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Abstract Drell–Yan lepton pair production processes are
extremely important for standard model (SM) precision tests
and for beyond the SM searches at hadron colliders. Fast and
accurate predictions are essential to enable the best use of the
precision measurements of these processes; they are used for
parton density fits, for the extraction of fundamental param-
eters of the SM, and for the estimation of background pro-
cesses in searches. This paper describes a new numerical pro-
gram, DYTurbo, for the calculation of the QCD transverse-
momentum resummation of Drell–Yan cross sections up
to next-to-next-to-leading logarithmic accuracy combined
with the fixed-order results at next-to-next-to-leading order
(O(α2

S)), including the full kinematical dependence of the
decaying lepton pair with the corresponding spin correla-
tions and the finite-width effects. The DYTurbo program
is an improved reimplementation of the DYqT, DYRes and
DYNNLO programs, which provides fast and numerically pre-
cise predictions through the factorisation of the cross section
into production and decay variables, and the usage of quadra-
ture rules based on interpolating functions for the integration
over kinematic variables.

1 Introduction

The Drell–Yan process denotes massive lepton-pair pro-
duction in hadron–hadron collisions at high energies, as

a e-mail: stefano.camarda@cern.ch (corresponding author)

proposed by Sidney D. Drell and Tung–Mow Yan in
1970 [1], and first observed at the Alternating Gradient
Synchrotron [2]. At the Large Hadron Collider (LHC) [3],
the Drell–Yan process continues to play a fundamental role
in probing the proton parton distribution functions (PDF),
thereby providing valuable information on theu- and d-quark
valence PDFs [4] and insight into the light-quark sea decom-
position, in particular on the s- over d̄-quark ratio [5]. This
process is also used to measure fundamental electroweak
parameters such as the mass of the W boson [6], the weak-
mixing angle [7,8], and the W -boson width [9]. An accurate
modelling of the Drell–Yan process is of paramount impor-
tance for searches of new physics phenomena beyond the
Standard Model (SM) in final states with high dilepton invari-
ant mass [10–13]. These experimental measurements need to
be compared to accurate predictions based on high-order per-
turbative QCD and electroweak corrections. The Drell–Yan
production total cross section and the vector boson rapid-
ity distribution have been analytically computed up to the
next-to-next-to-leading order (NNLO) in powers of the QCD
coupling αS in Refs. [14,15] and [16], respectively. Fully
exclusive parton-level NNLO calculations, which include
the leptonic decay of the vector boson, have been imple-
mented in publicly available Monte Carlo codes [17–20]. The
transverse-momentum (qT) distribution of the lepton pair at
large (formally, non-vanishing) values of qT can be evaluated
at O(α3

S) from the parton-level calculations of W /Z/γ ∗+ jet
production that have been performed in Refs. [21–25]. Vari-
ous calculations that combine the QCD resummation formal-
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ism of logarithmically enhanced contributions at small-qT

[26–29] with fixed-order perturbative results at different lev-
els of theoretical accuracy have been performed in Refs. [30–
38]. Analogous resummed calculations have been performed
by applying Soft Collinear Effective Theory methods [39–
43] and transverse-momentum dependent factorisation [44–
52]. Electroweak (EW) [53–61] and mixed QCD-EW [62–
68] radiative corrections have also been considered. A reli-
able estimate of the theoretical uncertainties requires various
procedures, which also include variations of PDFs, renormal-
isation and factorisation scales, and SM parameters. It is thus
necessary to rely on computing codes that allow fast calcula-
tions of these variations with small numerical uncertainties.
The DYTurbo program, which is presented in this paper,
aims at providing fast and numerically precise predictions
of the Drell–Yan production cross sections, for phenomeno-
logical applications such as QCD analyses and extraction of
fundamental parameters of the SM. The enhancement in per-
formance over original programs is achieved by overhaul-
ing pre-existing codes, by factorising the differential cross
section into production and decay variables, and by intro-
ducing the usage of one-dimensional and multi-dimensional
numerical integration based on interpolating functions. The
DYTurbo program is a reimplementation of the DYRes [36]
and DYqT [33] programs for qT resummation, and of the
DYNNLO [19] program for the finite-order perturbative QCD
calculation up to NNLO. The DYRes [36] and DYqT [33]
programs encode the qT resummed cross sections up to next-
to-next-to-leading-logarithmic (NNLL) accuracy by using
the resummation formalism proposed in Refs. [69–71]. The
W+jet and Z/γ ∗+jet predictions at O(αS) and O(α2

S) are
reimplemented from the analytical calculations of Refs. [72–
74], as encoded in DYqT, for the case of the triple-differential
production cross sections as a function of rapidity y, invariant
mass m, and transverse momentum qT of the lepton pair, and
from the MCFM program [75], as encoded in DYRes and
DYNNLO, for the full kinematical dependence of the decay-
ing leptons. Software profiling was employed to achieve code
optimisation. The most successful optimisation strategies
leading to significant performance improvement were hoist-
ing loop-invariant expressions out of loops, removing condi-
tional statements from loops to allow the compiler perform-
ing automatic loop vectorisation, and manual loop unrolling.
TheDYTurbo software is based on a modular C++ structure,
with a few Fortran functions wrapped and interfaced to C++.
Multi-threading is implemented with OpenMP, and through
the Cuba library by means of fork/wait system calls [76]. A
flexible user interface allows setting the parameters of the cal-
culation through input files and command line options. The
results are provided in the form of text files and ROOT his-
tograms [77]. Preliminary versions of theDYTurbo program
were used by the ATLAS Collaboration in Refs. [6,78,79].
The DYTurbo program is publicly available [80].

2 Predictions with DYTurbo

The DYTurbo program provides predictions for W and
Z/γ ∗-boson (collectively denoted as V -boson) production
cross sections, fully differential in the four momenta of the
decay leptons, and inclusive over final-state QCD radia-
tion. The cross sections can be computed by performing the
resummation of logarithmically-enhanced contributions in
the small-qT region of the leptons pairs at leading-logarithmic
(LL), next-to-leading-logarithmic (NLL), and NNLL accu-
racy, and also including the corresponding finite-order QCD
contributions at next-to-leading order (NLO) and NNLO.
The logarithmically-enhanced terms are resummed by using
the resummation formalism of Ref. [70] in impact-parameter
space. The structure of the cross section calculations is sum-
marised in Eqs. (1) and (4), and we refer the reader to the dis-
cussion in Refs. [19,33,36] for details on the theoretical for-
mulation. Upon integration of final-state QCD radiation, the
fully-differential Drell–Yan cross section is described by six
kinematic variables corresponding to the momenta of the two
leptons. To the purpose of reducing the complexity of the cal-
culation, it is useful to reorganise the fully-differential Drell–
Yan cross section by factorising the dynamics of the boson
production, and the kinematics of the boson decay. The cross
section is therefore expressed as a function of the transverse
momentum qT, the rapidity y and the invariant mass m of the
lepton pair, and three angular variables corresponding to the
polar angle θ� and azimuth φ� of the lepton decay in a given
boson rest frame and to the azimuth φV of the boson in the
laboratory frame. However, the cross section does not depend
on φV , since in unpolarised hadron collisions the initial-state
hadrons, i.e. the incoming beams, are to very good approx-
imation azimuthally symmetric. Therefore the dependence
of the cross section on φV is not considered further. In the
following a distinction will be made between fiducial cross
sections, where kinematic requirements are applied on the
final state leptons, and total or full-lepton phase space cross
sections. The former requires the evaluation of the fivefold
differential cross sections, the latter are (qT,m,y)-dependent
triple-differential cross sections integrated over cos θ� andφ�.
At NLL+NLO and NNLL+NNLO, the qT-resummed cross
section for V -boson production can be written as

dσV
(N)NLL+(N)NLO = dσ res

(N)NLL − dσ
asy
(N)LO + dσ f.o.

(N)LO , (1)

where dσ res is the resummed component of the cross-section,
dσ asy is the asymptotic term that represents the fixed-order
expansion of dσ res, and dσ f.o. is the V+jet finite-order cross
section integrated over final-state QCD radiation. All the
cross sections are differential in q2

T. The resummed com-
ponent dσ res is the most important term at small qT. The
finite-order term dσ f.o. gives the larger net contribution at
large qT. The fixed-order expansion of the resummed com-
ponent dσ asy embodies the singular behaviour of the finite-
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order term, providing a smooth behaviour of Eq. (1) as qT

approaches zero. The two finite-order terms of Eq. (1) and the
finite-order factor HV

(N)NLO in dσ res (see Eq. (2)) are calcu-
lated up to the same power in αS. The resummed component
and its fixed-order expansion are given by1

dσ res
(N)NLL = dσ̂V

LO(qT) × HV
(N)NLO × exp{G(N)NLL} (2)

dσ
asy
(N)LO = dσ̂V

LO(qT) × ΣV(qT/Q)(N)LO , (3)

where Q denotes the auxiliary resummation scale [70] that
is introduced in dσ res and, consistently, in dσ asy. The term
dσ̂V

LO(qT) is the leading-order (LO) cross section evaluated
for non-vanishing values of qT according to a given qT-
recoil prescription [36], namely, with values of θ� and φ�

that correspond to a chosen dilepton rest frame. The factor
HV is the hard-collinear coefficient function. The term G is
the exponent of the Sudakov form factor and it is originally
expressed as a function of the impact parameter b, which is
the Fourier-conjugate variable to qT. This term embodies the
resummation of the logarithmically-enhanced contributions
at LL, NLL or NNLL accuracy in b space. In order to param-
eterise non-perturbative QCD effects, the Sudakov form fac-
tor includes a non-perturbative contribution, whose simplest
form is a Gaussian form factor. The b space expression of the
Sudakov form factor is then evaluated in qT space by numer-
ically performing the (inverse) Fourier transformation. The
function ΣV(qT/Q) arises from the finite-order expansion
of HV × exp{G}, and it matches the singular behaviour of
dσ f.o. in the region qT → 0. An additional feature of the
DYTurbo program is the possibility of computing finite-
order cross sections at LO, NLO and NNLO without the
resummation of logarithmically-enhanced contributions. At
NLO and NNLO, the finite-order cross section for V -boson
production is computed by using the qT-subtraction formal-
ism [81], and it is expressed as the sum of three components:

dσV
(N)NLO = HV

(N)NLO × dσV
LO

+
[
dσ

V+jet
(N)LO − dσCT

(N)LO

]
, (4)

with dσCT
(N)LO given by

dσCT
(N)LO = dσV

LO ×
∫ ∞

0
d2q ′

T ΣV(q ′
T/m)(N)LO . (5)

The LO cross-section term dσV
LO = dσ̂V

LO(qT)δ(q2
T) is evalu-

ated at qT = 0, and dσV+jet is the V+jet cross section.2 A uni-

1 The convolution with PDFs and the sum over different initial-state
partonic contributions are implied in the shorthand notation of Eqs. (2),
(3) and (5). Analogously, the inverse Fourier transformation from b
space to qT space is implied in Eq. (2).
2 More precisely the term dσ

V+jet
(N)LO in Eq. (4) has to be evaluated with

qT > qTcut, the lower integration limit on q ′
T in Eq. (5) has to be

understood to be qTcut and the square bracket term in Eq. (4) has to be
evaluated in the limit qTcut → 0.

tarity constraint is implemented in the resummation formal-
ism [70] so as to recover exactly the finite-order result upon
integration over qT of the full-lepton phase space resummed
cross section. The unitarity constraint leads to the following
relation:
∫ ∞

0
dq2

T dσ res
(N)NLL+(N)NLO = HV

(N)NLO × dσ̂V
LO(0). (6)

The terms dσ res
(N)NLL and dσ

asy
(N)LO can be, in general, mul-

tiplied by a switching function w(qT,m) above a given qT

threshold, to the purpose of reducing the contribution of the
resummed calculation in the large-qT region, where small-qT

resummation cannot improve the accuracy of the finite-order
calculation. The switching function can spoil the unitarity
constraint of Eq. (6) by an amount which is smaller when the
chosenqT threshold is larger. The default choice inDYTurbo
is a Gaussian switching function, as used in DYRes. The
Drell–Yan cross section predictions are obtained by integrat-
ing over the kinematic variables of the two leptons, and over
additional variables related to QCD radiation, convolutions
and integral transforms, as described in the following Sec-
tions. The integral transformations are evaluated by means
of one-dimensional quadrature rules based on interpolating
functions. The numerical integration over the other variables
is performed with two different methods. The first method
is based on the Vegas algorithm [82] as implemented in the
Cuba library [83]. The second method employs a combi-
nation of one-dimensional and multi-dimensional numerical
integrations based on interpolating functions. The one-di-
mensional integrations are performed by means of Gauss–
Legendre quadrature rules, with nodes and weights evalu-
ated with the Elhay–Kautsky method [84,85]. The multi-di-
mensional integrations are evaluated with the Cuhre algo-
rithm [86,87] as implemented in the Cuba library [83] and
in the Cubature package [88], and with a tensor product
of Clenshaw–Curtis quadrature rules as implemented in the
Cubature package. The Vegas integration method is avail-
able for all terms of the resummed and fixed-order calcu-
lations, and allows evaluating predictions for any arbitrary
observable, for total and fiducial cross sections. The numer-
ical integration based on interpolating functions is available
for all the terms in the case of total cross sections, and for all
the terms except the finite-order term at O(α2

S) in the case
of fiducial cross sections. This integration method allows
calculating only the cross sections as functions of qT, m,
and y. Of these two methods, the former is the most versa-
tile, whereas the latter allows reaching relative uncertain-
ties in the predicted cross sections well below 10−3 in a
time frame that is significantly shorter than that required
by the DYNNLO and DYRes programs. The EW parame-
ters GF, α(mZ ), mW , mZ and sin2 θW of the Drell–Yan
LO cross section are set by choosing three parameters as
input, and calculating the others according to tree-level rela-
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(a) (b)

Fig. 1 a DYTurbo results for the Z -boson full-lepton phase space
cross section at

√
s = 8 TeV as a function of the boson transverse

momentum qT at various orders of the calculation (NLO, NLL + NLO,
NNLO, and NNLL + NNLO). The bottom panel shows ratios of results
at various orders to the NNLL+NNLO result. b DYTurbo results

at NNLL + NNLO accuracy for the Z -boson total cross section at√
s = 8 TeV as a function of the boson transverse momentum and the

separated contribution of various terms: resummed component, asymp-
totic term, finite-order term, sum of asymptotic and finite-order terms

tions. In the following the Gμ scheme is used, in which
GF, mW , mZ are set to GF = 1.1663787 · 10−5 GeV−2,
mW = 80.385 GeV, mZ = 91.1876 GeV, and sin2 θW
and α are calculated at tree level. The default values of
the renormalisation (μR), factorisation (μF ) and resumma-
tion scales are fixed to μR = μF = 2Q = m. The pre-
scriptions necessary to obtain the resummed results (i.e. the
qT-recoil prescription, the switching function w(qT,m) and
the prescription to avoid the Landau singularity) have been
chosen following Ref. [36]. Figure 1a shows results for Z -
boson production in proton–proton collisions at

√
s = 8 TeV

with the CT10nnlo set of parton density functions [89], and
default choices of QCD scales and EW parameters. The
relative contributions of the various terms to the Z -boson
total cross section are illustrated in Figure 1b. The eval-
uation of each term is described in the following subsec-
tions.

2.1 Resummed component

The resummed component of the qT-resummed cross sec-
tion (see Eq. (2)) can be factorised as the product of the LO
cross section dσ̂V

LO and the term W = HV × exp{G}. In
these two terms, only the LO cross section depends on the
lepton angular variables, and their integration is factorised
as follows. The dependence of the cross section on cos θ� is
dσ(cos θ�) ∝ (1 + cos2 θ�) + a cos θ�, whereas an explicit
dependence on φ� enters only in the case of fiducial cross
sections, due to the kinematic requirements on the final-state
leptons. In the case of full-lepton phase space cross sections,

the integration over the angular variables is obtained through
the following substitutions:

1 + cos2 θ� →
∫

d
(1 + cos2 θ�) = 16/3π, (7)

cos θ� →
∫

d
 cos θ� = 0, (8)

where d
 = d cos θ� dφ�. In the more general case of fiducial
cross sections, the integrals in Eqs. (7) and (8) are as follows

θ0 =
∫

d
(1 + cos2 θ�)�K , θ1 =
∫

d
 cos θ� �K , (9)

where �K is the acceptance function of the kinematic
requirements. The integrals in Eq. (9) are evaluated by first
searching all the values of cos θ� corresponding to the extrem-
ities of the region defined by the kinematic requirements at
fixed values of φ�. For each pair of cos θ� extreme values,
the integrals are evaluated analytically in d cos θ�. In a sec-
ond step, the integration along dφ� is performed by means
of Gauss-Legendre quadrature. In the case of the full-lepton
phase space cross sections, the expressions in Eqs. (7) and (8)
do not depend on qT and y, which allows further simplifi-
cations. In contrast, for the fiducial cross sections, the �K

acceptance function in Eq. (9), and so the integrals, depend in
general on qT and y. Such a dependence varies between dif-
ferent qT-recoil prescriptions and it is of O(qT/m) at small
qT. TheW term is expressed through the Sudakov form factor
exp{G} inb space. TheqT-dependent cross section is obtained
by means of a two-dimensional inverse Fourier transforma-
tion, which is expressed as a zeroth-order inverse Hankel
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transformation by exploiting the azimuthal symmetry of the
W function in the transverse plane:

W(qT,m, y) = m2

s

∫ ∞

0
db

b

2
J0(bqT) W̃(b,m, y), (10)

where W̃ is the expression of W in b space, J0(x) is the
zeroth-order Bessel function and s is the centre-of-mass
energy. The integral transformation of Eq. (10) is computed
by means of a double-exponential formula for numerical inte-
gration [90–92]. The convolution with PDFs is more effi-
ciently performed by considering double Mellin moments of
the partonic functions Ŵab, defined as

ŴN1,N2
ab =

∫ 1

0
dz1z

N1−1
1

∫ 1

0
dz2z

N2−1
2 Ŵab(z1, z2), (11)

where z1,2 = m/
√
ŝe±ŷ , ŷ = y− 1/2 ln(x1/x2), ŝ = x1x2s,

and a, b denote the initial-state partons. The Mellin moments
ŴN1,N2

ab are calculated with ANCONT [93], a software library
for the analytic continuation of Mellin transformations. The
function W̃ is then obtained by means of a double inverse
Mellin transformation:

W̃(b,m, y) =
(

1

2π i

)2

∫ c+i∞

c−i∞
dN1 x

−N1
1

∫ c+i∞

c−i∞
dN2 x

−N2
2 FN1

a FN2
b ŴN1,N2

ab ,

(12)

where x1,2 = m/
√
s e±y , c is a real number which lies at the

right of all the poles of the integrand, and FN
i , with i = a, b,

are Mellin moments of PDFs, fi (x), defined as:

Fi (N ) =
∫ 1

0
dx xN−1 fi (x). (13)

The integral transformation of Eq. (12) is computed by means
of Gauss-Legendre quadrature, and the PDFs are evolved
[33,36] from the factorisation scale μF to the scale b0/b
(b0 = 2e−γE , and γE is the Euler number) by using the
program Pegasus QCD for the evolution of PDFs in Mellin
space [94]. To perform the Mellin inversion, it is necessary to
calculate the Mellin moments Fi (N ) at values of N along a
contour of integration in the complex plane. Parameterising
the PDFs in a simple form such as

f (x) = xα(1 − x)β P(x), (14)

where α, β are constants and P(x) is a polynomial, Mellin
moments for arbitrary complex N can be calculated through
a simple formula involving the Γ function:
∫ 1

0
dx xα(1 − x)β = Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
. (15)

Thanks to the analytic continuation of Eq. (15) in the
region of the complex plane with �(N ) < 0, when PDFs are
expressed with this form, the integration contour in Eq. (12)

Fig. 2 Standard and optimised integration contours in the complex
plane for the inverse Mellin transform. The two contours intersect the
real axis at the point c, and the optimised contour is bent by an angle
φ > π/2 with respect to the real axis. The crosses represent the poles
of PDF parameterisation in Mellin space

can be optimised by bending towards negative values of
�(N ), as depicted schematically in Fig. 2, allowing for a
faster convergence of the Mellin inversion integral. Such a
strategy is adopted in DYRes and in Refs. [94,95]. As a
drawback, PDFs need to be parameterised as in Eq. (14),
or an approximation of the PDFs that follows this form
has to be evaluated, which is significantly time consuming.
In DYTurbo, the Mellin moments of PDFs are evaluated
numerically, by using Gauss–Legendre quadrature to calcu-
late the integrals of Eq. (13). However these integrals can
be evaluated numerically only for �(N ) > 0. As a conse-
quence the integration contour of the inverse Mellin trans-
form cannot be bent towards negative values of �(N ), and a
standard contour along the straight line [c − i∞, c + i∞] is
used (see Fig. 2). This procedure results in a slower conver-
gence of the integration in Eq. (12), for which about twice as
many function evaluations are required, but it has the great
advantage of allowing usage of PDFs with arbitrary param-
eterisation, without requiring knowledge of their functional
form, and without requiring any time consuming evaluation
of an approximation of PDFs in the form of Eq. (14). The inte-
gration over the V -boson rapidity, y, is factorised as follows.
In the case of total cross sections, the values of the angular
integrals in Eqs. (7) and (8) do not depend on y. The only
dependence on the rapidity in Eq. (12) is in the expression

x−N1
1 x−N2

2 = e− ln(m/
√
s) (N1+N2)e−y (N1−N2), (16)

and the integrals of Eq. (16) are evaluated analytically using
the following relation:

∫ y1

y0

dy e−y (N1−N2) = e−y1(N1−N2) − e−y0(N1−N2)

N1 − N2
, (17)
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where y0 and y1 are the lower and upper y-bin boundaries. In
the case N1 = N2, Eq. (17) further simplifies to y1−y0. When
the y-bin boundaries are larger than the allowed kinematic
range |y| ≤ ymax, with ymax = ln(

√
s/m), Eq. (17) simplifies

to 2π i δ(N1−N2), and the double Mellin inversion is reduced
to a single Mellin inversion [71] by setting N1 = N2 = N .
In the case of fiducial cross sections, the values of θ0 and θ1

in Eq. (9) also depend on y, and the integrals
∫ y1

y0

dy e−y (N1−N2) θ0,1(y), (18)

are evaluated numerically for all pairs of N1 and N2 by means
of Gauss-Legendre quadrature. The integration over the V -
boson transverse momentum, qT, can be performed analyti-
cally in the case of the full-lepton phase space cross sections,
since the expressions in Eqs. (7) and (8) do not depend on qT,
and the only term that depends on qT is J0(bqT) of Eq. (10).
By using the relation

∫
dx x J0(x) = x J1(x), the integration

over qT in a bin of boundaries q0
T and q1

T can be evaluated
as

∫ q1
T

q0
T

dqT 2qT W(qT,m)

= m2

s

∫ ∞

0
db

[
q1

T J1(bq
1
T) − q0

T J1(bq
0
T)

]
W̃(b,m).

(19)

Similarly to Eq. (10), the integral of Eq. (19) is computed by
means of a double-exponential formula for numerical inte-
gration, and by performing two separate integrations corre-
sponding to the terms J1(bq1

T) and J1(bq0
T). The information

of the one-loop (two-loop) virtual correction to the LO sub-
process is contained in the HV function. In the computation
of the fixed-order cross section of Eq. (4), the HV func-
tion is evaluated in x-space, i.e. without performing a Mellin
transformation, and the convolution with PDFs is performed
by integrating over the variables z1,2 = e±ŷ m/

√
ŝ. The

corresponding integrals are calculated with Gauss–Legendre
quadrature.

2.2 Asymptotic term and counter-term

The asymptotic term of Eq. (3) and the counter-term of Eq. (5)
are computed using the function ΣV(qT/Q), which embod-
ies the singular behaviour of dσ f.o. in the limit qT → 0. In
the finite-order case the counter-term contributes at qT = 0.
Accordingly, the LO cross section is evaluated at qT = 0
and the function ΣV(q ′

T/Q) is integrated over the auxiliary
variable q ′

T. At variance, in the resummed case the asymp-
totic term is a function of qT, and the LO cross section is
evaluated for nonzero values of qT according to a given qT-
recoil prescription. As for the resummed term, the integra-
tion over the angular variables is factorised in the LO cross

section by using Eqs. (7) and (8) or Eq. (9). The function
ΣV(qT/Q) is evaluated in x-space, i.e. without performing
a Mellin transformation, and the convolution with PDFs is
performed by integrating over the variables z1,2 with Gauss–
Legendre quadrature. In the case of full-lepton phase space
cross sections, the qT dependence of the asymptotic term and
of the function ΣV(qT/Q) is fully embodied in a set of four
functions Ĩn(qT/Q) with n = 1, . . . , 4 [70]. The integration
over qT of the asymptotic term is performed by integrating
the Ĩn(qT/Q) functions with Gauss–Legendre quadrature. In
the case of fiducial cross sections, the values of θ0 and θ1 of
Eq. (9) also depend on qT, and the integrals

∫ q1
T

q0
T

dqT 2qT Ĩn(qT/Q) θi (qT), i = 0, 1, (20)

where q0
T and q1

T are the lower and upper qT-bin boundaries,
are evaluated numerically by means of Gauss–Legendre
quadrature.

2.3 Finite-order term

The real-emission corrections are embodied in the (N)LO
finite-order term of Eq. (1) and in the V+jet term of Eq. (4)
for the resummed and fixed-order predictions, respectively.
SinceDYTurbo provides results that are inclusive over final-
state QCD radiation, the two terms are fully equivalent.3 Two
independent calculations of this term are implemented. The
first calculation, which is based on the code MCFM [75],
is fully differential with respect to the lepton angular vari-
ables and the final-state QCD radiation. The second calcula-
tion, which is inclusive over the lepton angles and the QCD
radiation, implements the analytic results of Refs. [72–74],
and it relies in part on the code taken from DYqT [33]. The
MCFM implementation of the lowest-order term dσ

V+jet
LO can

be evaluated by using either the Vegas integration method or
the numerical integration based on interpolating functions.
The MCFM implementation of the next-order term dσ

V+jet
NLO

is the most complex part of the calculation, and it can be
evaluated only with the Vegas algorithm. The reason is that
this NLO calculation is based on the Catani–Seymour dipole
subtraction scheme [96], in which for each point in the phase
space where the real radiation is evaluated, a set of counter-
term dipoles are computed corresponding to various different
phase-space points. As in any local subtraction procedure,
the resulting integrand presents discontinuities and it cannot
be efficiently approximated by interpolating functions. The
implementation of the analytic calculation of Refs. [72–74]
yields the triple-differential production cross sections as a

3 Resummed predictions can be computed only inclusively with respect
to final-state QCD radiation, whereas fixed-order predictions could be
evaluated differentially.
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(a) (b) (c)

Fig. 3 Closure test of the relation dσ asy ∼ dσ f.o. when qT → 0 for a Z/γ ∗-boson, b positively-charged W -boson, and c negatively-charged
W -boson production at

√
s = 13 TeV

function of qT, m, and y of the lepton pair, and it is used only
for cross sections inclusive over the lepton decay, evaluated
with numerical integration based on interpolating functions.

3 Tests of numerical precision

In order to validate the numerical precision of the resummed
calculation, three closure tests are performed: the compari-
son of the fixed-order expansion of the resummed component
(asymptotic term) and the finite-order term at small qT, the
comparison of the term HV × dσV

LO and the resummed com-
ponent upon qT integration, and comparisons of the inte-
gration methods available in DYTurbo, namely the Vegas
algorithm and the multi-dimensional numerical integration
based on interpolating functions, referred to as Quadrature
integration in the plots. The numerical tests of this section
are performed in full-lepton phase space, using the CT10nnlo
set of parton density functions and with default values of the
QCD scales and EW parameters. As discussed in Sect. 2,
the function dσ asy embodies the singular behaviour of dσ f.o.

when qT → 0, yielding the relation (see Eq. (4) of Ref. [70])

lim
QT→0

∫ QT

0
dq2

T

(
dσ f.o. − dσ asy) = 0, (21)

or, equivalently,

lim
qT→0

qT
(
dσ f.o. − dσ asy

) = 0 . (22)

We note that dσ f.o. and dσ asy in Eq. (22) separately diverge
proportionally to q−2

T (modulo powers of log qT) as qT → 0.
Computing such a relation at small values of QT provides a
stringent test of the numerical precision of the asymptotic and
finite-order terms. The triple-differential cross sections dσ asy

and dσ f.o., as functions of qT, m and y, are evaluated at the
fixed values y = 0 andm = mV , withV = W, Z , for proton–

proton collisions at
√
s = 13 TeV. The result of the test is

shown in Figure 3 for the NLL+NLO and NNLL+NNLO cal-
culations. In all the cases, the relation of Eq. (22) is shown
at values of qT as low as qT = 0.01 GeV. As a second clo-
sure test, the unitarity constraint of Eq. (6), which relates the
HV × dσV

LO and dσ res terms, is tested. Computing such a
relation provides a stringent test of the numerical precision
of the procedure. The triple-differential cross sections dσ res

as a function of qT, m, and y are integrated in qT from zero to
infinity, and in the range of rapidity |y| ≤ ymax, and they are
compared with the HV × dσ̂V

LO(0) double differential cross
sections as a function ofm and y, integrated in the same range
of rapidity. The switching function w(qT,m), which reduces
the contribution of the resummed calculation in the large-qT

region, is not used in this test. Figure 4 shows the result of
such a comparison at LO, NLO and NNLO for Z/γ ∗-boson
production in proton–proton collisions at

√
s = 13 TeV, for

180 equally-spaced bins of m in the range [20, 200] GeV.
In all cases the relation

(∫ ∞
0 dq2

T dσ res
)
/
(HV × dσ̂V

LO

) = 1
is verified, with deviations from unity that are smaller than
10−6. The terms HV × dσV

LO and dσ res are evaluated in x-
space and Mellin-space, respectively. Therefore, computing
such a relation also provides a test of the numerical precision
of the Mellin inverse transformation in Eq. (12). Similar level
of agreement is observed by performing this closure test as
a function of the rapidity. The results at NNLL+NNLO from
DYTurbo using the numerical integration based on interpo-
lating functions and the Vegas algorithm are compared for
the Z -boson differential cross section in proton–proton col-
lisions at

√
s = 8 TeV. The Z -boson invariant mass range

is required to be 80 GeV < m < 100 GeV. Ratios of these
results are shown in Fig. 5. The scatter in the central values
of the points is at the permille level, except for the points
at the very edges of the kinematic phase space, and for the
finite-order term at high qT where deviations of two permille
are observed.
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(a) (b) (c)

Fig. 4 Closure test of the relation
∫ ∞

0 dq2
T dσ res = HV × dσ̂V

LO for
Z/γ ∗-boson production at

√
s = 13 TeV, results at: a LO and LL,

b NLOvirt and NLL, c NNLOvirt and NNLL. The labels NLOvirt

(NNLOvirt) identify the contribution of the regularised virtual correc-
tions up to one-loop (two-loop) order

Fig. 5 Ratio of full-lepton phase space differential cross sections at√
s = 8 TeV as a function of Z -boson transverse momentum as evalu-

ated with the Quadrature and Vegas integration methods of DYTurbo.

From left to right: resummed component, asymptotic term, finite-order
term, and total differential cross section

4 Benchmark results

This section provides benchmark results of DYTurbo to
DYRes at NNLL+NNLO for cross sections differential in qT,
and benchmark results of DYTurbo to DYRes and DYNNLO
for fully-integrated fiducial cross sections at NNLL+NNLO
and NNLO.

4.1 Benchmark of DYTurbo to DYRes differential results

Predictions at NNLL+NNLO for Z -boson and W -boson
cross sections in proton–proton collisions at

√
s = 7 TeV

using the CT10nnlo set of parton density functions were eval-
uated with DYRes [36] and compared to the corresponding
predictions in DYTurbo. The W -boson predictions are in
the full-lepton phase space, whereas the Z -boson predictions
are fiducial, and match the kinematic definition of Ref. [97].
Careful attention is paid to exactly match in DYTurbo the
settings used to produce theDYRespredictions, such as QCD
scales choice, EW scheme and input parameters, switching
function at high qT, qT-recoil prescription, and the prescrip-
tion for avoiding the Landau pole in b-space. All these param-
eters are set to the default values of DYRes. Figures 6 and 7
show the comparisons to DYRes of DYTurbo results for the
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(a) (b) (c)

Fig. 6 Comparison of differential fiducial cross sections computed
with DYRes and DYTurbo at

√
s = 7 TeV as a function of the

Z -boson transverse momentum. The Z -boson fiducial phase space is
defined by the lepton transverse momentum p�

T > 20 GeV, the lepton
pseudorapidity |η�| < 2.4, and the invariant mass of the lepton pair
66 GeV < m < 116 GeV. a Comparison of resummed component

between DYRes and DYTurbo with Vegas integration. b Comparison
of resummed component between DYRes and DYTurbo with Quadra-
ture integration. c Comparison of the sum of asymptotic and finite-order
terms between DYRes and DYTurbo with Vegas integration. The top
panels show absolute cross sections, and the bottom panels show ratios
of DYTurbo to DYRes results

(a) (b)

Fig. 7 Comparison of full-lepton phase space differential cross sec-
tions computed with DYRes and DYTurbo (Quadrature integration
method) at

√
s = 7 TeV as a function of the transverse momentum

of the positively-charged W -boson: a resummed component, b sum of

asymptotic and finite-order terms. The top panels show absolute cross
sections, and the bottom panels show ratios of DYTurbo to DYRes
results

Z -boson and positively-charged W -boson production cross
sections. The Z -boson fiducial phase space is defined by the
lepton transverse momentum p�

T > 20 GeV, the lepton pseu-
dorapidity |η�| < 2.4, and invariant mass of the lepton pair
in the range 66 GeV < m < 116 GeV. All comparisons of
predictions for the resummed term are validated at the better
than 1% level while the comparison of the sum of the asymp-
totic and finite-order terms are validated at the ∼2% level for
qT above 40 GeV. In particular, the positively-charged W -

boson predictions show well that the sum of the asymptotic
and finite-order terms converges to zero at lowqT, as expected
(it is also consistent with zero for the Z -boson predictions,
within the Vegas uncertainties, which are highly correlated
bin-to-bin). The DYTurbo and DYRes results are compared
in Fig. 8 after summing all terms. Also in this case good
agreement is observed between the two codes, within the
numerical uncertainty of the Vegas integration.
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Fig. 8 Comparison of DYRes and DYTurbo cross sections at
√
s = 7 TeV as a function of the boson transverse momentum for full-lepton phase

space W+ and W− production, and fiducial Z -boson production

Table 1 Comparison of NNLO and NNLO+NNLL cross-section results at
√
s = 8 TeV. The results for DYNNLO are taken from Ref. [99]

Program DYNNLO DYTurbo DYRes DYTurbo
Order NNLO NNLO NNLO+NNLL NNLO+NNLL

σ(pp → W+ → l+ν) [pb] 3191 ± 7 3176 ± 3 3149 ± 8 3155 ± 3

σ(pp → W− → l−ν) [pb] 2243 ± 6 2234 ± 2 2214 ± 4 2213 ± 2

σ(pp → Z/γ ∗ → l+l−) [pb] 502.4 ± 0.4 502.8 ± 0.5 500.7 ± 0.9 500.5 ± 0.6

4.2 Benchmark of fully-integrated cross-section results

Benchmark results for fully-integrated fiducial cross sec-
tion at NNLL+NNLO from DYRes [36] and at NNLO from
DYNNLO [19] are shown in Table 1 and compared with the
corresponding results calculated with DYTurbo.4 The pre-
dictions are evaluated for proton–proton collisions at the
centre–of–mass energy

√
s = 8 TeV, and according to the

fiducial definition and QCD and EW settings of Ref. [99].
The Z - and W -boson fiducial phase space is defined by the
charged lepton and neutrino transverse momentum p�,ν

T >

25 GeV, the charged lepton pseudorapidity |η�| < 2.5, and
invariant mass of the lepton pair larger than 50 GeV for Z -
boson production and larger than 1 GeV for W -boson pro-
duction. The results for DYNNLO shown in the table are taken
from Table 12 of Ref. [99]. The results of DYTurbo are in
agreement with the results of the other programs considered
in Ref. [99]. Differences as large as 1% are observed between
the NNLO and the NNLL + NNLO results, which are mostly
due to recoil effects in the lepton kinematics (the unitarity
constraint of Eq. (6) between fixed-order and resummed cal-

4 The NNLO results in Table 1 are obtained with a minimum value of
r = qT/m fixed to rcut = 0.002 and their corresponding numerical
uncertainties do not include the systematic uncertainty from the rcut →
0 extrapolation. A more accurate NNLO result and an estimate of such
uncertainty can be obtained by evaluating the cross section at different
values of rcut and carrying out the limit rcut → 0 [98].

culations does not apply in the presence of lepton kinematic
cuts). An additional source of difference between the NNLO
and the NNLL + NNLO results is the inclusion of the switch-
ing function w(qT,m), which affects the cross sections at the
per mille level.

5 Time performance

In this section various tests of time performance are dis-
cussed. The computation time requested to calculate cross-
section predictions for DYTurbo and DYRes is com-
pared and used to assess the performance improvement of
DYTurbo. The amount of time required to perform a calcu-
lation as a function of threads provides a test of the scaling
behaviour of the multi-threading implementation. The time-
performance tests are run on a server mounting two AMD
Opteron 6344 CPUs with 12 cores each. The fully-integrated
fiducial cross section of Z -boson production, as defined for
the results shown in Table 1, is computed with DYRes and
DYTurbo at NNLL+NNLO. The DYRes calculation took
40 hours for an uncertainty of 0.4%, whereas DYTurbo took
8 hours, yielding a factor of 5 in the improvement of the time
performance. Figure 9 shows the speedup factors for cross-
section calculations as a function of the number of threads,
where the speedup is defined as the ratio of elapsed time
of the multi-threaded calculation divided by the reference

123



Eur. Phys. J. C           (2020) 80:251 Page 11 of 15   251 

(a) (b)

Fig. 9 Computing time as a function of the number of threads for Z -boson production at
√
s = 8 TeV with different target precision: a NNLO

results with the Vegas integration method, and b NNLL + NNLO results with the Quadrature integration method

elapsed time of the one-thread calculation. Assuming that
the one-thread calculation has a parallelisable time fraction
and a non-parallelisable time fraction, and the multithread-
ing process has an overhead time proportional to the number
of threads N , the speedup curve can be parameterised as
(1 + s)/(1/N + s + o · N ). where s is the ratio between
non-parallelisable and parallelisable times, and o is the over-
head time per thread. The measured speedup factors are well
described by this model, with overhead times compatible
with zero, and with fractions of non-parallelisable time which
are smaller when the target precision is higher. Indeed most
of the non-parallelisable time is spent in the program initial-
isation, which becomes negligible for long runs with high
target precision. We conclude this section reporting typical
running times for fast and numerically preciseDYTurbopre-
dictions with the numerical integration based on interpolating
functions. Figure 10 shows NLL+NLO and NNLL+NNLO
predictions for the Z -boson production at 13 TeV in full-
lepton phase space, integrated in the range of invariant mass
[66, 116] GeV and in the range of rapidity |y| ≤ ymax ∼ 5.3.
The predictions are computed in 100 equally-spaced qT bins
from zero to 25 GeV. The predictions are evaluated with a
target in the relative numerical uncertainty of 10−4 for each
term, and using simultaneously 20 parallel threads. The com-
putation time required to perform the full calculation is 4 min
at NLL + NLO and 3.4 h at NNLL + NNLO. The computation
of the resummed component required 6 s at NLL+NLO and
10 s at NNLL + NNLO, the computation of the asymptotic
term required 0.2 s at NLL + NLO and 0.7 s at NNLL+NNLO,
the computation of the finite-order term required 4 min at
NLL + NLO and 3.4 h at NNLL+ NNLO. In these exam-
ples, as in all other time-performance tests, the great majority
of the computation time is spent to evaluate the finite-order

Fig. 10 Example of predictions at NLL + NLO and NNLL + NNLO
accuracy for Z -boson production at

√
s = 13 TeV

term. For applications as PDF fits, where very fast predictions
are required, this part of the calculation could be computed
by using APPLGRID [100].

6 Conclusions

The DYTurbo program provides fast and numerical precise
predictions of Drell–Yan processes, through a new imple-
mentation of the DYqT, DYRes and DYNNLO numerical
codes. The cross-section predictions include the calculation
of the QCD transverse-momentum resummation up to next-
to-next-to-leading logarithmic accuracy combined with the
fixed-order results at next-to-next-to-leading order (O(α2

S)).
They also include the full kinematical dependence of the
decaying lepton pair with the corresponding spin correla-
tions and the finite-width effects. The enhancement in per-
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formance over previous programs is achieved by code opti-
misation, by factorising the cross section into production and
decay variables, and with the usage of numerical integration
based on interpolating functions. The resulting cross-section
predictions are in agreement with the results of the original
programs. The great reduction of computing time for per-
forming cross-sections calculation opens new possibilities
for the usage of Drell–Yan processes for PDF fits, for the
extraction of fundamental parameters of the SM, such as the
mass of the W boson and the weak-mixing angle, and for the
estimation of background processes in searches for physics
beyond the SM.
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