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Abstract Reactive oxygen species are in all types of organ-
isms from microbes to higher plants and animals. They are
by-products of normal metabolism, such as photosynthesis
and respiration, and are responsive to abiotic and biotic
stress. Accumulating evidence suggests reactive oxygen
species play a vital role in programmed cell death, stress
responses, plant defense against pathogens and systemic
stress signaling in conjunction with antioxidant production.
Here, we propose that reactive oxygen species and antiox-
idants, as both universal and evolutionarily conserved, are
likely to play important role(s) in symbiotic interactions. To
support this hypothesis we review the root and foliar fungal
endophyte literature specific to fungal-plant symbiotum pro-
duction of reactive oxygen species and antioxidants in re-
sponse to stress. These asymptomatic fungi can produce
antioxidants in response to both biotic and abiotic stress
when grown in culture as well as in planta. In addition,
there is a growing but nascent literature reporting a signif-
icant impact of endophyte colonization on the antioxidant
activity of colonized (E+) hosts when compared to uncolon-
ized (E-) hosts, especially when exposed to stress. Here we
summarize general patterns emerging from the growing
literature specific to antioxidant activity of endophytes in

colonized hosts and bring up possible future research ques-
tions and approaches. The consequences of changes in re-
active oxygen species production and increased antioxidant
activity in the symbiotum appear to be beneficial in many
instances; but costs are also indicated. Unexplored questions
are: 1) to what extent do antioxidants originating from the
fungal endophyte mediate host metabolism, and thereby
control host responses to endophyte colonization; (2) what
role do fungal, plant, or symbiotum produced reactive oxy-
gen species and antioxidants have in determining symbiotic
outcome between extremes of pathogenicity and mutualism;
and (3) what role if any, do the production of reactive
oxygen species and their antioxidant counterparts play in
the symbiotum’s ability to respond to changing selection
pressures? If as the literature suggests, such endophyte
imposed mediation can be utilized to foster increases in
plant production in resource limited habitats then the utili-
zation of fungal endophytes may prove useful in agronomic
and conservation settings.
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Introduction

Symbioses in general are complex interactions with the
ecological context and evolutionary framework within
which they exist capable of leading to different outcomes
at population and community levels (Bronstein 1994).
Research investigating genetic and physiological mechanism
(s) responsible for differences in symbiotic outcomes is nec-
essary to develop a robust understanding of the ecological and
coevolutionary origins, consequences, and trajectories of
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symbiotic interactions. Recent research suggests oxidative
balance plays a crucial role in modulating plant-fungus inter-
actions (Rodriguez and Redman 2005 and 2008; Nanda et al.
2010; White and Torres 2010; Redman et al. 2011). Part of the
complex plant immune system is driven by biphasic reactive
oxygen species bursts mediating first, recognition of invading
fungi, and then the establishment of defense responses in the
plant (Mittler 2002; Overmyer et al. 2003; Box 1 and Fig. 1).
Virulent pathogens appear able to suppress the second burst of
reactive oxygen species (Torres et al. 2006; Torres 2010;
Eaton et al. 2011). Similarly, a suppressed second burst is
suggested to inactivate plant defense responses against sym-
biotic fungi (Gechev et al. 2006; Tanaka et al. 2006; Lohar et
al. 2007; Torres 2010; Eaton et al. 2011; Fig. 1).

Box 1. Glossary

Symbiosis: Symbioses are close ecological relationships between two
or more, inter-specific individuals. Symbiosis does not indicate the
outcome of the inter-specific interaction, only the degree of interac-
tion ranging from obligate to facultative (Smith 1979). As such, a
symbiotic interaction can be positive (mutualism), negative (patho-
genesis or parasitism), or neutral for one or both of the partners
(commensalism).

Endophytism: An endophyte is an asymptomatic life stage of a
symbiotic microorganism (Wilson 1995). The stage may last part, or
the entire life cycle of the organism and is typified as asymptomatic
at least throughout some portion of colonization. Endophytes may be
maternally transmitted (vertical) or horizontally transmitted passively
or via vectors (Wilson 1995).

Dark septate endophytes (DSE): DSE are a miscellaneous group of
ascomycetous anamorphic fungi that colonize root tissues intra- and
inter-cellularly (Jumpponen 2001). Evidence suggests a role for DSE
as a mycorrhizal substitute especially in habitats exposed to recurrent
stress (Read and Haselwandter 1981; Cázares et al. 2005; Postma et
al. 2007) leading to the suggestion DSE functionally replace mycor-
rhizae in hosts living at latitudes beyond the reach of mycorrhizal
symbiosis (Jumpponen 2001; Newsham et al. 2009). Thus, amycor-
rhizal hosts may rely on root endophytes to navigate the vicissitudes
of extreme environments or even stable but stressful ones (Johnson et
al. 1997; Jumpponen 1999; Jumpponen and Trappe 1998; Jumppo-
nen and Jones 2010; Mandyam and Jumpponen 2012).

Reactive oxygen species: Reactive oxygen species (ROS) are
multifunctional metabolites resulting from aerobic metabolism found
in all living organisms. When light absorption by photosynthetic cells
exceeds utilization, free radicals in the form of different ROS are
produced (Logan 2006; Gill and Tuteja 2010). This is a phenomenon
of the electron transport system and the oxygen molecule’s ability to
readily accept electrons (Foyer and Noctor 2000). Additionally,
plants exposed to pathogens and herbivores produce ROS via
oxidative bursts (Apel and Hirt 2004; Jaspers and Kangasjärvi 2010;
Fig. 1). These bursts result in the production of molecules, which can
be employed to create physical barriers to hyphal growth and have
direct detrimental effects to the cells of invading entities (Overmyer
et al. 2003; De Gara et al. 2010).

The role of ROS in plant abiotic stress response has undergone an
important reevaluation with accumulating research supporting the
beneficial role of ROS in priming the plant response to abiotic
stresses (Foyer and Noctor 2000 and 2005; Foyer and Shigeoka
2011). In this role various singlet oxygen species are induced by the
plant, travel long distances within plant tissues and produce systemic

signaling throughout the plant (Mittler 2002; Apel and Hirt 2004;
Foyer and Noctor 2005 and 2011; Fig. 1). Activation of plant stress
response includes production of an arsenal of antioxidants which then
mediate the level of ROS accumulation in plants cells thereby
reducing cell damage and death (Jaspers and Kangasjärvi 2010;
Fig. 1).

Antioxidants: Antioxidants are the means by which reactive oxygen
species (ROS) are mediated and regulated so as to avoid or reduce
cell damage and death (Gechev et al. 2006; Foyer and Noctor 2011).
Antioxidant enzymes responsive to ROS production are numerous
and include ascorbate peroxidase (APX), catalase (CAT), glutathione
reductase (GR), glutathione peroxidase (GPX), MAPK kinases
(MAPK), and superoxide dismutase (SOD), to name a few.
Antioxidants vary in terms of quantity within plant tissues as well as
in terms of the specific ROS scavenged (Fig. 2).

Increases in various antioxidants have been repeatedly shown to
correlate with increased plant tolerance to multiple stresses (Smith et
al. 1989; Sharma and Dubey 2005; Gaber et al. 2006; Simon-Sarkadi
et al. 2006; Agarwal 2007; Hoque et al. 2007; Molinari et al. 2007;
Zhang and Nan 2007; Shao et al. 2008; Yan et al. 2008; Rodriguez
and Redman 2008; Kumar et al. 2009; Shittu et al. 2009; Pang and
Wang 2010; Srinivasan et al. 2010) including salt, drought, metals,
and pathogens (Gill and Tuteja 2010). As a result of their protective
roles antioxidants are critical to plant survival and fitness and pre-
sumably selection has resulted in both redundant and highly specific
pathways to address ROS production and mediate stress.

In this paper we focus on asymptomatic fungal endo-
phytes in plant roots and shoots. Despite abundant research
attempting to label these symbioses, many studies have
shown plant-fungal symbioses to be labile and readily qual-
ified as antagonistic, neutral, or mutualistic depending on
host and fungus life stage, genotype, as well as abiotic and
biotic environmental conditions (Clay 1993; Bronstein
1994; Saikkonen et al. 1998; Ahlholm et al. 2000;
Lehtonen et al. 2005; Saikkonen et al. 2004; Gundel et al.

Fig. 1 Reactive oxygen species produced from various types of stress
as well as basic metabolic processes elicit antioxidants to scavenge
reactive oxygen species and thus avoid cell death
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2006, 2010, 2011; Sullivan and Faeth 2008; Cheplick and
Faeth 2009; Hamilton et al. 2009 and 2010; Rodriquez et al.
2004 and 2009; Rudgers et al. 2009; Johnson et al. 2010;
Saikkonen et al. 2010; Mouhamadou et al. 2011; Purahong
and Hyde 2011; Tejesvi et al. 2011; Vesterlund et al. 2011).
The benefit of endophytic fungi to a diverse group of host
plants has commonly been observed in nutrient poor envi-
ronments and when plants are under stress such as drought,
flooding, plant competition, herbivory, and pathogen attacks
(Hesse et al. 2003; Rodriguez et al. 2004; Clarke et al. 2006;
Schardl et al. 2004; Saikkonen et al. 2006; Morse et al.
2007; Hahn et al. 2008; Saikkonen et al. 2010; Gundel et
al. 2012; Torres et al. 2012). These fungi include root
associated dark septate endophytes as well as obligate and
facultative, asymptomatic endophytes residing within
above-ground plant parts of the hosts throughout the fungal
life cycle (systemic and vertically transmitted endophytes; e.
g. Neotyphodium; Box 1). In addition, all plants host a
diverse community of horizontally transmitted endophytic
fungi which are often close relatives to pathogens (e.g.
Trichoderma spp., Colletotrichum spp., Cladosporium
spp., Phomopsis spp., Phyllosticta spp., and Fusarium spp.
(Saikkonen 2007; Ghimire et al. 2011; González and Tello
2011; Rocha et al. 2011; Udayanga et al. 2011; Wikee et al.
2011).

Tanaka et al. (2006 and 2008) demonstrated reactive
oxygen species bursts originating from a mutualistic endo-
phyte are required to inactivate plant defense responses
against the fungus thereby maintaining the mutualism.
Whether the suppression of plant defense is the result of
fungal, plant, or symbiotum metabolism is poorly under-
stood (Fig. 2). Because reactive oxygen species play a
mechanistic role in programmed cell death, general stress
responses and systemic signaling, they can have multifari-
ous effects on the success of fungal infection or endophyte
colonization and the plant responses, i.e. resistance, accep-
tance, or sanctioning. Moreover, antioxidants can serve to
transmit stress signals through the oxidant-antioxidant inter-
action (CH Foyer, pers. comm.; Box 1). This may facilitate
the chemical communication between a host and an aviru-
lent pathogen or asymptomatic endophyte enabling the host
to react quickly to pathogenesis and differentiate a pathogen
from a mutualist (Fig. 2). A sophisticated mammalian im-
mune recognition system, called the ‘innate immune sys-
tem’ has evolved to distinguish invading microbes
(Medzhitov and Janeway 1997). Future studies are needed
to reveal if such a system exists in plants. Despite the
nascent stages of research, there is evidence to indicate fungi
both produce antioxidants in vitro and also alter the activity
level of antioxidants in planta (Pang and Wang 2010;
Harman 2011; Figs. 1 and 2).

Changes in host production of antioxidants (Box 1)
resulting from endophyte colonization of host tissues have

been found in numerous studies. Huang et al. (2007) ex-
plored 292 endophyte morphotypes isolated from 29 plant
species representing numerous plant families. They mea-
sured antioxidant and phenolic production finding all the
endophytes could produce antioxidants and/or phenolics
(see also Phongpaichit et al. 2007; Debbab et al. 2011).
Although the variation in the level of production was high
across endophyte species, 65% of the endophytes showed
relatively high activity levels. Antioxidants involved in an-
tifungal responses have been identified in a putative fungal
endophyte, Pestalotiopsis microspora (Strobel and Daisy
2003). Srinivasan et al. (2010) reported high antioxidant
activities when Phyllosticta sp. cultures were exposed to
reactive oxygen species. In the interplay between endophyt-
ic fungi and host plant, the production of both reactive
oxygen species and antioxidants may be the mechanism by
which the host’s hypersensitive and systemic acquired re-
sistance responses are mediated (Tanaka et al. 2006; Fig. 2).
Multiple studies have documented a role for MAP kinase
(MAPK) genes produced by the symbiotum in mutualistic
interactions (Eaton et al. 2008 and 2011; Matsouri et al.
2010). The MAP kinase pathway is integral to the produc-
tion of reactive oxygen species (Box 1) and thus its role in
the proliferation of fungal growth within the host, develop-
ment of innate immunity due to microbial invasion, and
abiotic stress signaling within plants (Asai et al. 2002;
Kawasaki et al. 2002; Eaton et al. 2008). Thus, the interplay
among reactive oxygen species, various signaling pathways,
and antioxidant activity is critical to successful endophyte
colonization and may define the symbiotic outcome (Tanaka
et al. 2006; Torres 2010; Eaton et al. 2011).

In this paper, we review the literature on interactions
between plants and fungal endophytes as an attempt to
increase understanding of the role of reactive oxygen spe-
cies and antioxidants in inter-specific interactions, as well as
to examine whether these molecules are causal to putatively
mutualistic outcomes. Though several outstanding reviews
have focused on endophyte impacts on host physiology in
response to stress (Rodriguez and Redman 2005 and 2008;
Rouhier and Jacquot 2008; White and Torres 2010; Shoresh
et al. 2010) this review provides hypotheses for future
empirical and theoretical studies, and aims to increase
dialogue between physiologists, ecologist, and evolution-
ary biologists to increase understanding of fungus-plant
symbioses.

Literature survey

We reviewed the published experimental studies in order to
identify the strength of support for or against the hypothesis
that endophyte colonization can be mutualistic via increased
production of antioxidants. The following combinations of
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words were used as search criteria in Web of Science®: 1)
endophyte antioxidant, 2) endophyte antioxidant pathogen,
3) endophyte reactive oxygen species, 4) endophyte reactive
oxygen species pathogen, 5) dark septate endophyte reactive
oxygen species, 6) dark septate endophyte reactive oxygen
species pathogen, 7) dark septate antioxidant, 8) dark sep-
tate antioxidant pathogen, 9) endophyte metab*, 10) dark
septate metab*, 11) fung* reactive oxygen species, and 12)
fung* antioxidant. Among the 3077 papers resulting from
this search, a subsequent screen excluded papers not involv-
ing plant and fungal endophytes. A third screening was
performed to identify papers containing experimental
manipulations of stress and measuring at least one antioxi-
dant (enzymatic or non-enzymatic) or reactive oxygen spe-
cies. The experimental papers were classified according to
type of plant-fungus system, stress response, endophyte
identity, stress treatment, experimental context, and fitness
proxy (Table 1).

Empirical research included study plants from broad
taxonomic groups, i.e. monocots, dicots as well as horizon-
tally and vertically transmitted endophytes. A majority of
the papers used plant seedlings. In 80% of the papers, the
experiments were conducted in growth chambers or green-
houses, and only one was a field experiment. Only one
paper included a fitness proxy variable in the experimental
measures (Table 1).

Root endophytes

In terms of antioxidant and reactive oxygen species activity
in root endophyte colonized plants (E+), there is limited
research much of which indicates a mutualistic symbiosis
(Table 1). Baltruschat et al. (2008) recorded increased ac-
tivity of several antioxidants in E+hosts exposed to salt
stress. Additional support documented increased antioxidant
production in E+corn plant roots when the plants were
exposed to pathogenic Fusarium spp. (Table 1). The in-
creased antioxidant activity positively correlated with host
biomass and root length but negatively with secondary root
counts (Kumar et al. 2009; Table 1) compared to endophyte
free (E-) plants. Similarly, Waller et al. (2005) found E+
wheat produced significantly more antioxidants and bio-
mass when exposed to salt stress compared to E- wheat
(Table 1).

Though not measuring antioxidant nor reactive oxygen
species directly, Mandyam et al. (2010) documented pro-
duction of polyphenol oxidases, which are known to scav-
enge reactive oxygen species, in E+but not E- hosts. For
example, Grünig et al. (2003) reported enzymatic differen-
tiation within Phialocephala spp. suggesting these root
endophytes are able to produce various enzymatic metabolites
which may positively impact host physiology. Bartholdy et al.
(2001) quantified the production of hydroxamate siderophores

Fig. 2 Reactive oxygen species production occurs in various organ-
elles and the cellular matrix of both plants and fungi. To mediate
damage by reactive oxygen species, organisms produce a variety of
antioxidants (AOX—alternative oxidase; APX—ascorbate peroxidase;
CAT—catalase; DHAR—dehydroascorbate reductase; GR—glutathi-
one reductase; GSH—glutathione reduced; MDAR—monodehydroas-
corbate reductase; PRX—peroxidredoxin; SOD—superoxide

dismutase; TRX—thioredoxin). Here we present a plausible model of
interactions between fungal and plant cells as well as within the various
organelles of the fungal cell. The feedback between fungal and plants
cells via reactive oxygen species production and resultant signaling is
known to occur but the details of the system and the consequences to
both organisms are unknown. Plant cell adapted from Broshce et al.
2009
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by Phialocephala fortinii at different pH values. Siderophores
chelate iron thereby increasing iron uptake in iron-poor hab-
itats. Production of siderophores suggests a potential currency
for endophyte-plant mutualism. However research is needed
to determine if siderophore production by the fungus occurs
in situ and if it positively correlates with plant performance.

Comparisons between E+and E- plant hosts in terms of
physiological phenotypes and stress have been investigated
from the cell to whole plant level (Table 1). Cell cultures
from wine cultivars colonized by Trichoderma viride had
significantly reduced cell volumes after 48 h of exposure but
significantly increased cell conductivity (Calderón et al.
1993). We hypothesize conductivity could conceivably in-
crease the transmission of molecules across cell membrane
surfaces, thereby enhancing signaling and associated re-
sponse mechanisms. However, we acknowledge this is high-
ly speculative and research on whole plants is necessary.
Additional support for altered physiological phenotype of E
+plants comes from a specific strain of Trichoderma har-
zianum, T22, which is well documented to enhance host
performance in a variety of contexts (Harman 2000 and
2006; Harman et al. 2004). Matsouri et al. (2010) looked
for causal mechanisms and concluded that increased E+host
tolerance to salt and temperature stress resulted from
changes in lipid peroxidation as well as ratios of reduced
to oxidized forms of both glutathione and ascorbate. In
addition, Bae et al. (2009) reported a significant increase
in some amino acids and sugars in E+hosts exposed to
drought. Interestingly, in this case root symbiotum did not
produce significantly higher osmoprotectants, while drought
exposed E- plants did. This suggests a complicated symbi-
otic outcome because increased amino acid and sugar pro-
duction (both are indicators of increased osmolytic activity)
are typical of plants possessing a drought tolerant phenotype
(Shinozaki and Yamaguchi-Shinozaki 2007).

Some of the studies, however, indicate caveats to a gen-
eralized mutualistic outcome specific to endophyte effects
on host physiological responses to stress. For example,
though Andrade-Linares et al. (2011) did not measure anti-
oxidant or reactive oxygen species production they reported
a potential negative, life stage response of the host to endo-
phyte colonization. In their study three dark septate endo-
phyte species colonizing tomato (Lycopersicum esculentum)
successfully decreased the negative effects of the fungal
pathogen Verticillium dahlia but only when the pathogen
was presented in low doses. At higher pathogen doses the
endophyte effect on host biomass loss was not significantly
different from controls. The same study found no significant
difference in terms of reproductive output between E+and
E- plants except at the earliest harvest date. Fruit number
and biomass at first harvest were significantly higher in E+
versus E- hosts. Thus positive impacts on host vegetative
growth and reproductive output appear to be life stage

dependent, but whether they extend to increased host life-
time fitness has not been determined.

Shoot and whole plant endophytes

Several studies on various host species and their shoot
associated fungal endophytes support increased host stress
tolerance due to increased antioxidant production in E+
hosts (Table 1) compared to E- hosts. A comparison of
cellular level reactive oxygen species scavenging activity
in Phyllosticta colonized versus E- Guazuma tomentosa
revealed significantly higher scavenging activity in the for-
mer (Srinivasan et al. 2010). Neotyphodium–endophyte col-
onized grasses showed significantly higher glutamine
synthetase and total amino acid activity (Lyons et al. 1990)
in response to nutrient treatments which positively correlat-
ed with host biomass. In response to temperature, drought,
and salt stress, E+hosts produced significantly more bio-
mass than their E- counterparts (Redman et al. 2001 and
2002; Márquez et al. 2007; Rodriguez et al. 2008; Redman
et al. 2011). Regardless of plant host or fungal endophyte
genera, symbiosis resulted in increased plant biomass pro-
duction and/or survival in response to all three stress treat-
ments and the mechanism appeared to be increased
antioxidant activity leading to higher reactive oxygen spe-
cies scavenging rates and lower reactive oxygen species
accumulation in E+host tissues (Rodriguez et al. 2008).
This leads to the general conclusion that habitat-specific
stress tolerance can be effectively conferred via symbiotic
interactions with fungal endophytes from diverse genera
(Rodriguez et al. 2008). Additional studies reported a virus
present in the endophyte Curvularia protuberata was need-
ed for the endophyte to confer heat tolerance (Márquez et al.
2007). Both a monocot and dicot colonized by the virus-
endophyte combination were able to successfully tolerate
root zone temperatures of up to 65°C. Neither the E+plant
without the virus, nor Curvularia protuberata without its
viral endosymbiont could survive temperatures above 38°C.
Again the mechanism for enhanced symbiotum tolerance
was via reactive oxygen species which were reduced in
endophyte-viral symbiotum compared to E- hosts or E+
hosts without the viral endosymbiont (Márquez et al. 2007).

Additional examples of putative mutualistic endophyte-
plant interactions include work by Zhang and Nan (2010).
Seedling growth was enhanced by endophyte colonization
of Elymus sp. and comparisons of this host across popula-
tions with different levels of aridity indicated a positive
correlation between endophyte presence, drought, and anti-
oxidant production. Zhang and Nan (2010) concluded the
increased seedling growth in response to drought resulted at
least in part from higher antioxidant activity. They found a
positive effect of endophyte colonization on biomass, rela-
tive water content, and proline concentrations under low
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water conditions and essentially no effect of endophyte
under conditions of high water (Zhang and Nan 2007).

Few papers focused on a potential role of reactive oxygen
species and/or antioxidant activity in endophyte mediated
plant resistance to pathogens (Table 1). For example, when
tomatoes susceptible to Verticillium wilt were simultaneous-
ly inoculated with a virulent and avirulent fungal strain the
virulent strain was unable to produce as much biomass in
planta but continued to successfully stunt the plant’s growth
(Shittu et al. 2009). When the avirulent strain was the only
colonizer of the host, plant growth was significantly en-
hanced. Associated with this result was increased expression
of signaling genes potentially responsible for increased re-
active oxygen species activity and subsequent increases in
antioxidant activity (Shittu et al. 2009).

As with the root endophytes, benefits from shoot endo-
phyte colonization do not come without associated costs and
disadvantages to the host plant (Ahlholm et al. 2000;
Cheplick and Faeth 2009). For example, Hahn et al. 2008
evaluated E+and E- host response to 26 days of drought and
found only plant genotype significantly affected host phys-
iological responses. Proline and alkaloid production was not
significantly different in E+plants exposed to drought ver-
sus adequate watering; however, there was a 30% increase
in the baseline levels of proline in E+compared with E-
plants. It is important to note, increased proline did not
correlate with increased plant biomass. Nonetheless, water
uptake was significantly higher in E+plants under both
control and drought treatments. Whether this leads to in-
creased host survival was not tested. Another example of
low or no host response to endophyte colonization was
reported by Bonnet et al. (2000). They looked at host
vegetative growth and antioxidant activity in response to
multiple levels of zinc, including toxic levels. Grasses col-
onized with Neotyphodium lolii did not produce significant
differences in antioxidants nor biomass when compared to
E- plants regardless of zinc treatment. Mannitol, which is
produced by fungi has demonstrable antioxidant properties
(Gessler et al. 2007) and is hypothesized to act as an osmo-
protectant aiding drought tolerance of the host plant
(Jennings et al. 1998). Mannitol is hypothesized to suppress
reactive oxygen species mediated plant defenses against
pathogens. Thus, reactive oxygen species suppression via
mannitol production could increase the susceptibility of
hosts to opportunistic pathogens.

Future research

Available literature suggests that oxidative balance of
fungus-plant symbiosis is modulated during their coevolu-
tion from pathogenic to asymptomatic endophytism, and
both root and shoot fungal endophytes may increase host

tolerance to various stresses via mechanisms involving re-
active oxygen species and antioxidants. However, further
experimental research is needed to confirm these mecha-
nisms increase host lifetime fitness. To define the outcome
of fungus-plant symbiosis as mutualistic requires measures
of host plant fitness such as viable seed set, seedling germi-
nation success, and identification of long-term, population
level endophyte colonization percentages. Finally, an evo-
lutionary approach to identify selective mechanisms acting
on reactive oxygen species and antioxidant metabolisms in
the context of endophyte-host interactions is warranted. This
would facilitate the type of research necessary to answer
important questions such as:

1. Do most endophyte-host interactions begin as antago-
nisms and move to mutualisms from an arms race
played at the physiological level?

2. What role does host sanctioning via different pathogen
resistance systems play in the symbiotic outcome?

3. Are there distinct phylogenetic patterns visible in the
evolution of pathogenic versus mutualistic reactive oxygen
species (or antioxidant) systems suggesting divergence due
to unique habitat level selective forces?

4. What role can cheaters play in a system involving
horizontally transmitted endophytes capable of colonizing
diverse host genera?

To answer these questions we look to the genomic era and
novel approaches such as systems biology. We may be able to
utilize the results from manipulative experiments to identify
changes in gene and metabolite levels and protein functions
(Scholes et al. 1994; Swarbrick et al. 2006; Chacón et al.
2007; Rasmussen et al. 2008 and 2009; Kogel et al. 2010) to
develop theoretical models about functional groups of endo-
phytes (Porras-Alfaro and Bayman 2011). Using the predic-
tions from such models we could test model predictions with
gene knock-outs and functional genomics work.
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