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Lagrangian descriptors for open maps
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We adapt the concept of Lagrangian descriptors, which have been recently introduced as efficient indicators
of phase space structures in chaotic systems, to unveil the key features of open maps. We apply them to the open
tribaker map, a paradigmatic example not only in classical but also in quantum chaos. Our definition allows us
to identify in a very simple way the inner structure of the chaotic repeller, which is the fundamental invariant set
that governs the dynamics of this system. The homoclinic tangles of periodic orbits (POs) that belong to this set
are clearly found. This could also have important consequences for chaotic scattering and in the development of
the semiclassical theory of short POs for open systems.
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I. INTRODUCTION

Lagrangian descriptors (LDs) [1] are a recently introduced
classical measure that has proven to be very useful for the
identification of the stable and unstable manifolds of chaotic
systems [2–4]. They have also been applied to unveiling the
chaotic structure in phase space of molecules, in particular
the LiCN one [5] that is described by a realistic potential in
two and three dimensions. This study has demonstrated the
ability of LDs to overcome the difficulty posed by higher
dimensionality to other methods such as obtaining a Poincaré
surface of section. Also, LDs have been successfully im-
plemented [6] within the so-called geometric transition state
theory to the identification of recrossing-free dividing sur-
faces, thus helping in the computation of chemical reaction
rates, and the reactive islands that account for nonstatistical
behavior in chemical reactions [7]. Moreover, the concept
has been adapted to discrete dynamical systems such as two-
dimensional area preserving maps [8], under the name of
discrete LDs. In this work the singular sets of LDs have been
associated to the invariant manifolds of some prototypical
maps and a chaotic repeller has been identified. As an inter-
esting example of this method, LDs have been successfully
applied to the Arnold’s cat map [9] and its invariant manifolds
have been easily described. This idea was recently extended
to unbounded maps [10].

In this paper, we introduce a measure that is closely related
to the original LDs but modified in such a way that makes
it specially suitable to uncover the structure embedded in the
repellers that characterize open systems [11]. Instead of the
union of the stable and unstable manifold to which the original
LD definition is more related, the prevailing object in the
phase space of scattering [12] or projectively open systems,
which are not area preserving is the set of nonescaping
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trajectories in the past and future. For that reason the LDs
concept needs to be adapted to reveal the intersection of these
manifolds.

We focus on open maps on the torus and we take the
open tribaker map as a paradigmatic benchmark example. The
simplest way to make a map open consists in eliminating
the trajectories going through an opening in phase space,
which can be any region of finite area [13]. Once a propa-
gated initial condition falls into the opening, it stops being
propagated and it is removed. Of course, the dynamics is
not conservative since the open map acts by first removing
points in the opening and then evolving the remaining ones
according to the closed map. For long times, this leaves
just a repeller, which is a fractal invariant set. Nevertheless,
reflection mechanisms at the boundaries are usually more
complicated than a complete opening [14], and they may ex-
hibit many interesting mathematical consequences such as in
optical microdisk cavities with boundary deformations [15].
In these latter apparently weakly open systems pronounced
non-Hermitian phenomena appear. This leads us to consider
in this work a function depending on a reflectivity R, which
rules the way in which the classical trajectories arriving at
the opening are only partially reflected. We study two cases,
namely a (discontinuous) constant reflectivity function, and
another of the Fermi-Dirac type that makes the boundaries of
the opening smooth.

We have found that our modified LDs are very good
indicators for the homoclinic tangles associated to POs, which
are not easy to describe in general. In particular, the short
POs and their homoclinic associates are readily localized
with this measure. From the classical point of view, this is
potentially very useful in the theory of chaotic scattering
[16,17]. Moreover, it has applicability in the semiclassical
theory of short POs [18–22], and the study of the morphology
of chaotic eigenstates [23].

This is how the paper is organized. In Sec. II we define
the Lagrangian descriptors for open maps, and describe the
open tribaker map together with its main properties. In Sec. III
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we apply this definition to uncover the underlying structure of
classical repellers, explaining our findings by using symbolic
dynamics. Finally, our concluding remarks are presented in
Sec. IV.

II. LAGRANGIAN DESCRIPTORS FOR OPEN MAPS

Essential properties of generic dynamical systems are well
described by maps [24–26], and then they have been widely
used as prototypical models of chaos. If we consider a two-
dimensional phase space (canonical variables q and p) with an
opening, i.e., a region through which trajectories can escape,
we have open maps. These kinds of transformations of the
two-torus can be used to model chaotic scattering [16] and
microlasers [27], for example. The main invariant set that
rules their properties is the so-called repeller, which has fractal
dimension, and it is formed by the intersection of the forward
and backward trapped sets. These, in turn, are made of the
trajectories that never escape either in the past or in the future,
respectively. The repeller is usually characterized by means of
a measure μ(Xi ) at each phase space region Xi determined by
the average intensity It when t → ∞ of a number Nic of initial
conditions randomly chosen inside Xi. The initial intensity
is I0 = 1 for each trajectory, and it is decreased as It+1 =
FR(q, p)It each time it hits the opening [28] [FR(q, p) is the
reflectivity function to be defined in what follows]. A finite-
time approximation to the measure for Xi can be defined by
μb

t,i = 〈It,i〉/
∑

i〈It,i〉 where the average is performed over the
initial conditions in the given phase space region. This is the
finite-time backwards trapped set of open maps, and if evolved
backwards μ

f
t,i is obtained, which is the forward trapped set.

The intersection μb
t,i ∩ μ

f
t,i is the finite-time repeller μt,i.

However, this quantity does not give information regarding
the inner structure of the invariant set. In order to throw light
on this, we modify the original definition of discrete LDs for
area preserving maps. If we consider a trajectory {qt , pt }t=T

t=−T ,
where t ∈ N, discrete LDs were defined in Ref. [8] as

LDa =
t=T −1∑
t=−T

|qt+1 − qt |a + |pt+1 − pt |a, (1)

with a � 1. As the repeller is the intersection of the backward
and forward trapped sets, we define now the LDs for open
maps (which we call LDO from now on) as

LDOa =
t=−1∑
t=−T

(|qt+1 − qt |a + |pt+1 − pt |a)It

×
t=T −1∑

t=0

(|qt+1 − qt |a + |pt+1 − pt |a)It , (2)

with a = −0.3 throughout this work (we drop the subscript a
in the following). Notice that we require a < 0 in order to pro-
vide a direct comparison with the measure μ. This is because
μ is enhanced in those regions of phase space from which
initial conditions do not escape, in particular POs belonging
to the repeller. In fact, by taking a < 0 the highest values of
LDOa are located at these latter (and their manifolds). We
take a 35 × 35 square grid on the torus with Nic = 103 at each
region Xi so defined; also we normalize the LDOs to 1.

The paradigmatic tribaker map is the model chosen for
our studies since this is one of the simplest chaotic maps,
which can be described by a ternary Bernoulli shift. In fact,
the original baker map, named like this by Halmos [29], is
remarkable: all features of chaos are present in it, nevertheless
all its classical structures have an analytical description, in
contrast with other paradigmatic models of chaos. Its defini-
tion is purely geometrical and can be seen as the action of a
baker compressing the dough in the p direction and stretching
it along q and finally cutting and stacking to render it mixing.
This translates into p and q being the stable and unstable
directions, respectively. It has also been used as a model for
high-dimensional chaos [30]. Formally, The tribaker map is an
area-preserving, uniformly hyperbolic, piecewise-linear, and
invertible map with Lyapunov exponent λ = ln 3.

Moreover, the openings can be chosen to follow the stable
and unstable manifolds. The open map is then simply the
composition of the closed tribaker transformation

B(q, p) =

⎧⎪⎨
⎪⎩

(3q, p/3) if 0 � q < 1/3

(3q − 1, (p + 1)/3) if 1/3 � q < 2/3

(3q − 2, (p + 2)/3) if 2/3 � q < 1

⎫⎪⎬
⎪⎭

(3)

with the selected opening. Notice that the opening mecha-
nisms are not always as simple as a constant discontinuous
function of q and p [22]. In fact, partially open maps are those
in which the opening reflects some of the trajectories that
arrive at it [23]. In this paper we study two different functions
of the phase space FR(q, p), where R is the parameter that
determines a transition between a given minimum amount of
reflection R = 0 and the closed map (R = 1). We define the
opening region as the domain 1/3 < q < 2/3 of the reflec-
tivity function FR. We take a constant function given by the
value of R in the opening and 1 elsewhere. In this case, we
obtain a complete opening for R = 0; in all the other cases
some amount of the incoming orbits is reflected. The other
reflectivity that is considered in this work is given by

FR(q, p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − R)/{1 + exp[−A(q − B)]} + R

if q > 1/2

(1 − R)/(1 + exp{−A[(1 − q) − B]}) + R

if q < 1/2,

(4)

which consists of a Fermi-Dirac-type step function. We fix
A = 120 and B = 0.63, which gives a value of approximately
1 at q = 1/3 and q = 2/3, and the minimum value R at the
middle of the opening. This function represents a smoothing
of the hard step considered in the previous case. In order to
clarify the shape of both reflectivity functions we show them
in Fig. 1.

The symbolic dynamics associated to the map action is
very simple, being given by a Bernoulli shift in the ternary
representation of q = 0.ε0ε1ε2 . . . and p = 0.ε−1ε−2ε−3 . . .

where εi = 0, 1, 2, as

(p|q) = . . . ε−2ε−1.ε0ε1 . . .
B−→ (p′|q′) = . . . ε−2ε−1ε0.ε1 . . . .

(5)

Hence, applying the map simply implies to move the decimal
point one position to the right (this is merely a question
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FIG. 1. Reflectivity functions FR(q, p) used in our study as a
function of q. Dark gray (blue) and gray (red) lines correspond to
the Fermi-Dirac type for R = 0.01 and R = 0.1, respectively. Light
(orange) and lighter (green) lines to the discontinuous function for
R = 0 and R = 0.5.

of q and p definition in terms of the symbolic sequence).
For the opening region that we have chosen and in the case
of the discontinuous function, it is clear that the equivalent
in ternary notation can be obtained by using open symbols
ε̃ with forbidden value 1 (ε̃ = 0, 2). We consider only this
possibility in order to study all reflectivity situations (and of
course all symbols for the closed map case). One of the ad-
vantages of having such a simple symbolic dynamics (which
unfortunately is not the usual situation) is that POs and their
associated homoclinic tangles can be computed very easily.
In this case, POs are simply given by an infinite repetition
of a string of symbols ν = ε0 . . . εL, where L is the period.
The homoclinic tangle of ν, which is formed by the orbits
that belong to both the stable and unstable manifolds of the
PO, can be approximated at short times by strings of the form
νe

H = ν . . . νεeν . . . ν, where the orbit ν is repeated e times at
each end, and the homoclinic excursions strings εe go from
length 1 up to e ∈ N.

III. RESULTS

How does the description of the repeller by means of the
measure μ compare with the LDOs? To answer this question
we first examine the results of Fig. 2. In it, we show in the top
row the finite-time repeller measure μt,i at t = 10 obtained
for the constant reflectivity function, while in the second to
fourth rows the corresponding LDOs for the first, second, and
third powers of the map with T = 15 are displayed; panels in
the left and right columns correspond to R = 0 and R = 0.5,
respectively. The choice of T = 15 is based on numerical
evidence, this value provides with a very good identification
of the POs and the manifolds associated to them (a longer
evolution is not only computationally challenging but it does
not contribute to obtain better results). Several comments are
in order. First, it is clearly observed that the LDOs are peaked
at the only surviving POs of period 1, 2, and 3 in the repeller,
marked with (blue) dark gray circles in the figure. Second,

FIG. 2. Finite-time repeller measure μt,i for the discontinuous
reflectivity open tribaker map on the two-torus at t = 10 with (a) R =
0 and (b) R = 0.5. Corresponding values of the LDOs for the (c)–
(d) first, (e)–(f) second, and (g)–(h) third power of the same map for
T = 15. The POs are marked by (blue) dark gray circles.

a substantial enhancement of the distribution around these
POs is observed, while we do not find a significant difference
with respect to this enhancement for the two values of the
reflectivity, despite the fact that R = 0.5 is only halfway to the
closed map. Finally, what is left from the stable and unstable
manifolds is clearly shown by the LDOs, whose values go to
a smaller scale with growing period. What is more important,
this suggests the way in which trajectories escape through the
map opening.
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FIG. 3. Finite-time repeller measure μt,i for the Fermi-Dirac type
reflectivity open tribaker map on the two-torus at t = 10 with (a) R =
0.01 and (b) R = 0.1. Corresponding values of the LDOs for the (c)–
(d) first, (e)–(f) second, and (g)–(h) third power of the same map for
T = 15. The POs are marked by (blue) dark gray circles.

In the case of the Fermi-Dirac-type reflectivity (see results
in Fig. 3), we obtain the same kind of behavior, namely
the LDOs peak around the POs of each map, and there is
essentially the same manifold structure for both R = 0.01
and R = 0.1. For this function, we have chosen two low
reflectivities to compare how different the morphology of
LDOs is in this regime. It is evident that though there is an
order of magnitude difference between both R values the map
is essentially open with no significant discrepancies.

FIG. 4. LDO for the first power of the discontinuous opening
tribaker map for R = 0 (top), and R = 0.5 bottom. On the left panels
we show density plots together with the short-time homoclinic tangle
approximation with empty (green) light gray circles. The POs are
marked by (blue) dark gray circles. On the right the corresponding
three dimensional views are shown. In all cases data below 0.01 have
been discarded.

We next analyze and compare the effect of both openings
for different powers of the map. Looking at Figs. 4 and 5 it is
clear that the peaks are localized at the origin (or alternatively
at the opposite corner identified with it in the torus), but

FIG. 5. LDO for the first power of the Fermi-Dirac type opening
tribaker map for R = 0.01 (top), and R = 0.1 bottom. On the left
panels we show density plots together with the short-time homoclinic
tangle approximation with empty (green) light gray circles. The POs
are marked by (blue) dark gray circles. On the right the correspond-
ing three dimensional views are shown. In all cases data below 0.01
have been discarded.
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FIG. 6. Same as Fig. 4 but for the second power of the corre-
sponding map.

also on a region around it. On the left columns, we can
see the density plots (this density corresponds to the LDOs),
where too small values have been discarded for clarity. We
plot superimposed the PO at {1, 1} [(blue) dark gray circles]
and the short-time approximation to the homoclinic tangle
[empty (green) light gray circles] obtained with e = 3. It
is clear that the enhanced region agrees very well with the
location of this tangle. In fact, if we look at the corresponding
three-dimensional views on the right columns a clear contrast
between the values on the homoclinic tangle and the rest of
the torus can be appreciated. It is remarkable that there is no
big difference among the distributions for the discontinuous
opening for R = 0.5 and the Fermi-Dirac cases, though the
completely open case shows more contrast.

Results for the second power of the maps are shown in
Figs. 6 and 7. The same behavior as in the case of the
first power is found. Notice that the period 1 PO is a PO
of this map so we find it again. Also, the only surviving
period 2 orbit is clearly signaled by the LDOs, and moreover
we can verify with the help of symbolic dynamics that its
homoclinic tangle is very well described. Again, there is a
higher contrast between the region associated with the short-
time approximation to the homoclinic tangle and the rest of
the two-torus domain in the completely open scenario, i.e.,
the discontinuous opening case for R = 0.

Finally, from Figs. 8 and 9 it is clear that the third power of
the maps shows the same behavior found in the two previous
cases. Indeed, there is a clear enhancement of the LDOs
around the surviving period 3 orbits. This time, we assume
that it is the short-time homoclinic tangle, but the calculations
even with the help of symbolic dynamics become computa-
tionally difficult. However, this result shows the power of the
LDOs in order to unveil the exact morphology of these sets in
generic systems. We notice a small but interesting difference
between the discontinuous case and the Fermi-Dirac one.
Some peaks on POs inside the opening can be found and
this could be ascribed to their location near the border of

FIG. 7. Same as Fig. 5 but for the second power of the corre-
sponding map.

this region, and the smoothing of this boundary performed
by the reflectivity function. We point out that this could
give important information on the role played by the POs
outside the repeller in the escape mechanism, with seemingly
nontrivial semiclassical consequences.

What happens if we apply our definition of LDOs to the
closed map? In principle, the motivation for adapting the
original LDs was to unveil the inner structure of the repellers.
But the LDOs definition when It = 1 for all times can also
be useful to locate the homoclinic tangle of POs of closed
systems. In Fig. 10 we show the density plots for the first (top
row) and the second (bottom row) power of the closed map.
On the left column all data values were taken into account
and a clear enhancement around the POs can be appreciated.

FIG. 8. Same as Fig. 4 but for the third power of the correspond-
ing map (no homoclinic tangle approximation).
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FIG. 9. Same as Fig. 5 but for the third power of the correspond-
ing map (no homoclinic tangle approximation).

On the right column we discard the lowest values of LDOs
and superimpose the short-time approximation to the closed
homoclinic tangle for the same two orbits of period 1 and 2
that survive in the repeller. Of course, now there are more
orbits, but the description of the homoclinic sets is still valid.

FIG. 10. LDOs for the first (top row) and second (bottom row)
powers of the closed tribaker map. On the left we show the corre-
sponding density plots considering all data values while, on the right
we have discarded those below 0.0045. Also on the right we show
the closed short-time homoclinic tangle approximations of the same
period 1 and 2 POs considered in the previous figures with empty
(green) light gray circles. The POs are marked by (blue) dark gray
circles.

FIG. 11. Three-dimensional views of the LDOs for the first (top
row) and second (bottom row) powers of the tribaker map. On the
left column we show the results for the discontinuous opening case
with R = 0, and on the right one for the closed map (R = 1).

However, if we look at Fig. 11 it becomes clear that the high
contrast obtained for the open case is completely lost in the
closed map. This result is due to the fact that the ratio of
open to closed homoclinic orbits is given by (2/3)e, which
vanishes for e → ∞. This makes LDOs strongly peak on them
for the open case, while in the closed scenario we have a more
homogeneous situation. More importantly, this underlines in
a very bold way the special suitability of the LDOs concept to
uncover the details of repellers, including the overwhelming
effect that any kind of opening has on its inner structure,
specially on the remains of the homoclinic tangles.

IV. CONCLUSIONS

The recently introduced concept of LDs has proven to be
very useful for unveiling the dynamical structures embedded
in chaotic phase space. In fact, the manifolds are obtained
from very simple calculations, actually trajectory and simple
sums computations, which are more friendly to users outside
the nonlinear dynamics field. It is very amenable to numerical
implementations and remarkably simpler than other methods
for computational analysis of complex systems. Its definition
in the discrete dynamical case has allowed to identify the
stable and unstable manifolds associated to the POs of closed
maps (autonomous and not), including the paradigmatic case
of the Arnold’s cat map.

We have successfully adapted this measure for open maps
on the torus, defining the LDOs. With them, we have been able
to identify the POs and the remains of the stable and unstable
manifolds surviving in the repeller of the open tribaker map in
two reflectivity function cases, i.e., the discontinuous and the
Fermi-Dirac types of openings. This gives hints on possible
applications for the study of trajectory escape mechanisms in
more complicated systems. Moreover, with the aid of the very
simple symbolic dynamics available for the tribaker map we
could verify that our measure strongly peaks on the homo-
clinic tangles belonging to the POs. The high contrast between
the values of the LDOs on these sets and the rest of the
two-torus not only allows for a very precise characterization
of them, but it is indicative of the way in which the homoclinic
circuits [31] are truncated by the opening. It is important
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to notice that in both opening scenarios the structure of the
repeller is essentially the same. This is an important result
in that it provides a qualitative but unambiguous indicator
of openness for a given map. As a matter of fact, this high
contrast is almost completely lost in the closed case, where
homoclinic orbits exponentially outnumber those belonging
to the repeller. We point out that these sets are not easy to
identify in generic cases. Minor details associated to the kind
of opening were also visualized, such as the relevant role
played in the escape from the repeller by POs that do not
belong to it when using the Fermi-Dirac type of reflectivity.
We notice that some analytical calculations along the lines of
Ref. [9] are amenable to our scenario. However, in this work
we have focused on showing the power of our definition to
unveiling classical structures embedded in the repeller.

All these results lead us to conclude that this work opens
numerous possibilities for future research. On the one hand,
chaotic scattering theory, where the homoclinic tangles play
an essential role could receive new insights from LDOs char-
acterization of generic complex systems. On the other hand,

the semiclassical theory of short POs for open systems, which
has raised the question of the role played by the POs outside
of the repeller in the eigenfunctions description, could also
greatly benefit from the use of LDOs to identify regions of
higher relevance. In fact, the search for scar functions con-
tributions from these phase space regions could simplify the
current POs selection criteria. The first hint in this direction
is given by Fig. 9 where some enhancement of the LDOs
for the Fermi-Dirac opening region suggests to investigate
scar functions constructed by the associated POs. Evaluating
the semiclassical theory performance with or without these
functions will be our next step.
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