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Abstract

Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or
zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This
means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their
corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the
control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this
output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the
output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop
is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different
linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one
controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable con-
trollers not necessarily produces a stable closed loop system.

Here, a stable MPC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed
controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets
to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) is an optimization
based strategy that uses a plant model to predict the behav-
ior of the controlled system. At each time step, an open-
loop optimization problem is solved, and the first element
of the input profile is injected into the plant. This is usually
called the receding horizon strategy. At the next time step,
the optimization parameters are updated by means of an
output feedback, and a new open-loop optimization is per-
formed. Since MPC is formulated as an optimization prob-
lem, inequality constraints are naturally incorporated to
the resulting control law.
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In modern processing plants, MPC controllers are usu-
ally implemented as a part of multilevel hierarchy of con-
trol functions [2]. At the top of this structure, a plant-
wide optimizer determines optimal steady state settings
for each process unit of the chemical plant. These settings
may be directed to local real-time optimizers at each pro-
cess unit, which run more frequently than the plant-wide
optimizer. As a part of this complex structure, the unit
optimizer computes an optimal economic steady state
and passes this information to the MPC level. The MPC
algorithm must move the plant from one steady state to
a more profitable operating point by changing the set
points to the PID regulatory level.

In some chemical processes, the aim of the MPC is not
to guide all the controlled variables to set points or desired
values, but only to maintain them inside appropriate
ranges or zones. This is what is called zone control [3].
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Zanin et al. [10], study the case of a FCC system in which
only the manipulated inputs need to be guided to specific
values, while the controlled outputs merely need to be
maintained within specified feasible ranges.

On the other hand, there is a number of research works
that treat the problem of how a stable offset-free MPC can
be formulated when a supervisory layer produces optimal
output set points. Rawlings [8], Pannochia and Rawlings
[6], Muske and Badgwell [4] show several ways of incorpo-
rating disturbance models to assure that the inputs and
states are led to the desired values without offset. They
use a reduced model in the MCP algorithm (which works
as a dynamic state regulator) and an augmented model in
the state estimator. This augmented model contains addi-
tional states that represent input, state, and output distur-
bances. The estimated disturbances are then passed to the
target calculation stage, which computes steady state tar-
gets (as close as possible to the set point values) for both,
states and inputs. To do that, the augmented model must
be detectable in order to efficiently estimate the distur-
bances. In Muske and Badgwell [4] and Pannochia and
Rawlings [6], several rank conditions were established to
assure the detectability of the augmented model.

In this work, we develop a one-stage nominally stable
MPC controller that considers the zone control of the sys-
tem outputs and incorporates steady state economic targets
in the control cost function. Classical stability proofs are
extended to the zone control strategy by considering the
output set points as additional decision variables of the
control problem. Furthermore, sufficient conditions are
found for the cost weighting matrices in order to guarantee
convergence of the system inputs to the targets.

2. Velocity model

For a system with nu inputs and ny outputs, assuming
that the poles related to input »; and output y; are non-
repeated, a state space model that is suitable to the imple-
mentation of an offset-free MPC can be represented in the
following form [5]:

x*(k+1 I, 07[x(k 0
o) B e | i v TR
=0 w1 ] ®)
where
x =[x x,,y]T, X eRY,
x! = [Xnypt1 Xnpi2 xny+nd]T, x' e Cnd7
FeC  Au(k)=u(k) —u(k —1),
@ 0
Y= _ , YeRY™M  o=[1 - 1],
0 @
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In the state equation defined in (1), the state component x*
corresponds to the integrating poles produced by the incre-
mental form of the model, and x corresponds to the sys-
tem modes. For stable systems, it is easy to show that
when the system approaches steady state, component x?
tend to zero. F is a diagonal matrix with components cor-
responding to the poles of the system. The system has nd
stable poles. Matrix D° is the static gain of the system.
To build up matrix @, it is assumed that na is the number
of poles associated to any pair (u; ;).

3. Control structure

The control structure considered in this work is repre-
sented in Fig. 1. In this structure, at time step k, the real-
time economic optimization (RTO) stage, which is based
on a rigorous stationary model, computes the optimal tar-
get, Ugei, for the manipulated input variables. Another
strategy, where the method proposed here can be easily
adapted, corresponds to the case in which the economic
optimization level sets the ranges for some of the outputs.
Here, it is assumed that the control stage corresponding to
the MPC is dedicated to guide the manipulated inputs to
the desired targets defined by the supervisory economic
stage, while keeping the outputs within specified zones. In
Fig. 1, it is assumed that the PID regulatory level is
included in the system level and that the regulatory level
is capable of enforcing the set points determined by the
MPC level. In general, the target u,,, will vary whenever
a disturbance enters the process, or there is a change in
the operating objective of the RTO layer. The input targets
should satisfy the following constraints:

Umin < Udes e < Umax,

= 3
lelin < Do(udeék - u(k_ 1)) +'%)(k) <.))1"113)(7 ( )

where u,;, and u,,,, represent the lower and upper bounds
of the input, yni, and ym.x represent the lower and upper
bounds of the output zones and (k) is an estimation of
the state components associated with the integrating
modes. In this case, since the model adopted here has inte-
gral action (given by the incremental form of the input),

economic

objective

Economic
Optimization

(RTO)

Udesk input and output range:
(Yoinr Viax > Uinins Unax )
MPC
£(k)
Au(k)
3 (k)
Observer < System

Fig. 1. Control structure.
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X*(k) equals the estimated output at steady state. To clarify
this point, consider the equation that defines the state ob-
server at time k& large enough to approach steady state

Co-0 AR [
elipo-tonlo [

b Au(k>>],

D
where [LT LdT]T is the observer gain, *(k) and % (k) are
the estimated states at time k£ and y(k) is the measured stea-
dy state output corresponding to the actual plant. Assum-
ing that Au(k) = 0 and knowing that 3/(k) = 0 at steady
state as this state component corresponds to the stable
modes of the system, the observer equation for component
x* becomes

#(8) = 2(8) + Ly(E) — ¥ (8).

The above relation implies that, if L, € R™ is full rank,
then, #*(k) = y(k), and the output predictions will be unbi-
ased with respect to the output measurements.

Therefore, condition (3) implies that, for time k large
enough, the desired input values should be such that

Ymin < Doudes,fc + b}(l_C) - DOM(I_C)} < Ymax>
Ymin < Doudex,fc + d(l}) < Ymaxs (4)
Ymin < yfjeS,]} < Ymax-

+

In (4), we can define 5, , = Dug,; + d(k) as the desired
output corresponding to the input target, and d as the out-
put bias corresponding to the difference between the actual
output at steady state and the prediction of the output
based on the independent model, that is, the model that
does not consider any feedback information to build the
output predictions. Note that, since u(k) :ZfZOAu(j),
the term D’u(k) represents the output prediction based
only on the past inputs.

4. MPC with zone control and input target

The zone control strategy is implemented in applications
where the exact values of the controlled outputs are not
important, as long as they remain inside a range with spec-
ified limits. Maciejowski [3] proposes to reduce the zone
control to the standard MPC problem by setting to zero
the weight on the error of the predicted outputs and leaving
only constraints on the controlled outputs to define the per-
formance objectives. Honeywell’'s RMPCT product imple-
ments a zone control strategy where the output zone is a
funnel defined by the output set point and a straight line
connecting the last output measurement to the set point.
The funnel constraint is introduced in the control problem
as a soft constraint, by switching in large penalty weights
when the funnel boundaries are crossed or approached

[7]. This strategy implies that the number of outputs that
are effectively being controlled may change depending on
the output predictions. This means that, along the contin-
uous operation of the process, the control structure may
change, and switch from one controller to another. Conse-
quently, the usual implementation of the zone control does
not guarantee stability even if a stable controller is synthe-
sized for each control configuration.

Recently, Gonzilez et al. [1] presented an infinite hori-
zon MPC based on the incremental model defined in Eqgs.
(1) and (2) that takes into account the stationary optimiza-
tion of the plant operation. The controller was designed
specifically for a heat exchanger network with a degree of
freedom greater than zero. Stability and offset elimination
were assured only when the model and plant gains were
coincident. The ideas of Gonzalez et al. [1] will be extended
here to the zone control of systems in which there are eco-
nomic targets. For this purpose, consider the following cost
function:

o0

V= Z(y(k + 1K) = ypi) O,k + k) = vy

3k /80 s,k + 1K) = )
+ . Au(k + j/k) RAu(k + j/k), (5)

T
(=]

where Au(k + j/k) is the control move computed at time k
to be applied at time k +j, m is the control or input hori-
zon, Q,, O, R are positive weighting matrices of appropri-
ate dimensions, y;, x is the output set point and u 4 is the
input target. Assuming that u,., corresponds to the opti-
mal operating point, then the cost function defined in (5)
explicitly incorporates an input deviation penalty that tries
to force the system to the optimal operating point. How-
ever, since an infinite horizon is used and the model defined
in (1) and (2) has integrating modes, terminal constraints
must be added to prevent the cost from becoming un-
bounded. These constraints can be written as follows [1]:

xY(k) + EOAuk —Vpk = 0 (xY(k + m/k) — Vepk = O)? (6)

ulk—1)+ D“Auy, — Uges =0 (u(k +m—1/k) — uges, = 0),
(7)

where

Aug = [Au(k)"  Au(k+1)"

D= |p® ... DY,
—_———

The constraints defined in (6) and (7) imply that the output
and input errors should be null at the end of the control
horizon m. Since the input increments are also generally
bounded, the terminal constraints (6) and (7) may result
infeasible. This is so because it may not be possible for
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the system to achieve the targets in m time steps, given that
m is frequently small to reduce the computation effort. To
enlarge the region where the controller is feasible, an alter-
native is to incorporate slack variables into the control
problem. In this case, the cost defined in (5) is rewritten
as follows:

o0

Viw=>_ k+j/k) = i — 0,0)" O, (v(k + j k)

j=0
_yyp,k 1/( +Z k+j/k _udc.\k
j=0

— 3us) O, (ulk + j/k) — tgess —
m—1

+ ) Aulk + j/k) RAu(k + j/k) + 0,8,y
j=0

5u‘k)

+ 85 1 Subuks (8)

where S, S, are positive matrices of appropriate dimen-
sions, and J,, € RY, 6, € R™ are the slack variables that
eliminate a possible infeasibility of the terminal constraints.
With the cost defined in (8), the terminal constraints
become

xs(k) + boAuk - ysp,k -
u(k — 1) —|— E"Auk — ua’es,k —

S =0,
Sus = 0.

Now, we define the MPC optimization problem that imple-
ments the zone control strategy and enforces economic tar-
get. This controller results from the solution to the
following problem:

Problem PI
min Viu
Aus i Vop ks '
5}’,ka‘3u,k
subject to :
- Aumax < Au(k +]/k) < Aumaxu
j=0,1,....m—1, 9)
Au(k + j/k) = 0; j = m, (10)

Unin < u(k — 1) +ZAu k+i/k) <

i=0

ude )

i=0,1,...,m—1, (11)
Vanin < Vpt < Vimaxs (12)
X'(k) + DAy — y,pp — 0y4 =0, (13)
u(k — 1) + DAy — tges — S,ic = 0. (14)

In problem P1, the output set point yg,, is an additional
vector of decision variables that will be calculated through
the solution to problem P1. Note that, in order to minimize
the control cost, s, can assume any value inside the out-
put zone. If the output zone is specified such that the upper
bound equals the lower bound, then the problem reduces to
the conventional set point tracking problem. In general, the
output slack, J, s, can be made equal to zero if and only if

the predicted steady state of the output lies inside the cor-
responding zone.

Now, as the terminal constraints (13) and (14) are
always satisfied, the cost defined in (8) can be written as
follows:

m—1

Viu=> A0k+j/k) = yops = ,0) O,k + j/k)
j=0
_ySp,k - 5}%") + (M(k +]/k) — Udes e — 5u,k)T

X Qu(”(k +]/k) — Udesk — 5u,k>}
- mi Au(k + j/k) RAu(k + j/k)

j=0
+ (! (k 4+ m/k))"Ox (k + m/k) + 854S0y
+ 511](Su5u‘k7

where matrix Q is computed as a solution to the following
Liapunov equation:

0=Y"0¥Y+F"OF. (15)

When the system state is measured, or the state observer is
fast enough such that the state estimation converges to the
true system state in negligible time, the controller produced
by the solution to problem P1 will stabilize the closed loop
system as shown in the theorem below.

Theorem. For a system with stable modes that remains
controllable at the equilibrium point corresponding to the
desired input targets and output zones, if problem Pl is
feasible at time k, it will remain feasible at any subsequent
time step. Also, if weight S, is sufficiently large, then the
control sequence obtained from the solution to problem P1 at
successive time steps drives the input to the desired target and
the output of the closed loop system asymptotically to a point
within its corresponding zone.

Proof. Let us first prove the recursive feasibility of the pro-
posed controller. Assume that the state is known and no
disturbance enters the system that is d(k) = 0. Also assume
that Aup = [Auw (k/k)T - Aw(k+m—1/0)"] 200 00
and J; , correspond to the optimal solution to problem P1 at
time k. The cost corresponding to this solution is then

= SO+ ) — s — 8,070,074 J/R)
=0

7yjp,k - 5%]() + (M*(k +J/k) - udes,k - 5u,k)T
X Qu(u*(k+j/k) — Udesk — 614}()}
m—1
+ > Ak + k) R (k + j/k) + 5, 78,57,
j=0
+30, 8,00, (16)

Consider now the following set of variables

Aiig = [ Awr (k + 1/k)" Aw(k+m—1/K)70]",
X yjnk, 5;,{ and 5;,{. (17)
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It is easy to show that the set defined above satisfies con-
straints (9)—(14), and then, it is a feasible solution to prob-
lem P1 at time k + 1. This proves the recursive feasibility,
which means that if problem P1 is feasible at time step k,
then, it will remain feasible at all successive time steps
k+1,k+2,...

To prove the convergence of the proposed controller, we
need to prove the convergence of the cost function of
problem P1. But, since this function includes the slacks 6, 4
and 0,4, it is easy to show that the cost can converge to a
minimum, while the numerical values of the slacks remain
different from zero and, consequently, the inputs do not
converge to their targets. Then, the proof of convergence of
the proposed controller should also include the proof of the
convergence of the slacks to zero.

Let us now start the proof of the convergence of the
proposed controller, proving the convergence of the cost
defined in (8). At time step k + 1, the solution defined in
(17) corresponds to the cost

Vi = D A0k 5+ 1/8)

— Yok = 05) O, (k+j+ 1/k) =¥, — 8,
+ (0 (k4 J 4 1/k) = thaesse — 53)"
x O, (k+j+1/k) — taessc — 5Z,k)}

m—1

+ ) Aw (k4 j+ 1/k) RAw (k + j + 1/k)
j=0
+0,,18,00, + 81, 805, (18)

Y

Observe that, since the input sequence defined in (17) is
inherited from the optimal input sequence computed at
step k, the predicted state and output trajectories corre-
sponding to this input sequence will be the same as the
optimal predicted trajectories at step k. That is, for any
j =1, we have

Xk +jlk4+1) =x(k + j/k),
Uk +jlk4+1) = x4 (k + j/k),
vk +j/k+1) = ylk+j/k).

Now, subtracting (18) from (16), we have the following
equation:

Viw = Viera = k) = s = 050" Q,0(k) = % i = 33)
+ (U (k/k) = taess — 5,,)" Q, (" (k/k)
— Udesk — 5::7/() + Au’ (k)TRAI/l* (k)

Then, the optimal solution to problem P1 at time k + 1 will
satisfy

Vlt,u - V;;Ll,u > (v(k) — y:p‘k - 5;,k)TQy(J’(k) *J/;p,k - 5;,k)
+ (" (k/k) = thgessc — 5,) O (" (k/K) = thgessc — 5,)
+ Au* (k)" RAW* (k). (19)

Since the right hand side of (19) is positive definite, the suc-
cessive costs are strictly decreasing and for a large enough
time k£ we have (V;, — V7,,,) = 0, which proves the con-
vergence of the cost.

The convergence of V. , means that, at steady state, the
following relations should hold:
J’(l_f) - y:p,zz = 5;127
u' (k/k) = Udes = 5;/}7
Au* (k) = 0.

To prove the convergence of the input to the desired target
and the output to a point within the control zone, we must
show that slacks 6,; and 6,; will converge to zero. Note
that, since there is not a fixed output set point, the desired
input values may be achieved even in the presence of
bounded disturbances. In fact, with the proposed approach,
Vspie may follow in some sense the predicted output values.
Let us now assume that the system is stabilized at a point
where both, 6,; and 6, are different from zero although
the system is still controllable, which means that it is possi-
ble to stabilize the system with both slacks equal to zero. In
addition, we assume that the desired input target is constant
at u,,, ;. Then, at time k, the optimal cost will be reduced to

Vi=0,:50,5 + 0,180,z (20)

and from Egs. (13) and (14), we have the following
relations:

xb(k) - ysp,i{ = 5)7,1} and u(k - 1) — Udes o = 5u,l§‘

Now, we will show that a suitable selection of S, makes it
possible to guide the system to a point in which the slacks
are null and the corresponding cost is smaller than the cost
defined in (20). Assume, for simplicity, that m = 1 and the
input constraints are not active. Then, at time &, let us con-
sider the following candidate solution to problem P1:

Aﬁ(]}/]}) = Ugesk — u(l} - 1) = 7514,/7( (21)
and
)_}sp,lz = xs(];) - Doéu,l;' (22)

The set point given in (22) is the steady state value of the
output corresponding to the input increment given in
(21). Note that, this new set point variable is feasible, be-
cause it is assumed that the system is controllable at steady
state (or condition (3) holds true).

The variables defined in (21) and (22) must satisfy
constraints (13) and (14) of problem P1, that is,

xs(];) - Doéu,k - ysp,k - Sy.,k = 07 (23)

u(k - 1) - 514,/; — Uges i — 51«,1; =0. (24)
Note that u(k) = u(k — 1) — 6,4, ¥ypi» 0,4 and 6, consti-
tute the feasible solution that would result if the input
increment defined in (21) was implemented at time k.
Now, combining (21) and (24), we conclude that J,; = 0.
This means that the input will reach its target at steady
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state, that is #(k) = uy,;. Now, substituting (22) into (23),
results 5%,; = 0, which means that the predicted steady state
output is inside the output zone.

The cost corresponding to this feasible solution is the
following:

k= (y(l;/k) yspk 5 ) ( (k/k) )_}sp‘lz - Sy.j()
+ (M(k/k) — Udesk — 51{]{) u(u(k/]}) — Ugesk — Sujc)

k .k

+ (2 (k + 1/k)"Ox? (k + 1/k) + Au(k/k) RAu(k/k)

=0 =0
+ 5},‘1}Sy(3y,l} + 5%,;.9,,(3”]{ . (25)

Now, using the model Egs. (1) and (2), we have
x!(k 4+ 1/k) = Fx"(k) + D*EN Au(k k),

x!(k+ 1/k) = F x*(k) =D*FN§, 1
=0
—DFNS,,
y(k/k) = (k) + ¥x! (k),

=0
_ _ r-d’f\
- 5)7,1;' = xS(k) + ¥ x (k) _J_/sp,fc
=D",;.
Consequently, Eq. (25) can be written as follows:

T _ §T oming _
Vu,lfc_éu?/}Su 5u,k7

y<l_€/l_€) _)_}sp.fc

where

smin — p'op° + NTFTD" OD'FN + R.

Finally, if

S, > smin, (26)

then, the cost corresponding to the solution defined in (21)
and (22) will be smaller than the cost obtained in (20). This
means that if inequality (26) is satisfied, then the closed
loop system will converge to a steady state where slacks
0, and J,,; will be equal to zero. Thus, as long as the sys-
tem remains controllable, condition (26) is sufficient to
guarantee the convergence of the closed loop with the pro-
posed controller.

Now, we can prove the stability of the proposed zone
controller under the same assumptions considered in the
proof of the convergence. To simplify the proof, we also
assume that m = 1, and the optimal solution obtained at
step k — 1 is given by Au; | = Au(k—1/k—1), ¥, 1,
5* _, and 0, ,_,. The hypothesis of controllability means
that the 1n1t1a1 state x’(k — 1) is such that the predicted
output at steady state, which in our model representation is
equal to x’(k/k — 1), is inside the output zone. If this is the
case, then, in the solution to problem P1, the set point of
the system output y;,, can be made equal to xX(klk — 1),
which implies that 6, , | = 0. Thus, a feasible solution to
problem P1 at time k is given by

Aug =0, Yopk = Vi1 Oy = 0, i1 =0 and

5u k= 5;k 1" (27)

The cost corresponding to the feasible solution defined in
(27) is then

i;k = (v(k/k) _y:p,k—l - 6;,k—l)TQy(y(k/k) _}’:p,k—l

= 0p )+ (ulk/k) = waess = 6,-)" O, (ulk/k)

— thaess = Opy) + (¥ (k + 1/K))TOx" (k + 1/k)

=0 =0
JFA“(k/k)TRA“(k/k)Jré*k /'S ONERE SO Su5Z,k71-
(28)
Now from (14), we have
5:,k71 = u(k - 1) — Udesk = u(k/k) - udes,k = le,
.X“(k) - ysp,k
where C;=[0 0 [7,] and x(k)= x4 (k) .
M(k/k) — Udes k

Now, considering the model Egs. (1) and (2), we have

y(k/k) _yzp,k 1 5*A =X (k) + Px’ (k) _y:p,kq
= Px!(k) = Cyx(k),
-0
x/(k + 1/k) = Fx“(k) + D'FN Au(k/k) = C3x(k),
where C;, =[0 ¥ O0]andC;=[0 F 0].Thus, the cost

defined in (28) can be written as follows:
V= x(k) Hx(k), (29)

where H, = C;0C, + C;0C; + C[S,C}.

Since this cost corresponds to a feasible solution to
problem P1 at time step k, then, the optimal cost will
satisfy

Vi< Vi (30)
Now, from condition (19) we have
Vi SV forany n> 1. (31)

By a similar procedure as above and based on the optimal
solution at time k + n, we can find a feasible solution to
problem P1 at time k +n + 1, for any n> 1, such that

Vienst < Vi, (32)
and from the definition of I7k+,,+1 we have
Vi =Xk +n+ 1)"H\x(k +n+1). (33)
Therefore, combining inequalities (29)—(33) results
X(k+n+ 1) Hx(k+n+1) <x(k) Hxk) Vo>l
As H, is positive definite, it follows that
[X(k +n+1)|| < of[x(k)|| Vn>1,

_ Fmax(Hl)}l/z

dmin(H1) |
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If we restrict the state at time k to the set defined by
IX(0) < p,

then, the state at time k +n + 1 will be inside the set de-
fined by

IX(k+n+1)|| <op Vn>1.

This proves the stability of the closed loop system, as x will
remain inside the ball ||X|| < op, where o is limited, as long
as the closed loop starts from a state inside the ball
|IX|| < p. Therefore, as we have already proved convergence
of the closed loop, we can now assure that under the
assumption of state controllability at the final equilibrium
point, the proposed MPC is asymptotically stable. [

Remark 1. Only matrix S, is involved in the convergence
condition defined in (26), because the assumption of con-
trollability implies that condition (3) is satisfied. Therefore,
we can assure that the output prediction, y, ;, correspond-
ing to the desired input target is in the output zone. In this
case, for any positive matrix S,, in the solution of problem
P1, the slack J; will be made equal to zero by making the
set point variable equal to the steady state output predic-
tion. Matrix S, however, must be large enough to avoid
any numerical problem in the solution of problem P1.

Remark 2. It is important to observe that, even if condition
(3) cannot be satisfied by the input target, or the input tar-
get is such that one or more outputs need to be kept outside
their zones, the proposed controller will still be stable. This
is a consequence of the decreasing property of the cost
function (inequality (19)) and the inclusion of the slack
variables in the optimization problem, as the open-loop
system is assumed to be stable. In this case, the system will
evolve to a point in which the slack variables are as small as
possible, but not equal to zero. This is an important feature
of the proposed controller, as in a practical application a
disturbance may move the system to a point from which
it is not possible to reach a steady state that satisfies con-
straints (3). When this happens, the controller will do its
best to compensate the disturbance while maintaining the
system under control.

5. Alternative formulation

We may reduce the case in which controllability of the
system output cannot be assumed, because it is not possible
to satisfy the constraints defined in (3), or it is not possible
to force the outputs at steady state to lie within their zones,
to the case considered in the previous section where con-
trollability was assumed. The alternative approach is repre-
sented in Fig. 2.

This structure includes an intermediary layer, called zar-
get calculation, which computes modified targets uarget i fOr
the inputs in order to guarantee the controllability of the
MPC controller. This means that the system input will con-

i Economic

) parameter
Economic
> Optimization [¢
(RTO)
Udes,k
Target
Calculation [ «—
Uargers €, input and output
v range:
(k) (Vins Vs Unins Uinax)
> MPC -«
Au(k)
3 (k)
Observer System

Fig. 2. Extended control structure, considering an intermediary target
calculation stage.

verge to Ugrgerx While the output will converge to a point
within control zone. This intermediary layer solves the fol-
lowing problem:

Problem P2

min Vtarget £ {(utarget‘k - udex,k)T

Utarget k%
T
X Rlarget (utarget,k - udes,k) + 0 Slarget “k}

subject to :
Umin
Ymin

where d(k) = (k) — D’u(k) is the output bias based on the
comparison between the actual output at steady state (*(k))
and the prediction at steady state based on the independent
model. In this problem, Riurget and Starger are weights that
penalize the input error and the output zone violation. Since
the output zone violation should be tolerated only when
there is no input in the range uy,;, < u < Unay that satisfies
the output zone, the weights must be such that Reeer <
Starget- Note that problem P2 is always feasible while the
same problem without the output slack «; could be infeasi-
ble for large disturbances (i.e. if there is no input in the
range Umin < U < Upax that satisfies the output zone
constraint).

A modified problem P1 is then solved within the same
time step. The modifications in problem P1 are as follows:

Utarget k < Umax,

<
< Doutarget,k + d(k) + OCk < ymax’

— Replace constraint (12) with
Ymin < Yspk +o < Ymax-

— Replace uge ;o With e pger k-

In this new version of problem P1, both u,yget r and oy
are assumed to be known.

With this formulation of the control problem, the MPC
cost can converge to zero, which means that the permanent
offset in terms of the computed target u,rger « 1S eliminated.
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Remark 3. Note that the optimization problem P2 is a
convex QP problem and consequently has a unique
solution. Then, if the desired input value ., remains
constant, the optimal solution to problem P2 et x Will
also remain constant. In this way, the results about
convergence and stability of the MPC layer are not
affected by the inclusion of an intermediary target calcu-
lation layer.

Remark 4. The inclusion of a target calculation layer
increases the complexity of the controller, as well as the
number of tuning parameters, while the performance the
controller is not significantly affected. So, in practice, the
single layer controller should be preferred.

Remark 5. The proposed controller has a larger set of tun-
ing parameters than the conventional MPC. In this set of
parameters, the control horizon (m), the output error
weight (Q,), the input error weight (Q,) and the input
increment weight (R) play the same role as in the conven-
tional MPC and should follow the same tuning rules. The
weights S, and S, on the slack variables should be large
enough to guarantee the convergence of the method. The
rule defined in (26) should be followed in the selection of
S,., while Odloak [5] provides an expression for the calcula-
tion of S,. However, we observe that the performance of
the controller is not significantly affected by the numerical
values of S, and S,,, as long as they are large enough. So,
we usually adopt values for these weights, which are several
orders of magnitude larger than Q, and Q,.

6. Simulation results

The system adopted as an example to test the perfor-
mance of the controller proposed here is part of the FCC
system presented in [9]. This is a typical example of the
chemical process industry, in which instead of output set
points, the system has output zones. The objective of the
controller is to guide the manipulated inputs to the corre-
sponding targets while maintaining the outputs (that are
more numerous than the inputs) within specified zones.
The system has two inputs and three outputs, and the lin-
ear model used by the controller is as follows:

045 0.20
»1(s) 2.985+1 1.71s+1
_ L5 0.195—3.81 ui(s)
»(s)| = 20s+1  17.7352+10.835+1 :
(s) 1.74 —6.13 r(s)
Y3 9.10s+1 10.91s+1

In this FCC subsystem, the manipulated input variables
are: 1, the flow rate of air to the catalyst regenerator and u,
the opening of the regenerated catalyst value. The con-
trolled outputs are: y, the riser temperature, y, the regener-
ator dense phase temperature and y; the regenerator dilute
phase temperature.

The tuning parameters of the controller used in the
closed loop simulation are the following: m =3, T=1,

Q, =diag(l 1 1), Q,=05diag(1 1), R=0.05diag
(1 1),8,=10%iag(1 1 1)andS,=10°diag(1 1).

The input and output constraints, as well as the maxi-
mum input increment, are shown in Tables 1 and 2.

The input feasible set, Q", corresponding to this problem
can be seen in Fig. 3. This set is computed taking into
account the input and output constraints and the model
gain as follows:

-Qn £ {u * Umin < u < Umax and Ymin ™ Vss < DOM - Dou:s
< Ymax _y.vs}7

where u,, and y,, are the initial stationary values of the in-
put and the output, respectively.

Since the output zones are quite narrow, (2, is consider-
able smaller than the set defined solely by the input
constraints.

In the nominal case, conditions (3) require that the
desired input targets lie inside the nominal input feasible
set. This target was initially settled at u ., =[220 40], as
can be seen in Fig. 3. The closed loop simulation begins at
ug =[230.60 60.26] and y,, =[549.50 704.27 690.62],
which are the values taken from the real FCC system. The
control structure represented in Fig. 1 is adopted. The con-

Table 1
Output zones for FCC subsystem

Output Vmin Ymax
» (°C) 490 570
2 (°C) 550 800
73 (°C) 550 900

Table 2
Input constraints for the FCC subsystem

Input

A Umax Umin Umax

u; (ton/h) 25 75 250
s (%) 25 25 101

MOF—T™ T T T T T T T T
| [ N +
90+

80 F

u2

B0 | s k T

\* |
/ 1]

1 1 1 1 1 1
80 100 120 140 160 180 200 220 240 260
ul

S0+

40t

|
|
|
|
7ot |
|
|
|
|
|

1] S

20+

Fig. 3. Input feasible set and input target.
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Fig. 4. Inputs of the FCC subsystem.
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Fig. 5. Controlled outputs (—) and set points (---) of the FCC subsystem.
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troller stabilizes the system at a feasible point and then, at
time = 100 min, a disturbance is introduced in the state such
that the three outputs tend to cross the bounds of the respec-
tive zones. The proposed controller guides the system to a
new feasible point, in a relatively short time. The inputs
(dashed line) and targets (full line), are represented in
Fig. 4. In Fig. 5, we can see the outputs (full line), as well
as the zones (dashed line) and the set points y,, ; (dotted
line) obtained from the solution to problem P1. In addition,
Fig. 6 shows the cost function corresponding to different

Table 3
New output zones for the FCC subsystem

Output Ymin

ymi\X
y1 (°C) 510 550
2 (°C) 400 500
3 (°C) 350 500

110

100

90 stationary u

80

70

uz2

B0

50

40 *

I
o

2 |
1 1 1 1 1 1 1 1 1 1
80 100 120 140 160 180 200 220 240 260

ul

30

Fig. 7. Input feasible sets for the FCC subsystem.
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Fig. 6. Cost function of the FCC subsystem.
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Fig. 8. Manipulated inputs for the FCC subsystem with modified output
zones.
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Fig. 9. Controlled outputs and set points for the FCC subsystem with
modified zones.
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time periods. It can be seen that, as was expected from the
stability theorem, the cost is monotonically decreasing.
Next, a sequence of operating changes is simulated. First,
the output zones are modified and the new zones are shown
in Table 3. As a consequence of the new output zones, the
input feasible set changes its dimension and shape signifi-
cantly as it is shown in Fig. 7. The input target is assumed
to remain the same as in the previous case. In Fig. 7, Qi cor-
responds to the initial feasible set and Qi represents the new
input feasible set. In this simulation, we also adopt the con-
trol structure defined in Fig. 1. Since the controller does not
include the target calculation stage, and the input target is
outside the input feasible set Qi, it is not possible to guide
the system to a point in which the objective cost is reduced
to zero at the end of the simulation time. This means that,
the controller cannot find an operating point in which the
outputs are inside their zones and without offsets in com-
parison with the input targets. However, if the output
weight S, is kept larger than the input weight S, then all
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80 100 120 140 160 180 200 220 240 260
ul

30F

I
I
i
i
I
I
B0 -
I
l
I
I
I
I
i

Fig. 11. Input feasible set and input targets.
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Fig. 10. Cost function for the FCC subsystem with modified zones.
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the outputs are guided to their corresponding zones, while
the inputs show a steady state offset with respect to the tar-
get U .5 x. The complete behavior of the inputs and outputs
of the FCC subsystem, as well as the output set point, can
be seen in Figs. 8 and 9, respectively. The final steady state
of the input is u =[196.24 100.28]. Fig. 10 shows the con-
trol cost along the time.

In the next simulated scenario, we assume that a
sequence of changes in the input targets produced by the
upper optimization layer enters the controller. The targets
are shown in Fig. 11, and their numerical values are:
ul{m,k =[220 40], ujes’k =[109 46] and uf,es’k = [109 60].
In Fig. 11, we see that the last input target lies outside the
input feasible set. Considering the control structure repre-

250

200 | i

150 F i i

ul

100 F 1 8

1 | 1 1
50 100 150 200 250 300

100 T T T T T

B0 i .

B0 |

uz2

20 - 1 1 1 1 1
0 50 100 150 200 250 300
time (min)

Fig. 12. Manipulated inputs when the input targets are modified.
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Fig. 13. Controlled outputs when the input targets are modified.

sented in Fig. 1, which does not include the target calcula-
tion stage, the input target is passed directly to the MPC
controller. In Figs. 12 and 13, we see that the controller
performs adequately and keeps the outputs within their
zones while the inputs are led to the desired targets. The
only exception corresponds to the case in which the input
target is moved to u;,,, where offset appears in the inputs.
However, because the penalization corresponding to the
output slacks is larger than those corresponding to the input
slacks, the outputs are maintained inside the specified zones.
Note that, in the last part of the simulation, output y;
reaches its lower bound, while inputs #; and u, deviate from
their optimal targets. Fig. 14 shows the control cost
corresponding to the different time periods. It can be seen

4
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Fig. 14. Cost function for several input target changes.
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again that, as established in the convergence theorem, the
cost is monotonically decreasing and goes to zero for the
two first moves in the input target. In the last one, since
the system cannot reach the desired stationary point
because of an inconsistent choice of the desired input and
the output zones, the cost converges to 5;,{5145,,,1(, where
Oui=[3.01 —10.58].

If the control structure represented in Fig. 2 is adopted
in the simulation of this same scenario, the intermediary
calculation stage will pass a reachable target to the MPC
controller, which will be as close as possible to the point
corresponding to the target given by the supervisory opti-
mization level. Fig. 15, shows the location of the calculated
input target uiareerx corresponding to different weighting
matrices:

Upygers = [144.78  58.74]  (Ry,,,, = diag(l 100)),

ufargetrk =[112.01 49.42 (Rfblrget =diag(l 1)) and
ufargelﬁk =[109.03 48.57] (Rf‘argel = diag(100 1))

Observe that the points corresponding to each of these tar-
gets are located on the boundary of the input set, and one
of outputs is forced to reach the bound of the zone.

The last scenario simulated here corresponds to the case
where a step disturbance, which is unknown by the control-
ler, is introduced in the system output. First, at time =
100 min, the disturbance d,(k)=[67 75 46]" was
injected into the system output and results in the reduction
in the input set. Then, once the system stabilized, a second
step disturbance (d>(k) =[—26.4 8.3 33.5]") was intro-
duced at time=200 min. In Fig. 16 Q}q represents the input
set without any disturbance, Qi represents the input
set after disturbance d; was introduced. and set Q) =
{u: Y — ¥ <D — Dugg <y, — ¥, } corresponds to
the case where disturbance d> was introduced in the system.
Note that, in this last case, the intersection of Q7 with the set
defined by constraint (11) is an empty set.
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Fig. 15. Location of the intermediary input targets when the target
calculation stage is implemented.
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Fig. 16. Input feasible sets produced by output step disturbances.

Fig. 16 shows that for the first disturbance, the target
ufargetik is as close as possible to u,,,  and lies on the bound-
ary of the input feasible set, Qf, On the other hand, when
the second disturbance is introduced in system, target
Upyrgers 18 Placed as close as possible to Q’, but inside the
set given by {u: upin < # < Umax}, Which is a hard con-
straint, and no violation is allowed.

Figs. 17 and 18 show the inputs and outputs, respec-
tively. Fig. 18 also shows the calculated output set points.
In the first period of time, input u; reaches its upper bound
while output y, is controlled at its lower bound. This means
that there is no offset in the outputs or inputs (the targets
are consistent). However, in the third period of time, input
1, remains on its upper bound but the output y; lies outside
its zone. This is so because the introduction of ¢, produces
a null input feasible set, which means that there is no fea-
sible input capable of bringing all the outputs to their
zones.
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Fig. 17. Manipulated inputs for output step disturbances.
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Fig. 18. Controlled outputs for output step disturbances.
7. Conclusion

This work proposes a strategy to implement a MPC con-
troller in which the system outputs are controlled in speci-
fied zones and the manipulated inputs have targets
associated to the economic objectives of the controlled sys-
tem. By defining an appropriate cost function, recursive
feasibility and stability can be proved for open-loop stable
systems. The strategy was shown, by simulation, to have an
adequate performance for a 2 x 3 subsystem of a typical
industrial system.
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