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Summary

Orthogonal Legendre polynomials (LP) are used to model the shape of

additive genetic and permanent environmental effects in random regres-

sion models (RRM). Frequently, the Akaike (AIC) and the Bayesian

(BIC) information criteria are employed to select LP order. However, it

has been theoretically shown that neither AIC nor BIC is simultaneously

optimal in terms of consistency and efficiency. Thus, the goal was to intro-

duce a method, ‘penalizing adaptively the likelihood’ (PAL), as a criterion

to select LP order in RRM. Four simulated data sets and real data (60 513

records, 6675 Colombian Holstein cows) were employed. Nested models

were fitted to the data, and AIC, BIC and PAL were calculated for all of

them. Results showed that PAL and BIC identified with probability of one

the true LP order for the additive genetic and permanent environmental

effects, but AIC tended to favour over parameterized models. Conversely,

when the true model was unknown, PAL selected the best model with

higher probability than AIC. In the latter case, BIC never favoured the

best model. To summarize, PAL selected a correct model order regardless

of whether the ‘true’ model was within the set of candidates.

Introduction

The random regression model (RRM) is used in dairy

cattle for the genetic evaluation of production traits

that change over time. In a RRM, the shape of the lac-

tation curve is accounted for by an average trajectory

plus a set of random regression coefficients that define

individual deviates related to the additive genetic and

permanent environmental effects. Orthogonal Legen-

dre polynomials (LP) are commonly used to model

the covariance structure between the random regres-

sion coefficients for test-day records. In this context,

accurate prediction of the additive genetic and perma-

nent environmental effects in the RRM requires using

the proper order of the Legendre polynomial. When

the trait evaluated is milk yield, LP of the same order

(usually in between 3 and 5) for both type of effects

are typically used (Pool & Meuwissen 2000; Strabel

et al. 2005; Herrera et al. 2013). However, the LP

order does not have to be equal for both types of

effects (Pool et al. 2000; Liu et al. 2006; Bignardi et al.

2009). For example, Liu et al. (2006) obtained a better

fit with a model of order 5 for the additive genetic

effects and order 7 for the permanent environmental

effects.

Different criteria have been used to find the polyno-

mial order of the model with the best fit and parsi-

mony. The two criteria most frequently used are the

Akaike information criterion (AIC; Akaike 1974) and

the Bayesian information criterion (BIC; Schwarz

1978) (Bignardi et al. 2009). Both AIC and BIC are

based on minimizing the expected estimated Kull-

back–Leibler distance as a fundamental basis for

model selection (Burnham & Anderson 2004). In lon-

gitudinal studies, the use of AIC has been criticized

due to its tendency to favour the model with the
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highest order when sample size gets very large

(McQuarrie et al. 1997). On the other hand, BIC

behaves poorly when the true model is not among the

candidates (Burnham et al. 2011). In practice, the true

model is rarely known, so that it is not clear which

criteria should be used. To overcome this problem,

Stoica & Babu (2013) introduced a novel rule for

model order selection based on ‘penalizing adaptively

the likelihood’ (referred to by its acronym, PAL). In

simpler terms, an adaptive criterion is one that uses

information from the previous step to increase its

selective performance. The PAL allows selecting a

model order when the best model order is unknown.

The goal of this study was to introduce the PAL crite-

rion to select LP order for additive genetic and perma-

nent environmental effects in RRM. The performance

of the procedure is assessed through a simulation

experiment and its implementation is illustrated using

milk yield at first lactation data from Colombian

Holstein cows.

Methods

In matrix form, the model equation for a RRM can be

represented as

y ¼ Xbþ ZuþWcþ e; ð1Þ
where y is the N 9 1 vector of observations, b is the

p 9 1 vector of fixed effects and u((NAm1) 9 1) and c

((NDm2) 9 1) are the vectors of random regression

coefficients for the additive genetic and the perma-

nent environmental effects, respectively. In this nota-

tion, NA stands for the number of animals in the

pedigree file, ND is the number of cows with records

and m1 and m2 are the orders of the Legendre polyno-

mials for the corresponding function. Finally, e is the

random vector of error terms, whereas X, Z and W are

the incidence matrices for fixed effects, breeding val-

ues and permanent environmental random coeffi-

cients, respectively (see Schaeffer 2004, for more

details). The additive genetic, permanent environ-

mental and residual variance–covariance matrices are

Var

u

c

e

2
4

3
5 ¼

G 0 0

0 Pe 0

0 0 R

2
4

3
5;

where G ¼ A � KA, being A ðNA � NAÞ the additive

genetic relationship matrix among animals, and KA a

square matrix that contains covariances among the

random regression coefficients for the additive genetic

effects. As usual, the symbol ⊗ stands for the Kro-

necker product operator (Searle 1982). Additionally,

Pe ¼ IND
� KPe, with IND

an identity matrix of order

ND and KPe a square matrix with covariances among

the random regression coefficients for the permanent

environmental effects. Finally, R ¼ Diagfr2ekg is a

diagonal matrix with the same variance component

r2ek within the residual class, k.

Assuming that the data vector y follows a multivari-

ate normal distribution, the expression for minus two

times the log of the restricted maximum likelihood

(�2 ln L) is

�2 ln L ¼ const þ NA ln jKAj þm1 ln jAj
þ ND ln jKPej þ ln jCj þ ln jRj þ y0Py:

ð2Þ

In (2), C is the coefficient matrix of the mixed

model equations, ln |�| denote the log determinant of

the corresponding matrix ð�Þ, and y
0
Py is the error sum

of squares of the model (Meyer & Hill 1997). Let V be

the variance–covariance matrix of the data vector y,

then P = V�1�V�1X(X
0
V�1X)�V�1X

0
. Function (2) is

the cornerstone of the two most frequently used

methods to select the appropriate order for the Legen-

dre polynomials in a RRM model: the Akaike

information criterion (AIC) and the Bayesian

information criterion (BIC). More precisely, these two

methods are based on minimizing the penalized

likelihood (Burnham & Anderson 2002)

min
n

½�2 lnLþ nx�; ð3Þ

where n is the number of parameters in the model

and x is a ‘penalty’ coefficient. If the restricted likeli-

hood function (2) is used into (3), the penalty coeffi-

cient is xAIC ¼ 2a�n for AIC (M€uller et al. 2013) with

a�n ¼ ðN � pÞ=ðN � p� n� 1Þ, being N the number of

test-day records and p the number of parameters to be

estimated for fixed effects. In turn, xBIC = ln (N) for

BIC.

Most importantly, these two methods differ in the

way they select the ‘best’ model among those under

consideration (Yang 2005): whereas AIC ranks models

based on an efficiency criterion (i.e. the best model is

the one that minimize the error variance asymptoti-

cally; Casella & Berger 2002, pp. 470–473), BIC is

known to be a consistent criterion (i.e. when the sam-

ple size tend to infinity, the probability that BIC

chooses the best model approaches to one; Casella &

Berger 2002, pp. 467–470). If the true model is among

those under consideration, BIC would be the best cri-

terion to choose. However, if that is not the case, AIC

would be preferable (Burnham & Anderson 2004).

Still, AIC is criticized in the literature of longitudinal

analysis as it tends to choose models with higher order

when the sample size grows unbounded (Shibata

1981; McQuarrie et al. 1997). Moreover, Yang (2005)
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showed theoretically that neither AIC nor BIC is

simultaneously optimal in terms of consistency and

efficiency.

To summarize these ideas, consider a set of nested

models M1 � M2 � . . . � M~n, where the subscript indi-

cates the number of parameters, and a true model Mn0

with n0 parameters. By ‘true’ model ðMn0Þ, we mean

the model with the smallest possible number of

parameters that is closest (in a Kullback–Leibler
sense) to the model that generates the data (Davidson

& Mackinnon 2004). In practice, as it is uncertain if

the true model is within the set of models under con-

sideration, it is unclear which criterion should be

used. To overcome this problem, Stoica & Babu

(2013) introduced an alternative approach based on

penalizing adaptively the likelihood (PAL criterion).

Notice that the negative log-likelihood term in (3)

decreases with increasing n, whereas the penalty term

increases. The intuition behind their approach to

obtain an ideal penalty term is explained by Stoica &

Babu (2013) as follows:

(i)When the number of parameters is smaller than in

the ‘true’ model, that is n < n0, a small penalty would

make (3) to decrease with increasing n.

(ii)Whereas, if the number of parameters is larger

than in the ‘true’ model, that is n > n0, the penalty

term should increase with increasing n, so that (3)

increases.

To accomplish these principles, Stoica & Babu

(2013) chose the penalty term that multiplies n in

PAL to be equal to

xPAL ¼ lnð~nÞ lnðrn þ 1Þ
lnðqn þ 1Þ

� �
; ð4Þ

where ~n is the largest number of parameters for the

model within the set being considered (for example, if

the set of models is M1 ⊂ M2 ⊂ . . .M48, then ~n = 48),

and

rn ¼ 2 lnLn�1 � 2 lnL1 and qn ¼ 2 lnL~n � 2 ln Ln�1;

are generalized likelihood ratios between model Mn–1

and the reduced model M1 or the complete model M~n,

respectively. We assume that M1 is only a ‘reference

model’ and r2 = 0. As a result, the PAL criterion for

model order selection is defined as

PAL ¼ �2 lnLn þ n lnð~nÞ lnðrn þ 1Þ
lnðqn þ 1Þ : ð5Þ

The best model according to this criterion is the one

with the lowest value of PAL. A small example is

included in the Appendix 1 to describe how to calcu-

late PAL. When the true model is within the set of

candidates, PAL selects the same model order as BIC,

otherwise PAL favours a similar model as AIC (see

Stoica & Babu (2013), for details). Given these proper-

ties, the PAL criterion appears to be an attractive

method to assess the LP order of additive genetic and

permanent environmental effects for RRM. In the

next section, we examine the performance of PAL,

when compared to AIC and BIC, by means of a simu-

lation experiment. Additionally, the PAL criterion was

applied in a real scenario using daily milk yield data

from the Colombian Holstein population.

Simulation experiment

Data for the simulation were created by sampling

records with the structure and the pedigree of the

Colombian Holstein data set (Table 1). Fixed effects of

herd-test-day, age of the cow (as linear and quadratic

regressions) and the phenotypic trajectory were

included in the model. In the following description,

LPm1 m2 refers to the order of the Legendre polyno-

mial for additive genetic (m1) and permanent envi-

ronmental (m2) effects, respectively. Four scenarios

were considered based on the fraction of records in

the data set that were simulated from a single true

model: (i) TM: data set with all (100%) records simu-

lated from either LP33, LP44, LP55 and LP66 orders;

(ii) NS: 95% of the records were generated from the

true model and 5% were randomly chosen from the

other three models simulated. For example, while

considering model LP55 as the true one, 5% of

records were randomly drawn from either models

LP33, LP44 or LP66; (iii) NR: 95% of the records were

sampled from the true model and 5% were chosen at

random from the real Holstein data set; and (iv) UT:

data set completely simulated but with ‘unknown’

true model. By ‘unknown’, we mean that records on

any replicate came from four equally represented

(25% each) orders of Legendre polynomials: LP35,

LP45, LP55 and LP65. For this latter scenario, the

‘best’ model was chosen using mean square error of

prediction, which was calculated as follows:

MSEP ¼
Xl

i¼1

ðâi � aiÞ2
l

:

In the above formula, l is the number of cows with

records, ai corresponds to the true breeding value and

âi is the BLUP (ai). At each replicate, true breeding

values were sampled in equal proportion from each of

the four models tested: LP35, LP45, LP55 and LP65;

whereas predicted breeding values were calculated

from the single model that was fit from the four
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described earlier. The model with the minimum value

of MSEP was considered the best model. For each sce-

nario, a total of 100 replicates were simulated and

analysed using AIC, BIC and PAL.

Analysis of a milk yield data set

Data were 60 513 first lactation records of test-day

milk yields from 6675 Holstein cows, collected from

January 1989 to June 2008 in 164 herds from the

Colombian Holstein Association. Test-day records

were taken within the period from 5 to 305 days of

lactation or 19 to 48 months (when looking at age at

first calving). Milk yield ranged from 5.1 to 48.4 kg.

The minimum number of cows to form any contem-

porary group was 7. The pedigree file contained

17 062 animals. Table 1 provides a description of the

data used in the study.

As before, let LP be the polynomial order of the

RRM. Then, two subindexes are used to indicate addi-

tive genetic effects (first) and permanent environ-

mental effects (last): LPm1 m2. Orders are such that

m1 = 3,. . ., 6 and m2 = 3,. . ., 6. All model orders within

the set plus the simplest model fitting the intercept

term only for additive genetic and permanent envi-

ronmental effects (LP11) were tested with AIC, BIC

and PAL. Fixed effects were herd-test-day, age of the

cow (with linear and quadratic terms) and the pheno-

typic trajectory. All models had six intervals for resid-

ual variance (6-35, 36-95, 96-125, 126-215, 216-245,

246-305 DIM) and LP of order 5 that account for the

phenotypic trajectory. The values of �2 ln L, AIC,

BIC, the likelihood ratio test (LRT) and the estimates

of the covariance components for the 17 different ran-

dom regression models were calculated using REML

and the ‘average information’ algorithm (Gilmour

et al. 1995), by means of the package Wombat (Meyer

2007). The reduced model (M1) to calculate the PAL

was LP11, and the model with the highest order was

LP66 (~n = 48). Additionally, for the Holstein data, the

alternative models were also compared by means of

their predicted ability using the weighted MSEP

(wMSEP) as described by Odeg�ard et al. (2003). The

procedure is as follows: two data sets are generated by

excluding observations from the initial data set. Next,

the MSEP is calculated for each subset and, finally,

the wMSEP is computed as the average of both esti-

mates of MSEP.

Estimated heritabilities at day t of the lactation

curve were calculated using the following formula

(Van Der Werf et al. 1998; Jakobsen et al. 2002):

ĥ2t ¼
r̂2aðtÞ

r̂2
aðtÞ þ r̂2

peðtÞ þ r̂2
eðtÞ

;

where r̂2aðtÞ, r̂
2
peðtÞ and r̂2eðtÞ are the additive genetic, per-

manent environmental and residual variances at day

t, respectively.

Results

The probability of selecting the model with the correct

number of parameters using AIC, BIC and PAL under

different scenarios simulated is presented in Figure 1.

When the true model was among the candidates, PAL

and BIC selected with probability one the correct

order of the Legendre polynomials for the additive

genetic and permanent environmental effects.

Instead, not always AIC selected the correct order.

When a 5% noise was added to the data set with the

true model, AIC tends to overestimate the correct

order. Conversely, when the true model was

unknown, PAL selected the best model with higher

Table 1 Descriptive features of the data set

Item Value

Number of test-day records 60 513

Number of cows with records 6675

Number of animal in pedigree 17 062

Number of contemporary groups 4211

Mean of milk yield (kg) 18.80 	 5.95

Mean age at first parity 31.67 	 4.61

Figure 1 Probability of correct order selection in four scenarios using

the penalizing adaptively the likelihood (PAL) criterion, Bayesian infor-

mation criterion (BIC) and Akaike information criterion (AIC) criterion.
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probability than AIC. In this latter case, BIC never

chose the best model.

Information about the number of covariance

parameters, �2 ln-likelihood, PAL, AIC and BIC for

the RRM with different LP order fitted using the

Colombia Holstein data set is presented in Table 2.

The lowest value of AIC corresponded to LP66 and

was followed by LP56. These models had the largest

number of parameters over the set of models consid-

ered in this study. In contrast, the choice of models

using PAL was the same as those selected using BIC:

LP36 was best, followed by the LP46. The LP order for

additive genetic effects was lower than the one for

permanent environmental effects. Based on likeli-

hood ratio test (LRT), the model with more parame-

ters (LP66) was best, but differences in predictive

abilities among models of order 6 for permanent envi-

ronmental effects were small. Based on wMSEP, mod-

els LP66 and LP36 were ranked approximately equal.

Model LP36 (order 3 and 6 for the additive genetic

and permanent environmental Legendre polynomial,

respectively) was selected according to the PAL crite-

rion. Estimated residual variances from LP36 were

equal to 5.11, 3.57, 3.35, 3.06, 2.72 and 2.63, for the

6 to 35, 36 to 95, 96 to 125, 126 to 215, 216 to 245

and 246 to 305 DIM, respectively. Figure 2 displays

the estimated variances of milk production for addi-

tive and permanent environmental effects for the

models selected by PAL and BIC defined over time.

The lowest estimate of the additive genetic variance

was 3.11 kg2 at day 305, whereas the highest value

was 8.10 kg2 at day 102. Corresponding values for

permanent environmental variances were 8.53 kg2 at

day 17 and 11.27 kg2 at day 305. The estimates of

heritability (h2) on the trajectory of milk production

obtained were 0.39 at day 142 for the highest point,

and the lowest value was 0.18 at day 305.

Discussion

In this study, we introduced the PAL criterion for

selecting the order of Legendre polynomials in ran-

dom regression models for milk production and com-

pared its performance against standard methods (i.e.

AIC and BIC) through a simulation experiment. All

three methods selected the best model when a 100%

of records where generated by the true model. How-

ever, when noise was introduced in the simulations,

PAL and BIC behaved selecting the correct model,

whereas AIC tended to overestimate the model order.

These results are consistent with previous studies

showing that AIC tends to overfit, whereas PAL and

BIC outperform AIC when the true model with some

noise is in the candidate set (Schwarz 1978; Shibata

1981; Stoica & Babu 2013). Conversely, when data

were simulated under no true model (UT), PAL

Table 2 Model selection criteria for analyses with different orders of Legendre polynomials (LP) for additive genetic (m1) and permanent environmen-

tal (m2) effects (bold values correspond to the best model for each criterion).

LPm1 m2 Number of parameters

Selection criteria1

�2 ln L AIC BIC PAL LRT* wMSEP

1) LP66 48 180 814 180 910 181 342 181 406 (1–2) 18 1.5898

2) LP56 42 180 832 180 916 181 294 181 248 (2–3) 20 1.5905

3) LP46 37 180 852 180 926 181 259 181 163 (3–4) 36 1.5987

4) LP36 33 180 888 180 954 181 250 181 083 (4–8) 380 1.5992

5) LP65 42 180 936 181 020 181 397 181 189 (5–6) 282 1.6608

6) LP55 36 181 218 181 290 181 614 181 433 (6–7) 22 1.7988

7) LP45 31 181 240 181 302 181 580 181 423 (7–8) 28 1.8000

8) LP35 27 181 268 181 322 181 565 181 407 (8–12) 618 1.7964

9) LP64 37 181 122 181 196 181 528 181 332 (9–10) 268 1.7442

10) LP54 31 181 390 181 452 181 730 181 550 (10–11) 465 1.8729

11) LP44 26 181 855 181 907 182 141 181 989 (11–12) 31 2.0265

12) LP34 22 181 886 181 930 182 128 181 986 (12–16) 1297 2.0269

13) LP63 33 181 287 181 353 181 649 181 465 (13–14) 305 1.8483

14) LP53 27 181 592 181 646 181 889 181 728 (14–15) 451 1.9905

15) LP43 22 182 043 182 087 182 285 182 143 (15–16) 1140 2.1263

16) LP33 18 183 183 183 219 183 381 183 183 (16–17) 9310 2.4090

17) LP11 3 192 493 5.6990

1REML log-likelihood (�2 ln L), AIC = Akaike information criterion, BIC= Bayesian information criterion, PAL = penalizing adaptive the likelihood, LRT =

likelihood ratio test between models (i.e. 1–2 means the comparison between model 1 and model 2).

*p < 0.01 and wMSEP= weighted mean of MSEP from two independent samples.
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performs better than AIC, and much better than BIC,

when assessing the best model as the one that mini-

mizes MSEP. That AIC could be more effective to

choose the best model than BIC when the true model

was unknown can be explained by the fact that the

number of models does not grow very fast in dimen-

sion, and the MSEP of the model selected by AIC

approaches asymptotically the minimum value from

the set of candidate models (Shibata 1981; Yang

2005).

Although the use of Legendre polynomials in

RRM allows a more flexible shape of the lactation

curve, high-order polynomials are frequently impos-

sible to implement in large populations. This is due

to the requirement of a sizeable computer capacity

and also to the possibility of obtaining negative cor-

relations between distant test-day (Pool & Meuwis-

sen 2000; Jamrozik et al. 2001). For this reason, the

simulated data sets analysed in this study considered

only models with LP66 as the maximum order of

Legendre polynomials for both additive genetic and

permanent environmental effects. On the other

hand, orders lower than 3 do not fit well deviations

from a typical lactation curve. Therefore, it was con-

sidered that the best model was within the range

LP33 to LP66, and all models in the interval were

fitted to the data.

In practical implementation of RRMs, the first task

the analyst must perform is to evaluate which model

order (for both additive genetic and permanent

environmental effects) is most supported by the data.

Selecting the order is often difficult principally

because statistical criteria are not clearly defined

(Bignardi et al. 2009). L�opez-Romero & Carabano

(2003), Liu et al. (2006) and Bignardi et al. (2009)

used both AIC and BIC to choose the best polynomial

order for RRM, but the choice of LP order was not

consistent. Our simulation results suggest that PAL is

a good criterion to choose the order of the Legendre

polynomials in any implementation of RRM to milk

production data. The PAL provides with a rule for

choosing among different LP orders, and in particular

when the results produced by AIC differ from those

produced by BIC. Stoica & Babu (2013) pointed out

that there is no theoretical proof of the superiority of

PAL over AIC and/or BIC so far. However, it can be

employed with the idea that the use of PAL safely sub-

sumes using AIC and BIC together, as the decision

will stick with the criterion that is consistent with the

framework of inference for the given data and the

models compared.

As it can be inferred from our implementation with

a real data set of milk yield, PAL also allowed to differ-

entiate between the best order for the additive and

the permanent environmental effects. It has been pre-

viously observed that LP order for permanent envi-

ronmental effects tended to be higher than for

additive effects (Pool & Meuwissen 2000; L�opez-

Romero & Carabano 2003; Caraba~no et al. 2007). For

example, Liu et al. (2006) used log-likelihood and

information-theoretical measures for order selection

and found LP57 as the best model. In turn, Bignardi

et al. (2009) used both AIC and BIC to end up choos-

ing LP7.12, whereas L�opez-Romero & Carabano

(2003) selected a model with LP order 2–3 for additive

genetic effects and 5–6 for permanent environmental

effects. In our implementation, the estimates of the

genetic parameters from the model selected by PAL

were of similar magnitude with those found in previ-

ous research by Jakobsen et al. (2002), L�opez-Romero

& Carabano (2003) and L�opez-Romero et al. (2003).

The residual variances at the beginning of the lacta-

tion were larger than those at other intervals. Similar

results were found by L�opez-Romero et al. (2003)

when evaluating the heterogeneity of residual vari-

ance of a RRM. We also found that the variances for

permanent environmental effects were higher than

those for additive genetic effects. A possible explana-

tion lies in the fact that under the typical grazing con-

ditions in Colombia, milk production is highly

affected by environmental effects.

To conclude, our findings suggest that PAL is a

promising adaptive model selection criterion while

assessing the Legendre polynomial order in RRM.

Two practical considerations are most important

when applying PAL. First, a nested structure for the

models to be compared is required. However, in the

context of assessing Legendre polynomial order in

RRM, a nested structure arises naturally by adding

Figure 2 Permanent environmental variance (dashed line), additive

genetic variance (dotted line) and residual variance (solid line) of daily

milk yield in first lactation.
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orders to the polynomials. Second, within the set of

models under consideration, reduced and full models

are needed to compute the generalized likelihood

ratios in the PAL formula.
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Appendix 1 A small example showing how to

calculate PAL

Consider the following simulated data to illustrate the

calculation of PAL. The true model was LP33; how-

ever, data from three other models are included in the

table below. The third column includes the logarithm

of the likelihood function, as can be obtained from

expression (2).

LPm1 m2 Number of parameters ln L xPAL PAL

1) LP11 8 �97 864

2) LP22 12 �93 755 0 187 510

3) LP33 18 �92 247 3.6656 184 560

4) LP44 26 �92 226 8.0792 184 662

The calculus of xPAL in column four was performed

from expression (4), which is transcribed here for

convenience:

xPAL ¼ lnð~nÞ lnðrn þ 1Þ
lnðqn þ 1Þ

� �
:

The value ~n is the number of parameters in the

model (within the set) with the highest number, and

here is equal to ~n ¼ 26 for LP44. Then, to obtain xPAL-

LP33, we first calculate the values of rLP33 and qLP33
from (5) as follows:

rLP33 ¼ 2 ln LLP22 � 2 ln LLP11
¼ 2� ð�93 755Þ � 2� ð�97 864Þ ¼ 8218;

qLP33 ¼ 2 ln LLP44 � 2 lnLLP22
¼ 2� ð�92 226Þ � 2� ð�93 755Þ ¼ 3016:

So that

xPAL�LP33 ¼ lnð26Þ lnð8218þ 1Þ
lnð3016þ 1Þ ¼ 3:6656

As a result, the PAL criterion for model order selec-

tion is obtained from (6) as

PAL(LP33) ¼ �2 lnLLP33 þ 18xPAL�LP33:

Finally,

PAL(LP33) ¼ �2� ð�92 247Þ þ 18� 3:6656
¼ 184560:

The calculation of PAL for models LP44 and LP22 is

performed in a similar fashion.
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