


WAAUP

27th Conference of the World Association for the Advancement of Veterinary Parasitology

JULY 7 - 11, 2019 | MADISON, WI, USA

Dedicated to the legacy of Professor Arlie C. Todd

Sifting and Winnowing the Evidence in Veterinary Parasitology

Abstract Book

Joint meeting with the 64th American Association of Veterinary Parasitologists Annual Meeting & the 63rd Annual Livestock Insect Workers Conference

www.WAAVP2019.com #WAAVP2019

Table of Contents

Table of Contents				
Keynote Presentation		84-89 89-92	OA22 Molecular Tools II OA23 Leishmania	
4	Keynote Presentation Demystifying One Health: Sifting and Winnowing	92-97	OA24 Nematode Molecular Tools, Resistance II	
	the Role of Veterinary Parasitology	97-101 101-104	OA25 IAFWP Symposium OA26 Canine Helminths II	
Plenary Lectures		104-108 108-111	OA27 Epidemiology OA28 Alternative Treatments for	
6-7	PL1.0 Evolving Approaches to Drug Discovery	111-113 114-116	Parasites in Ruminants I OA29 Unusual Protozoa OA30 IAFWP Symposium	
8-9	PL2.0 Genes and Genomics in Parasite Control	116-118	OA31 Anthelmintic Resistance in Ruminants	
10-11	PL3.0 Leishmaniasis, Leishvet and One Health	119-122 122-125	OA32 Avian Parasites OA33 Equine Cyathostomes I	
12-13	PL4.0 Veterinary Entomology: Outbreak and Advancements	125-128	OA34 Flies and Fly Control in Ruminants	
Oral Sessions		128-131 131-135	OA35 Ruminant Trematodes I OA36 Treatment and Control of GI Nematodes in Ruminants	
15-18 18-21	OA01 Canine Heartworm I OA02 Diagnosis and Decision	136-139	OA37 Poultry Coccidia, Aquatic Infections	
	Support for GI Nematodes in Ruminants I	139-144 144-148	OA38 Equine Cyathostomes II OA39 Insecticide and Acaricide	
21-24 25-28	OA03 North American Ticks OA04 Coccidia	149-152	Resistance in Ruminants OA40 Zoonoses	
28-30	OA05 Worldwide Vector-Borne Infections in Companion Animals	153-155	OA41 Biology and Pathology of GI Nematodes in Ruminants	
30-35 35-38	OA06 Canine Heartworm II OA07 Host Responses Against	155-158 159-161	OA42 Diagnostic Techniques OA43 Equine Parasites	
39-42	Helminths in Ruminants OA08 Tick Disease Transmission	161-164 164-167	OA44 Canine Arthropods OA45 Ruminant Trematodes II	
43-46	OA09 Wildlife Parasites	168-171	OA46 Gastrointestinal Protozoa in	
46-49	OA10 New Tools and Big Data for	171 175	Ruminants	
	Evaluating Intestinal Parasite Infections in Companion Animals	171-175 175-179	OA47 Wildlife Helminths OA48 Equine Ascarids	
50-52	OA11 Canine Protozoa	179-183	OA49 Ticks on Cattle	
53-56	OA12 Diagnosis and Decision Support for GI Nematodes in Ruminants II	183-187	OA50 Alternative treatments for Parasites in Ruminants II	
56-59 60-62	OA13 Flea and Tick Treatment OA14 Protozoan Parasites	Poster	Sessions	
62-65	OA15 Education	189-234	PS01 Poster Session 1	

189-234	PS01 Poster Session 1
234-280	PS02 Poster Session 2
280-326	PS03 Poster Session 3

65-68

68-71

71-74

74-78

78-80

80-84

OA16 Canine Helminths

OA17 Molecular Tools I

OA20 IAFWP Symposium

OA21 Cat Parasitisms

OA19 Nematode Molecular Tools,

OA18 Leishmania

Resistance I

Packet Test (LPT) and Adult Immersion Test (AIT). LPT with a discriminating dose of deltamethrin (75ppm) showed a mortality of 59% of R. microplus larvae. Mortality of R. microplus larvae was 100% at concentration of 9 ppm, 8 ppm and 7 ppm with piperine, ZnONPs and NZPF, respectively. AIT with a discriminating dose of deltamethrin (75ppm) against adult R. microplus showed a mortality of 40%, oviposition inhibition of 78.309% and the lowest egg mass weight with 17.8±1.31 mg. Mortality rate and oviposition inhibition of R. microplus were 100% whereas egg mass and reproductive index were completely nil with both piperine and ZnONPs at a concentration of 20 ppm and NZPF at a concentration of 15 ppm. NZPF showed a potent ovulation inhibitory activity with significantly (P<0.05) lower IC50 and IC99 values compared to ZnONPs and piperine.

Both LPT and AIT results indicated the development of resistance in R. microplus ticks against deltamethrin. NZPF, ZnONPs and piperine were found to have significantly (P<0.05) higher acaricidal activity. However, NZPF had high acaricidal efficacy at lower concentrations than pure phytochemical piperine, ZnONPs and deltamethrin. NZPF could be potential alternative to routine chemical acaricides for control of tick infestation of cattle in the wake of the development of acaricidal resistance, residual effect and environmental pollution.

OA39.08 Failure of Macrocyclic Lactones to Control Psoroptic Mange Infection in Feedlot and Grazing Beef Cattle

Dr. Candela Canton¹, Dr. Cesar Fiel², Dr. Pedro Steffan², Veterinarian Sebastian Muchiut², Veterinarian Maria Paula Domínguez¹, Dr. Guillermo Virkel¹, Veterinarian Laureano Schofs¹, Dr. Carlos Lanusse¹, Dr. Luis Ignacio Alvarez¹, **Dr. Adrian Lifschitz**¹ ¹Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Tandil, Argentina, ²Laboratorio de Parasitología y Enfermedades Parasitarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CONICET-CICPBA, Tandil, Argentina

The current work assessed the relationship between pharmacokinetic behavior and clinical efficacy of ivermectin (IVM) or doramectin (DRM) against natural Psoroptes ovis var. bovis infection in cattle. The study involved two trials (I and II) carried out on different beef cattle production systems, a feedlot (Trial I) and a grazing (Trial II) system. In Trial I, 40 mange-infected steers were allocated into 4 groups (n=10) and treated with a single (day 0) or repeated (days 0 and 7) subcutaneous injection of two different formulations of IVM (1%) at 0.2 mg/kg. In Trial II, 20 grazing calves with active mange infection were allocated into 2 groups (n=10) and treated with a single subcutaneous injection of either IVM (1%) or DRM (1%) at 0.2 mg/kg. Blood and skin samples were collected from 8 animals of each group to measure IVM/DRM concentrations by HPLC. Skin scraping samples were collected from each animal and mites were counted. In Trial I, the repeated administration of IVM increased the systemic availability and skin drug exposure compared to the single treatment (p<0.05). However, both formulations failed to achieve a clinical mange cure at either single or repeated treatment. Efficacy of IVM was 10% (single dose) and 50% (repeated treatment) at day 14 post-treatment. The noncured animals remained with active mange 28 days post-treatment. No differences (p>0.05) in the P. ovis scores density were observed after single or repeated treatments. In Trial II, there was also a positive correlation between IVM or DRM concentrations in plasma and skin samples. Although IVM and DRM failed to obtain a complete parasitological cure, the efficacy of DRM was higher (80%) than those obtained by IVM (10%)(p<0.05).Additional studies are needed to confirm the presence of P. ovis populations resistant to macrocyclic lactones, and to enhance the control of psoroptic mange in cattle.