.
If T ∈ W, then ‖q(T )−q(T0)‖ < 1, and so XT = exp−1(q(T )) belongs to V.
Also,

eXT q(T0)eXT = exp(XT ) = q(T )

so that e−XT TeXT has the same range and nullspace as T0, and thus
e−XTTeXT |R(T0) is an invertible operator in R(T0). Apparently, ϕ is continu-
ous, because q is continuous in X∗. Its inverse is the mapping

ψ : V ×Gl(R(T0)) → W, ψ(X,G) = eX(G⊕ 0)e−X ,

where G ⊕ 0 is the extension of G acting in R(T0), defined as zero in the
complement N(T0). Clearly ψ is continuous. Straightforward verifications
show that ϕ and ψ are inverse maps. Thus we have constructed local charts
around any point T0 in X∗. Apparently the transition maps between two
charts are analytic.

The proof for Y∗ is similar, replacing q by p, and using the correspond-
ing neighbourhoods of exp in P �
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Remark 6.4. Note that the local charts of X∗ and Y∗ (excluding X∞ and
Y∞) are open sets in the relative topology of X∗ and Y∗ induced by the norm
topology. Thus these sets give a manifold structure, but not a submanifold
structure (of B(H)).

7. Split Partial Isometries

In [1] we studied the set J0 of split partial isometries, which consists of partial
isometries V of H such that N(V )+̇R(V ) = H. It is an open subset of the
set J of all partial isometries, which is a differentiable submanifold of B(H),
and therefore itself a differentiable submanifold. We also considered the set
JN of normal partial isometries, i.e., partial isometries with the same initial
and final space.

If T ∈ B(H) let us denote by VT the partial isometry in the polar
decomposition of T ,

T = VT |T |,
with initial space N(T )⊥ and final space R(T ). Denote by ν the map

ν : B(H) → J , ν(T ) = VT .

Proposition 7.1. Suppose that R(T ) is closed.
1. T ∈ X if and only if VT ∈ J0.
2. T ∈ Y if and only if VT ∈ JN .

Proof. The first assertion is apparent, because N(VT ) = N(T ) and R(VT ) =
R(T ). For the second assertion, note that

VTV
∗
T = PR(VT ) = PR(T ) and PN(T )⊥ = PN(VT )⊥ = V ∗

T VT .

Thus both projections coincide if and only if R(T ) = N(T )⊥. �
Remark 7.2. Denote by B+

cr(H) the set of positive operators with closed
range. Note that if V ∈ J0, the fibre of ν over V is

ν−1(V ) = {T ∈ X : VT = V } = {V A : A ∈ B+
cr(H), N(A) = N(V )}.

With respect to the other factor in the polar decomposition, it is straightfor-
ward to verify that if A ∈ B+

cr(H)

{T ∈ X : |T | = A} = {V A : V ∈ J0, N(V ) = N(A)}.
Thus a retraction is defined:

ν|X : X → J0 ⊂ X , ν(T ) = VT .

As with the nullspace and range projections, this map is in general not con-
tinuous. However it is continuous when restricted to several parts of X .

Proposition 7.3. If T0 ∈ X , the map ν(T ) = VT is continuous restricted to
the following subsets of X :

• The similarity orbit ST0 of a fixed T0 ∈ X .
• The set XCk

of elements in T ∈ X such that dimR(T ) = k, k < ∞.
• The set XFk

of elements in T ∈ X such that dimN(T ) = k, k < ∞.
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Proof. Let Tn, T
′ in one of the above classes, such that Tn → T ′. As is well

known,

γ(T ) = γ(|T |).
It was shown in Sects. 3 and 4, that in any of these classes, there exists d > 0
such that |Tn|, |T ′| ∈ Rd. In [5] it was shown that the Moore-Penrose pseudo-
inverse is continuous in Rd (in fact, it is a Lipschitz map with Lipschitz
constant 3

d2 ). Then |Tn|† → |T ′|†, and thus

VTn
= VTn

PN(Tn)⊥ = VTn
|Tn||Tn|† = Tn|Tn|† → T ′|T ′|† = VT ′ . �
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