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Abstract During certain wine fermentation pro-
cesses, yeasts, and mainly non-Saccharomyces strains,
produce and secrete enzymes such as B-glucosidases,
proteases, pectinases, xylanases and amylases. The
effects of enzyme activity on the aromatic quality of
wines during grape juice fermentation, using different
co-inoculation strategies of non-Saccharomyces and
Saccharomyces cerevisiae yeasts, were assessed in the
current study. Three strains with appropriate enolog-
ical performance and high enzymatic activities,
BSc562 (S. cerevisiae), BDv566 (Debaryomyces
vanrijiae) and BCs403 (Candida sake), were assayed
in pure and mixed Saccharomyces/non-Saccha-
romyces cultures. B-Glucosidase, pectinase, protease,
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xylanase and amylase activities were quantified during
fermentations. The aromatic profile of pure and mixed
cultures was determined at the end of each fermenta-
tion. In mixed cultures, non-Saccharomyces species
were detected until day 4-5 of the fermentation
process, and highest populations were observed in
MSD2 (10 % S. cerevisiae/90 % D. vanrijiae) and
MSCI1 (1 % S. cerevisiae/99 % C. sake). According to
correlation and multivariate analysis, MSD2 presented
the highest concentrations of terpenes and higher
alcohols which were associated with pectinase, amy-
lase and xylanase activities. On the other hand, MSC1
high levels of B-glucosidase, proteolytic and xylano-
Iytic activities were correlated to esters and fatty acids.
Our study contributes to a better understanding of the
effect of enzymatic activities by yeasts on compound
transformations that occur during wine fermentation.

Keywords Mixed cultures - Enzymatic activities -
Non-Saccharomyces yeasts - Aromatic profile of
wines

Introduction

Saccharomyces cerevisiae has been commonly used in
wine fermentation because of its ability to induce a
reliable and rapid fermentation, ease of control and
consistency of fermentations (Lee et al. 2012). How-
ever, diverse non-Saccharomyces species are found on
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grapes and musts and they can dominate the early
stage of the winemaking process and persist until the
end of the fermentation. These yeasts are also
responsible for the alcoholic fermentation and can
affect sensorial characteristics of the final product
(Sadoudi et al. 2012; Sun et al. 2014).

During the fermentation process, yeasts, and
mainly non-Saccharomyces strains, produce and
secrete a variety of enzymes such as esterases, P-
glucosidases, proteases, pectinases, xylanases and
amylases (Comitini et al. 2011; Maturano et al.
2012). These enzymes can interact with odorless
grape must precursors to produce aromatic compounds
that enhance the wine aroma (Charoenchai et al. 1997,
Jolly et al. 2006; Hernandez-Orte et al. 2008). Since
these non-Saccharomyces yeasts are not vigorous or
competitive fermenting organisms under enological
conditions, and to guarantee complete fermentation,
they can only be used as starter cultures in combina-
tion with S. cerevisiae, a powerful fermentative
species (Lee et al. 2012).

Diverse studies on the growth and metabolic
interactions between non-Saccharomyces and Saccha-
romyces yeasts in mixed cultures have shown that their
impact on wine flavor, aromatic profile and quality
depends on the strains and the inoculation strategies
(Moreno et al. 1991; Zohre and Erten 2002; Jolly et al.
2003; Povhe Jemec and Raspor 2005; Ciani et al.
2006; Moreira et al. 2008; Anfang et al. 2009; Sadoudi
et al. 2012; Sun et al. 2014). In addition, a great
number of studies inform about enzyme activities in
winemaking and fermentations (Zamuz et al. 2004; Fia
et al. 2005; Blasco et al. 2006; Comitini et al. 2011;
Maturano et al. 2012). However, there are no known
reports that associate the production of enzymatic
activities in mixed cultures of Saccharomyces and
non-Saccharomyces during the fermentation with the
final aromatic profile of wines.

In the present work, three autochthonous yeast
isolates, Debaryomyces vanrijiae, Candida sake and
S. cerevisiae, were selected based on their enological
characteristics and high levels of enzymatic activities
in synthetic media as confirmed in previous assays
(Maturano et al. 2008, 2009a, b). The aim of the
current study was to assess the effects of enzymatic
activities on the aromatic quality of wine during grape
juice fermentation, using different co-inoculation
strategies of non-Saccharomyces and S. cerevisiae
yeasts.
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Materials and methods
Microorganisms and media

Three yeast strains, S. cerevisiae BSc562, Candida
sake BCs403 and D. vanrijiae BDv566, were previ-
ously isolated from musts at different stages of
spontaneous fermentations. All strains belong to the
Culture Collection of Autochthonous Microorganisms
at the Biotechnology Institute (IBT) of the Faculty of
Engineering, National University of San Juan, Argen-
tina. The microorganisms had previously been iden-
tified by conventional biochemical, morphological
and physiological procedures according to Kurtzman
and Fell (1998). The yeast species were also identified
by polymerase chain reaction—restriction fragment
length polymorphism (PCR-RFLP) of internal tran-
scribed spacers (ITS), as described by Esteve-Zarzoso
et al. (1999).

Propagation, total biomass determination and
maintenance of the yeast strains were performed on
YEPD, containing (g/1): yeast extract 10; peptone 20;
glucose 20. Agar was added when necessary. Deter-
mination of non-Saccharomyces populations was
carried out on Lysine agar, containing (g/l1): L-lysine
5.6; glucose 10; KH,PO4 0.85; MgSQO4 0.5; Agar 20.
This medium is unable to support S. cerevisiae growth.

Grape must

Grape must from Vitis vinifera L. c.v. Pedro Giménez,
an autochthonous variety from the San Martin district,
San Juan, Argentina (Gil and Pszczolkowski 2007),
was heated at 70 °C for 20 min. After cooling down to
room temperature, the same procedures were repeated
for three consecutive days to eliminate natural micro-
biota (Toro and Vazquez 2002). The effectiveness of
this treatment was verified by plate counting. As a
negative control, must was tyndallized as described
above. No enzymatic activities were detected at
negative control; therefore, we assumed that enzy-
matic activities were produced by inoculated yeasts.
Characteristics of grape must were 24 °Bx, density
1.08 g/m’, total acidity 5.5 g/l and pH 3.6.

Fermentations

Microvinifications were carried out at 20 °C in 51
flasks with 31 of fresh must. Pure cultures of S.
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cerevisiae BSc562, D. vanrijiae BTd566 and C. sake
BCs403, and mixed cultures MSD1: 1 % S. cere-
visiae/99 % D. vanrijiae; MSC1: 1 % S. cerevisiael
99 % C. sake; MSD2:10 % S. cerevisiae/90 % D.
vanrijiae; MSC2: 10 % S. cerevisiae/90 % C. sake)
were inoculated in order to obtain an initial cell
concentration of 3 x 10° cfu/ml from 24 h pre-
cultures grown in the same must. Uninoculated must
was used as negative control under the same assay
conditions. The biomass relation used in this study is
based on the ratio between Saccharomyces and non-
Saccharomyces strains found in natural grape micro-
biota (Toro and Vazquez 2002).

Ten mililiters samples were periodically withdrawn
from all fermentations. They were filtered by What-
man paper filter, pore size: 8§—12 pm, which allows
cells to pass through. Then, samples were centrifuged
at 11,000g (10 min, 4 °C). Cell pellets were washed
twice with distilled water and used to determine dry
weight. Cell-free supernatants were used to determine
enzymatic activities (fractions were kept at —20 °C
until determinations) (Diaz et al. 2007).

Enological variables

Microvinifications were aseptically closed with Miil-
ler valves (a glass device which contains 50 % sulfuric
acid that allows only CO, to escape from the system).
Fermentation kinetics was monitored by measuring
the weight loss as a result of CO, escaping from the
system until the end of each fermentation (constant
weight). Reducing sugars were determined colorimet-
rically using the 3,5-dinitrosalicylic acid (DNS)
method (Miller 1959).

Enzymatic determinations

Exo B-glucosidase, pectinase, protease, amylase and
xylanase activities were quantified according to Mat-
urano et al. (2012). One unit (U) of enzymatic activity
was defined as the amount of enzyme that released
1 pmol of product/time (h or min depending of the
enzymatic activity), under the given assay conditions.

Appropriate enzyme and substrate controls, as well
as calibration curves were included in all assays.
Tyndallized must was used as blank for enzymatic
determinations in all cases. Enzyme activity is
expressed as enzymatic units per gram of dry weight
(in 1 ml of the samples assayed): U/g DW. In order to

estimate the total enzyme production, the area under
the enzyme curve (AUEC) was calculated (i.e. the area
under the plotted graph of the measured enzyme level
against time, from the first to the last day of the assay
(MATLAB 7.01)).

Gas chromatography and gas chromatography—
mass spectrometry analysis of volatiles

Samples were obtained by extraction of 15 ml wine
from each treatment, which were filtered immediately
and kept at —18 °C until analysis. Before analysis,
they were thawed at room temperature and centrifuged
(Rolco, Argentina) at 2133g during 5 min.

Headspace-solid-phase microextraction (HS-SPME)
conditions

Samples (5000 pl) and 4975 pl pure water (Millipore,
Brazil) were poured into 20 ml glass sample vials.
NaCl (3 g) and 25 pl of a 25 ng pl~" methanolic (R)-
2-octanol solution, internal standard, were added to
each sample. Vials were sealed with a Teflon-faced
septum cap and mixed on a magnetic stirrer (IKA,
USA) at 1100 rpm. Samples were pre-conditioned at
the extraction temperature (40 °C) for 15 min. Poly-
dimethylsiloxane/divinylbenzene (PDMS/DVB)
fibers (65 pm; Supelco, USA) were used for HS-
SPME. Before use, the fibers were conditioned
according to the manufacturer’s instructions. After
pre-conditioning of the sample, SPME fibers (2 cm)
were exposed to the headspace for 15 min at con-
trolled temperature (40 °C) during the extraction
process, and the fibers were inserted immediately into
the GC injector port (230 °C) for 20 min for thermal
desorption of the volatile compounds (Massera et al.
2012).

Chromatographic conditions

Aroma compounds were identified on a Varian CP-
3800 gas chromatograph equipped with a splitless
injector and a Saturn 2200 Ion Trap Mass Spectro-
metric detector (Varian, CA, USA). The system was
operated with Saturn GC-MS Workstation software
Version 6.41. The GC was equipped with a Factor
Four VF5 column (30 m x 0.25 mm; 0.25 pm film
thickness, Varian, CA, USA). The column tempera-
ture was programmed at an initial temperature of
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40 °C (5 min), followed by a gradual increase until
100 °C at arate of 1.5 °C min~'. Then the temperature
was raised to 215 °C (5 min) at a rate of 3 °C min~".
Helium was used as carrier gas at a constant flow rate
of 1.0 ml min~"'. The injection port temperature was
230 °C. An electron impact (EI) of 70 eV was used for
ionization, and the temperature of the transfer line and
the ion trap was 200 °C. Mass spectra of the
compounds were compared with the Nist Mass
Spectral Library (Nist Mass Spectral Search Program
Version 2.0), considering a forward match (FM) equal
or greater than 700. Identification of volatile com-
pounds was carried out by comparing them with the
retention times and with the mass spectra from the Nist
2.0 library. They were quantified using relative areas
related to the internal standard (Massera et al. 2012).

Statistical analyses

Experimental data were analyzed by one-way
ANOVA and significant differences between mean
values were determined by Tukey’s test (p < 0.05)
using InfoStat statistical software (2002). Pearson’s
correlation coefficients were calculated with SPSS
(version 19.0) to determine statistical significance.
Based on previous experiences (Baroni et al. 2006;
Di Paola-Naranjo et al. 2011; Penci et al. 2012),
multivariate statistics was used to associate two
groups of variables (enzymatic activities and aroma
groups) related to yeasts in the mixed fermentations.
Therefore, cluster analysis (CA), principal compo-
nents (PC), and factor analysis (FA) were applied to
the dataset to detect differences between mixed
fermentations, using STATISTICA 7 by StatSoft
(2005).

Results

Biomass and sugar consumption in single and co-
cultures

Development of yeast populations and decline in
reducing sugars were monitored during the fermenta-
tion processes. Viable populations of pure cultures
barely exceeded 7 log (cfu/ml) after 24 h (Table 1). In
mixed cultures, Saccharomyces reached a concentra-
tion of 7 log (cfu/ml) after 48 h of fermentation
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(biomass varied between 7.24 & 0.3 and 7.46 £ 0.1
log (cfu/ml)), whereas the biomass of the two non-
Saccharomyces yeasts was lower than 7 log (cfu/ml),
except for C. sake BCs403 in MSC1 (7 £ 0.1 log (cfu/
ml)) (Table 1). In mixed cultures, S. cerevisiae
outgrew non-Saccharomyces strains and completed
the fermentation. D. vanrijiae and C. sake (Table 1)
populations were not detected after 4 days (MSD1 and
MSC2) and 5 days (MSC1 and MSD2) of fermenta-
tion. Non-Saccharomyces yeasts in MSC1 and MSD2
were detected one more day and also registered higher
population levels (Table 1).

With regard to consumption of reducing sugars,
wines produced by mono-cultures of D. vanrijiae and
C. sake showed higher levels of residual reducing
sugars than S. cerevisiae wines. Residual sugar content
varied greatly: from 114.5 4+ 2.1 g/l in wines fer-
mented by D. vanrijiae to less than 1.8 &= 0.2 g/l in S.
cerevisiae wines. Sugar consumption in mixed fer-
mentations after 7 days was between 93.3 and 95 %,
similar to pure cultures of S. cerevisiae (Table 1).

Enzyme activities during fermentation

Exo-B-glucosidase, pectinase, protease, amylase and
xylanase activities were quantified throughout the
fermentative process (18 days). It is important to study
the evolution of enzymatic activities during winemak-
ing, since their levels are not necessarily constant
throughout the process (Zamuz et al. 2004). In this
study, fluctuations in their levels were detected during
alcoholic fermentation. This almost certainly means
that a number of biochemical reactions took place. The
grape must used in this research is not an homoge-
neous medium; it contains different sizes of particles
of vegetal-aggregate that constitute a particular sub-
strate for enzymatic activity and yeast colonization.
Comparison of AUEC values for each enzymatic
activity revealed that fermentations conducted by non-
Saccharomyces yeasts (BDv566 and BCs403) yielded
highest activities (Table 2).

With regard to fermentations by mixed cultures, it
was found that MSD2 (10 % S. cerevisiae/90 % D.
vanrijiae) presented significantly higher AUEC values
than MSD1 (1 % S. cerevisiae/99 % D. vanrijiae),
except for protease activity (Table 2). In contrast,
MSC1 (1/99 %) showed significantly higher AUEC
values than MSC2 (10/90 %).
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Table 2 Area under the enzyme curve (AUEC) of hydrolytic enzymes produced by pure and mixed cultures of Saccharomyces
cerevisiae BSc562, Debaryomyces vanrijiae BDv566 and Candida sake BCS403

Enzymatic activity B-Glucosidases Pectinases Proteases Xylanases Amylases
BSc562 2569 + 21° 6932 + 83° 809 + 78° n.d. n.d.
BDv566 24594 + 196° 20580 + 6237 1576 + 165° 41086 + 133° 5336 + 39°
BCs403 37045 + 145° 19497 + 409* 1678 + 56° 37915 + 205° 4108 + 21°
MSD1 4614 + 1349 4343 + 98¢ 509 + 34° 7043 + 87¢ 972 + 19¢
MSD2 4818 + 111¢ 5173 + 43° 483 + 23¢ 14714 + 54° 1830 + 92°
MSC1 5629 + 89° 4243 + 99d 766 + 33° 10240 + 101¢ 1011 + 26¢
MSC2 4924 + 103%¢ 4118 + 96% 585 + 76° 1953 + 68F 925 + 61%¢

Different letters within the same row indicate significant differences (p < 0.05) between fermentations for the same enzymatic
activity according to Tukey’s honestly significant difference (HSD) test

BSc562: S. cerevisiae, BDv566: D. vanrijiae, BCs403: C. sake, MSD1: 1 % BSc562/99 % BDv566, MSD2: 10 % BSc562/90 %
BDv566, MSC1: 1 % BSc562/99 % BCs403, MSC2: 10 % BSc562/90 % BCs403

n.d. not detected

Aromatic profile of pure and mixed cultures

Samples of grape must without inoculation, single
culture fermentations and mixed culture fermentations
were analyzed by HS—SPME-GC-MS.

The average concentration and relative standard
deviation (RSD) of volatile compounds during the
different fermentations are shown in Table 3. A total
of 75 aromatic compounds were identified in this
study, including esters, higher alcohols, fatty acids,
terpenes, C;3-norisoprenoids, aldehydes and ketones.
Their origin and production are considered to be
mostly affected by microbial activity during the
fermentation process (Bisson and Karpel 2010). In
most cases, differences in concentrations between
pure and mixed cultures were statistically significant
(p < 0.05) (Table 3).

Grape must showed the lowest values for most of
the aromatic compounds in the vinifications assayed,
with the exception of Cg alcohols (cis-3-hexen-1-ol,
trans-3-hexen-1-ol, 1-hexanol), aldehydes and
ketones (Table 3).

S. cerevisiae showed highest total ester content of
the single fermentation cultures (Table 3). Mixed
cultures showed even greater amounts of ester com-
pounds and in some cases, concentrations were
significantly higher than their respective single cul-
tures (Table 3).

Fermentations only conducted by S. cerevisiae
showed lowest values of higher alcohols (Table 3),

@ Springer

whereas mixed cultures showed significantly higher
concentrations than in pure cultures.

All fermentations in the current study showed
statistically different concentrations of fatty acids,
which were not detected in pure C. sake cultures. On
the other hand, vinifications conducted by D. vanrijiae
showed the highest total acid concentration (Table 3),
whereas MSC1 presented the highest total acid
concentration in mixed cultures (Table 3).

Total content of terpenes in D. vanrijiae pure cultures
was higher than in S. cerevisiae and C. sake monocul-
tures (Table 3). Additionally, mixed cultures showed a
significantly higher total terpene content than S. cere-
visiae pure cultures, especially MSD2 and MSC1.

Fermentation by D. vanrijiae showed the highest
values of total Cys-norisoprenoids (Table 3). MSDI1
and MSD2, co-cultures of S. cerevisiael/D. vanrijiae,
presented the highest concentrations among the mixed
treatments.

Correlation between enzymatic activities
and the volatile profile during mixed fermentations

Simple correlation analysis was used to assess the
correlation between enzymatic activities (AUEC val-
ues) and the volatile compounds present in mixed
fermentations (Tables 4, 5). Two independent corre-
lation analyses were carried out: the first analysis
included values from the aromatic profile and enzy-
matic activities of Saccharomyces—Debaryomyces
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Table 4 Pearson correlations (PC) between aromatic com-
pounds and xylanase, amylase and pectinase activities assayed
in mixed cultures of Saccharomyces cerevisiae BSc562 and

Debaryomyces vanrijiae BDv566: MSD1 and MSD2 (no
significant correlation was found for [-glucosidase and
protease activities)

Compounds Xylanases Amylases Pectinases
Esters
Ethyl butanoate —0.64 —0.68 —0.66
Ethyl 2-butenoate —0.99%* —0.99%* —0.98**
Ethyl 3-methylbutanoate —1.00%* —0.99%* —0.98**
Ethyl pentanoate —0.99%* —0.98%%* —0.98%*
Ethyl hexanoate 0.88%* 0.88%* 0.91%*
Ethyl 2-hexenoate —0.95%* —0.93%* —0.94%*
Ethyl octanoate 0.98** 0.98** 0.97%%*
Ethyl nonanoate —0.96%* —0.94%* —0.96%*
Ethyl decanoate —0.99%* —0.98** —0.97**
Ethyl undecanoate —0.47 —0.44 —0.49
Ethyl docecanoate 0.88%* 0.91%* 0.91*
Ethyl tetradecanoate 0.65 0.65 0.69
Ethyl pentadecanoate 0.49 0.44 0.46
Ethyl hexadecanoate 0.98%* 0.96%* 0.97%*
Ethyl linoleate 0.03 0.07 0.09
2-Phenylethyl acetate 0.99** 0.98** 0.98%%*
Isobornyl acetate —-0.76 —0.75 —0.78
3-Methyl-1-butanol acetate 0.89* 0.90* 0.87*
Hexyl acetate 0.993** 0.988** 0.978**
3-Methyl-1-butanol acetate 0.89%* 0.90%* 0.87%*
Methyl decanoate —0.81* —0.78 —0.80
Butyl octanoate —-0.35 —-0.30 —0.29
3-Methylbutyl octanoate 0.75 0.79 0.77
Pentyl octanoate —1.00%* —0.99%* —0.99%%*
Propyl decanoate —0.45 —-0.41 —0.39
Butyl decanoate 0.14 0.18 0.19
3-Methylbutyl pentadecanoate 0.99%%* 0.99%* 0.98%%*
Isopropyl myristate —-0.26 —0.28 —-0.22
Methyl octanoate 0.04 0.10 0.07
Butyl hexanoate 0.42 0.47 0.45
Isopentyl hexanoate —0.99%* —0.99%%* —0.98**
Propyl octanoate 0.02 0.07 0.04
Diethyl succinate —0.68 —0.68 —0.64
Alcohols
Cis-3-Hexen-1-ol —0.93%* —0.93** —0.95%*
1-Hexanol 0.85* 0.81 0.82%
3-Methyl-1-pentanol 0.99** 0.99%* 0.95%%*
4-Methyl-1-pentanol —0.89* —0.91* —0.89%*
(8)-3,4-Dimethylpentanol —0.99%* —0.99%* —0.99%*
2-Nonen-1-ol 0.99% 0.98%%* 0.98%%*
Ethylphenyl alcohol 0.99% 0.98%%* 0.98%%*
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Table 4 continued
Compounds Xylanases Amylases Pectinases
Acids
3-Methylbutanoic acid 0.65 0.68 0.68
2-Methylbutanoic acid —0.92%%* —0.92%%* —0.89*
n-Decanoic acid 0.99%* 0.98%%* 0.98**
Eucalyptol —0.93** —0.90* —0.90*
cis-Linalool oxide —0.96%* —0.96%** —0.97**
B-Linalool —0.89* —0.88* —0.90*
Hotrienol —0.98%* —0.97%%* —0.97**
Citronellol —0.99%* —0.98** —0.97**
Nerolidol 1.00%* 0.99%%* 0.99%%*
B-Myrcene 0.99%%* 0.98%%* 0.98%%*
C,3-Norisop
B-Damascenone —0.88%* —0.85% —0.88%*
a-lonone —0.99%* —0.99%%* —0.99%*
a-Isomethyl ionone —0.98** —0.97** —0.98%*
Ketones
2-Heptanone —-0.91* —0.91* —0.88*

* Significant correlation at p < 0.05

** Significant correlation at p < 0.01 (bilateral)

fermentations (MSD1 and MSD2), while the second
one included values from the aromatic profile and
enzymatic activity of Saccharomyces—Candida fer-
mentations (MSC1 and MSC2).

Because correlation tests cannot discriminate
between initial inoculum proportions of S. cerevisiae
and non-Saccharomyces, a relationship was only
established between the aromatic compounds and
enzymatic activities.

A significant correlation was observed between
determined aromatic compounds and xylanolytic,
amylolytic and pectinolytic activities in Saccha-
romyces—Debaryomyces fermentations (MSD1 and
MSD2), whereas no significant correlation was found
for B-glucosidase and proteolytic activities (Table 4).

On the other hand, Saccharomyces—Candida fer-
mentations (MSC1 and MSC2) showed a significant
correlation between some aromatic compounds and
xylanolytic, proteolytic and B-glucosidase activities,
but no significant correlation was observed for amy-
lolytic and pectinolytic activities (Table 5).

Below, results will be referred to and discussed
with respect to significant positive or negative

correlations between enzymatic activities and S.
cerevisiae/D. vanrijiae or S. cerevisiae/C. sake mixed
microvinifications.

Esters

Most of the acetate ester concentrations showed a
statistically significant positive correlation with enzy-
matic activities in all mixed fermentations assayed
(Tables 4, 5).

Ethyl esters are the second largest group of ester
compounds produced by yeasts. Six of them showed
statistically significant negative correlations with
enzymatic activities assayed in all mixed fermenta-
tions (Tables 4, 5). However, in S. cerevisiae/D.
vanrijiae fermentations, ethyl hexanoate and ethyl
octanoate, associated with pleasant odors, showed a
significant positive correlation with the enzymatic
activities. Ethyl 3-methylbutanoate and ethyl pen-
tanoate, recognized for their desirable effect on wine
flavor, were also positively correlated to the enzymatic
activities in MSC1 and MSC2 fermentations
(Tables 4, 5).
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Table 5 Pearson correlations (PC) between aromatic com-
pounds and xylanase, B-glucosidase and protease activities
assayed in mixed cultures of Saccharomyces cerevisiae

BSc562 and Candida sake BCs403: MSC1 and MSC2 (no
significant correlation was found for amylase and pectinase

activities)

Compounds Xylanases Proteases B-Glucosidases
Esters
Ethyl butanoate —0.83* —0.84%* —0.85%
Ethyl 2-butenoate —0.38 —-0.45 —0.40
Ethyl 3-methylbutanoate 0.99%%* 0.88%* 0.97%*
Ethyl pentanoate 1.00%* 0.88* 0.97*%*
Ethyl hexanoate —-0.21 —0.16 —0.16
Ethyl 2-hexenoate —0.31 —-0.45 —-0.37
Ethyl octanoate 0.31 0.45 0.36
Ethyl nonanoate —0.51 —-0.45 —0.48
Ethyl decanoate —0.99** —0.90* —0.97**
Ethyl docecanoate —0.88* —0.84* —0.87*
Ethyl tetradecanoate —-0.71 -0.8 —0.79
Ethyl pentadecanoate 1.00%* 0.88% 0.97**
Ethyl hexadecanoate —0.99%* —0.89* —0.97%*
Ethyl linoleate —0.99%* —0.90* —0.98%**
Hexyl acetate 0.98** 0.86* 0.95%%*
2-Phenylethyl acetate 0.45 0.46 0.44
Isobornyl acetate 0.65 0.45 0.59
3-Methyl-1-butanol acetate 0.97** 0.91%* 0.97**
Methyl octanoate —0.72 —0.76 —0.74
Butyl hexanoate —0.09 —0.16 —0.09
Isopentyl hexanoate —0.99%* —0.89% —0.98%**
Propyl octanoate —0.65 —0.69 —0.67
Methyl decanoate —-0.35 —0.41 —0.36
Butyl octanoate —-0.75 —0.74 —-0.75
3-Methylbutyl octanoate —0.99%* —0.87* —0.97%*
Propyl decanoate —0.83* —0.80 —0.82%
Butyl decanoate —0.67 —0.69 —0.68
3-Methylbutyl pentadecanoate —0.93*%* —0.90* —0.94%*
Isopropyl myristate —0.97** —0.81* —0.93**
Diethyl succinate —0.91* —0.89% —0.93**
Alcohols
Trans-3-Hexen-1-ol 0.98%%* 0.90%* 0.98%%*
Cis-3- Hexen 1-ol —0.96%* —0.85* —0.94%*
1-Hexanol —0.82% -0.72 -0.79
4-Methyl 1-pentanol —0.94%* —0.87* —0.93**
(8)-3,4-Dimethylpentanol —0.86* —0.62 -0.77
Ethylphenyl alcohol 0.97%%* 0.82%* 0.92%%*
Acids
3-Methylbutanoic acid —0.99** —0.91* —0.98**
n-Decanoic acid 0.99%* 0.88* 0.97*%*
Terpenes
Eucalyptol 0.97%%* 0.88%* 0.97**
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Table 5 continued

Compounds Xylanases Proteases B-Glucosidases
a-Linalool 0.99%* 0.89% 0.98%%*
B-Linalool 0.35 0.01 0.19
Citronellol 0.25 —0.13 0.11
Nerolidol -0.77 —0.55 —0.67
B-Farnesese —0.94%* —0.85% —0.92%*
Farnesyl acetate 0.98%* 0.88% 0.97**
Cis-Geranylacetone 0.97%* 0.86%* 0.95%%*

C3-Norsisop
-Damascenone —0.97%** -0.77 —0.91*
a-Isomethyl ionone —0.89%* —0.69 —0.83*

Aldehydes
Hexylcinnamaldehyde 0.97** 0.87% 0.96**

* Significant correlation at p < 0.05

** Significant correlation at p < 0.01 (bilateral)

Higher alcohols

Most of the Cg alcohols (cis-3-hexen-1-ol, trans-3-
hexen-1-ol, 1-hexanol) detected in mixed cultures
presented a significant negative correlation with the
enzymatic activities assayed (Tables 4, 5). On the
other hand, 2-phenylethanol was the most abundant
volatile compound in the initial must and its
concentration increased considerably after fermen-
tation under all assay conditions, showing a signif-
icant positive correlation with enzyme activities in
all mixed cultures assayed (Tables 4, 5).

Fartty acids

A significant positive correlation between n-decanoic
acid and the enzymatic activities was found in all
mixed cultures (Tables 4, 5).

Terpenes

Nerolidol and [p-myrcene showed a significant
positive correlation with enzymatic activities in
MSD1 and MSD2 (Table 4). Similarly, o-linalool,
cis-geranyl acetone and farnesyl acetate showed a

significant positive correlation with enzymatic
activities in MSC1 and MSC2 fermentations
(Table 5).

C;3-Norisoprenoids

A negative correlation was observed between [-
damascenone and o-isomethyl-ionone and enzymatic
activities in all mixed cultures (Tables 4, 5). a-Ionone
also showed a negative correlation with enzymatic
activities in MSD1 and MSD2 (Table 4).

Multivariate statistics

A first exploratory method using Cluster Analysis
(CA; Ward’s method) showed that MSC2 can be
completely separated from the other three mixed
fermentations (MSC1, MSD1 and MSD2) (Fig. 1a).
Figure 1b shows that production of B-glucosidases
and proteases by yeasts was positively related to the
amount of esters and fatty acids but surprisingly
negatively to the amount of C;3-norisoprenoids and
ketones. Furthermore, CA evidenced an association
between xylanases, amylases and pectinases and two
groups of aromatic compounds: alcohols and terpenes.
Figure 1c reveals a clear separation of the four
mixed fermentations along Factor 1 (x-axis). Saccha-
romyces—Candida fermentations (MSC1 and MSC?2)
were strongly correlated to the production of -
glucosidases and proteases by yeasts in addition to the
amount of esters and fatty acids (represented only by
n-decanoic acid). On the other hand, Saccharomyces—
Debaryomyces fermentations (MSD1 and MSD?2)
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Fig. 1 a Cluster analysis
(CA) of mixed
fermentations (MSD1: 1 %
BSc562/99 % BDv566;
MSD2: 10 % BSc562/90 %
BDv566; MSC1: 1 %
BSc562/99 % BCs403 and
MSC2: 10 % BSc562/90 %
BCs403). b Projection of the
variables on a factor plane
(1 x 2) corresponding to
factor analysis (FA) of
mixed fermentations.

¢ Projection of the cases
(samples) on a factor plane
(1 x 2) corresponding to
factor analysis (FA) of
mixed fermentations

were more associated with xylanolytic, amylolytic and
pectinolytic activities, and the amount of alcohols,
terpenes, ketones (represented by 2-heptanone) and
C,3-norisoprenoids.

Factor 2 (y-axis) shows a further separation of the
four mixed fermentations (Fig. 1c). MSDI1 was

@ Springer

(a)

Linkage Distance

(b)

()

Factor2: 36.25%

Dendrogram for 12 samples (1-3: MSD1, 4-6: MSD2, 7-9: MSC1, 10-12: MSC2)

35000

30000

25000

20000

15000

Ward's method
Euclidean distances

10000

5000

C12C1 C10 C6 CS C4 C8 C9 C7 C2 Cc3 cC1

Projection of the variables on the factor-plane ( 1x 2)

1,0
ca_z-Nénsopvemns
05
Ed
o !
N
o f
® H
== 0,0 :
o~ “**««.__,_‘“Estefs
5 ;
.
w o
o ,"’ “Reotease.
05 ‘v’_’“’&“/ & 0
) oS 8-Glocosidate
Xy}m 0
Y ' .
- Abids
.
10 * Active
1,0 -05 0,0 0,5 1,0
Factor 1:44.91%
Projection of the cases on the factor-plane ( 1x 2)
Cases with sum of cosine square >= 0,00
Labeling variable: Var1
3
.3
.
12 .1011
L4 .
oL
5
. -
2 w38
.
® Active
5 4 3 2 1 0 1 2 3 4 5

Factor 1: 44.91%

associated with flower and tropical fruit aromas
(norisoprenoids) and soap smells (2-heptanone), while
MSD2 was correlated to varietal aroma compounds
from the grapes (Pedro Giménez) and rose notes.
MSC1 was associated with unpleasant odors such as
cheese and rancid notes (fatty acids), whereas MSC2
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was strongly correlated to fruity and floral aromas
(esters).

All multivariate statistics showed associations
between aromas and enzymatic activities in the mixed
cultures assayed. All results of the multivariate
analysis agree with those obtained with correlation
analysis, despite the fact that correlation tests cannot
discriminate between initial inoculum proportions of
S. cerevisiae and non-Saccharomyces (Tables 4, 5).

Discussion

The wine industry is interested in mixed inoculations
of non-Saccharomyces and S. cerevisiae yeasts
because of technological and sensory reasons (An-
dorra et al. 2010). Mixed cultures of C. sake BCs403,
D. vanrijiae BDv566 and S. cerevisiae BSc562, strains
characterized for their excellent enzyme production
(Maturano et al. 2008, 2009a, b) were assayed in the
present study. Our results indicate that enzyme
activities fluctuated, making it impossible to establish
trends over the process. Therefore, we decided to
calculate the AUEC because it represents properly the
enzymes behavior throughout the process (Douaiher
et al. 2007). Based on the methodology used for the
analyzing of the experimental data, we can assert that
there is no direct relationship between enzymatic
activities and biomass detected. Taking into account
mixed cultures, non-Saccharomyces yeasts were
detected until day 4-5, coinciding with the highest
enzyme activity levels and lowest ethanol concentra-
tions registered (data not shown). This is in agreement
with previous studies carried out under the same
conditions in our laboratory (Maturano et al. 2012)
when all enzymatic activities were also detected at the
end of the mixed fermentations. The results would
indicate that the enzymes produced by non-Saccha-
romyces yeasts (especially xylanase and amylase
activities) resisted increasing concentrations of etha-
nol during the fermentation process.

Aroma is one of the most important microbial
enzyme contributions to wine. During the pure and
mixed culture fermentation processes in the present
study, yeasts released enzymes that produced secondary
metabolites such as esters, higher alcohols, acids,
terpenes, Cy3-norisoprenoids, aldehydes and ketones.

The population size of non-Saccharomyces yeasts
and their survival time in the fermentative medium can

affect the wine quality (Bely et al. 2008; Andorra et al.
2010). The present study emphasizes the relationship
between enzymatic activities of Saccharomyces and
non-Saccharomyces yeasts and aroma (an important
quality parameter of wine). This is observed with two
non-Saccharomyces strains, BDv566 and BCs403, in
MSD2 and MSC1 mixed cultures, respectively. As
shown in Figs. 1b, ¢ and Tables 2 and 3, the highest
levels of pectinases, amylases and xylanases in MSD2
were associated with the highest concentrations of
terpenes and higher alcohols. On the other hand, in
MSC1 mixed culture, B-glucosidase, protease and
xylanase activities were associated with higher levels
of esters and fatty acids.

In the present study, different aromatic compounds
were negatively or positively correlated to enzymatic
activities. However, the analysis applied does not
allow discrimination between different inoculum
ratios (MSD1 and MSD2; MSC1 and MSC2).

Acetate esters are the result of the reaction between
acetyl CoA and higher alcohols that are formed during
degradation of amino acids or carbohydrates (Pere-
strelo et al. 2006). This could explain the positive
correlation between these compounds and carbohy-
drolases and proteases. Studies about the relationship
between microbial enzymatic activities and acetate
esters are scarce. Only a few studies examined the
effect of polysaccharase-secreting recombinant S.
cerevisiae strains on the wine aroma. Ganga et al.
(1999) reported a significant increase in acetate esters
in wines using a recombinant xylanolytic wine yeast.
The authors attributed the release of a higher number
of glycosidically bound precursors to the enzymatic
degradation of the cell wall. Conversely, Louw et al.
(2006) observed a decrease in acetate esters in
fermentations carried out with recombinant glu-
canase- and xylanase-secreting strains. In the present
study native non-Saccharomyces yeasts secreted the
highest concentrations of carbohydrolases, and con-
sequently, mixed conditions with these microorgan-
isms could contribute to wines with high levels of
acetate esters. Multivariate analysis highlighted
MSC1 because of the secretion of B-glucosidases
and proteases; highest levels of the corresponding
aromatic compounds were observed under this
condition.

Higher alcohols (cis-3-hexen-1-0l and 1-hexanol)
that negatively correlated to enzymatic activities are
associated with compounds that are formed during
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pre-fermentation steps including harvesting, transport,
crushing and pressing (Oliveira et al. 2006). This is not
surprising since previous reports relate about biosyn-
thesis of these compounds by enzymes not assayed in
the present study (Sanchez Palomo et al. 2007). On the
other hand, a significant positive correlation was
observed between the main higher alcohol found in
wine, 2-phenylethanol, that contributes to wine aroma
with rose and honey notes, and enzyme activities in the
mixed fermentations assayed (Tables 3a, b). Several
authors have reported that this aromatic compound can
originate from its glycosylated form present in grapes,
rather than by alcoholic fermentation (Carballeira Lois
et al. 2001; Oliveira et al. 2008). B-Glucosidase and
carbohydrolase activities could be involved in the
breakdown of non-aromatic precursors with the sub-
sequent release of higher alcohols (Louw et al. 2006;
Botelho et al. 2007; Kang et al. 2010). The MSD2
mixed culture stood out for its production of higher
alcohols and this family of compounds was associated
with xylanases, amylases and pectinases secreted by
yeasts.

We know of no previous studies on the relationship
of enzyme activities and fatty acid content in wines.
Statistical analysis of our results indicated a positive
correlation between enzyme activities and n-decanoic
acid. Presence of this aroma compound may be the
result of alterations in the must composition after the
action of carbohydrolases affecting yeast metabolism
(Louw et al. 2006). Fatty acids may usually be
associated with unpleasant odors (cheese and rancid
notes), but they also play a key role in balancing the
flavor of the wine, because their presence in the
fermentation medium partially prevents hydrolysis of
the corresponding ethyl esters (Bertrand 1981; Gil
etal. 1996). Because acid production could be affected
by polysaccharide degradation in the must, would also
influence the production of ethyl esters. This is
reflected in the multivariate analysis. Ethyl esters
and fatty acids were associated with MSC1, which
showed the highest AUEC values of B-glucosidases
and proteases.

Terpenes and Cjs-norisoprenoids are important
constituents of the wine aromatic profile and can be
present in grape musts in a masked, nonvolatile form.
They become visible as free aglycones through the
action of B-glucosidase and carbohydrolase during
fermentation (Ganga et al. 2001; Strauss et al. 2001;
Mendes-Pinto  2009). Indeed, total terpene
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concentrations in grape must in the current study were
significantly lower than in the wine fermentations
assayed. Hence, MSD2 and MSCI1 mixed cultures
showed highest terpene concentrations, which were
closely related, as mentioned previously, to the high
AUEC values registered for the enzymatic activities
assayed (Tables 2, 3). This fact, as mentioned before,
may be related to the higher proportion of non-
Saccharomyces populations present during the first
fermentative stage under these mixed conditions
(Table 1). Microbial enzymes, able to increase the
amount of monoterpenyl-B-p-glucoside/-diglycoside
precursors released in the must, were positively
correlated to nerolidol and B-myrcene (in MSD1 and
MSD2 mixed cultures) and o-linalool, cis-geranyl
acetone and farnesyl acetate (in MSC1 and MSC2
fermentations), thus contributing to the wine aroma.
Despite high values of C;3-norisoprenoides in MSD1
(BDv566 was most likely actively involved in the
formation of norisoprenoid compounds) as reflected in
Figs. 1b and c, statistical analysis revealed significant
negative correlations with enzymatic activities
(Table 4). A plausible explanation may be that C3-
norisoprenoides can also be formed by non-enzymatic
reactions such as direct degradation of carotenoids
(Mendes-Pinto 2009).

Conclusions

In the current study, mixed inoculations of locally-
selected Saccharomyces and non-Saccharomyces
yeasts affected the aroma profile of white wines
elaborated with Pedro Giménez grapes.

Several aromatic compounds were negatively or
positively associated with the enzymatic activities of
the yeasts, and each mixed condition presented a
particular aromatic profile. These results encourage
the potential use of selected non-Saccharomyces wine
yeasts in mixed starter cultures as a tool to enhance
wine complexity. MSD2 and MSC1 mixed conditions
showed the highest values of enzymatic activities that
were associated with the main aromatic groups of
interest in wine.

The findings of the present study contribute to a
better understanding of the effect of enzymatic
activities by yeasts on compound transformations that
occur during wine fermentation, and thereby improve
the comprehension of the microbial interactions in this
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complex environment. Inoculation strategies and
interactions between the different starter cultures that
take place during the fermentation process need to be
further examined, as well as the impact of enzymatic
activities on the aromatic profile.

Sensory analyses are also necessary to establish a
definitive relationship between the production of
volatile compounds and the enzymatic activities
performed by wine yeasts.
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