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We study the spectrum and anisotropies of ultrahigh energy cosmic ray transient sources, accounting
for the effects of their propagation through the turbulent extragalactic magnetic fields. We consider either
bursting sources or sources emitting since a given initial time. We analyze in detail the transition between
the diffusive and the quasirectilinear regimes, describing some new features that could be present.
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I. INTRODUCTION

The sources of the ultrahigh energy cosmic rays
(UHECRs) are still unknown, but the expectation is that
one may eventually be able to identify them through the
study of the anisotropies in the distribution of their arrival
directions. The main difficulty that appears is that, cosmic
rays (CRs) being charged nuclei, their trajectories get
deflected by the Galactic and extragalactic magnetic fields
that they traverse as they travel to us, and hence their arrival
directions do not point towards their sources. However, the
deflections decrease for increasing rigidities (which is the
momentum per unit charge), and they may become smaller
than a few tens of degrees at the highest observed energies.
This gives the hope that one may be able to infer the
location of the closest powerful extragalactic sources by
identifying excesses in the CR arrival directions around
them. Besides the distribution in the sky of the arrival
directions, also the energy dependence of the observed
patterns and the detailed evolution with energy of the CR
mass composition are important for this search. The
eventual separation of light and heavy components, which
suffer different amounts of deflection, could also be helpful
in this respect, and this is something that will be exploited
by the ongoing upgrade of the Pierre Auger Observatory.
Another ingredient that is relevant in the search for the

CR origin is the fact that one does not expect that the
sources be steady. Although the steadiness of the sources is
the simplest assumption that is usually considered, all
candidate sources have some degree of variability. In
particular, among the plausible UHECR candidate sources
are gamma ray bursts (GRBs), which have a prompt
emission taking place on timescales of seconds and an
afterglow on timescales of hours to weeks; tidal disruption
events (TDEs) are transient events in which the CR
acceleration could take place on time scales of weeks to
months; active galactic nuclei (AGNs), which may last for
more than 107 yr but their activity gets enhanced in

episodes of increased accretion or during galaxy mergers,
that also promote star formation activity, and variability in
their electromagnetic flux on timescales of days to years
has been observed.
Scenarios with one or a few transient sources dominating

the CR spectrum at the highest energies [1] also provide an
attractive option to account for the apparently hard source
spectrum that is inferred from spectral and composition
observations [2], where the observed hardness may be
associated with a propagation effect rather than a character-
istic of the source spectral shape.
The main purpose of this work is to study in detail the

implications of the variability of the CR sources on the
potentially observable anisotropies, focusing on the high
energy regime in which there is a transition between the
diffusive and ballistic CR propagation in the turbulent
extragalactic magnetic fields. We extend to the case of
transient sources the characterization of the distribution of
arrival directions in different propagation regimes that was
performed in Ref. [3] for the case in which the sources are
emitting steadily since infinite time in the past.

II. CR PROPAGATION IN TURBULENT
MAGNETIC FIELDS

We aim to describe the arrival directions of UHECRs
from extragalactic sources in our cosmic neighbourhood,
within at most about one hundred Mpc, which could be the
origin of localized CR excesses in the sky. We will thus
neglect attenuation effects upon the energy and composi-
tion of UHECRs, such as photo-pion production by
protons, pair production losses or photo-disintegration of
nuclei during their propagation. We will analyze the impact
of their propagation across turbulent extragalactic magnetic
fields as they travel from their sources towards Earth. The
CR propagation will thus be mostly affected by the
magnetic fields within the Local Supercluster region, which
are larger than the average value over the whole universe.
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In particular, large-scale inhomogeneities such as those
associated with the cosmic voidswill be ignored in this study.
We will hence consider the idealized situation of CR

propagation in a homogeneous and isotropic turbulent
extragalactic magnetic field. In this case, there is a critical
energy that separates different regimes of CR propagation:

Ec ¼ ZeBlc ≃ 0.9Z
B
nG

lc
Mpc

EeV: ð1Þ

This is the energy for which the effective Larmor radius
rL ¼ eZE=B coincides with the coherence length lc of
the magnetic turbulence having root mean square (rms)
strength B. If E < Ec, the deflections imprinted by the
magnetic field modes with wavelength comparable to the
Larmor radius are large and there is resonant diffusion. If
E > Ec, the deflections across each coherent domain are
small, and the total deflection becomes sizable only after
the CRs traverse several of them. The distance scale over
which the deflection becomes of order ∼1 rad is known as
the diffusion length lD. At distances sufficiently larger than
lD the propagation enters the regime of spatial diffusion,
characterized by an isotropic diffusion coefficient D such
that lD ≡ 3D=c. If the source distance is comparable or
smaller than lD the propagation is instead quasirectilinear.
The energy dependence of the diffusion length is a

crucial ingredient to analyze the propagation of CRs across
turbulent magnetic fields. We have evaluated in [4] the
energy dependence of the diffusion coefficient DðEÞ
through numerical integration of the trajectories of charged
particles in a homogeneous turbulent magnetic field. In the
present work we will model for definiteness the turbulence
of the extragalactic magnetic field with a Kolmogorov
spectrum, such that the field energy density scales as
ωðkÞ ∝ k−5=3 in Fourier space. The analytic fit to DðEÞ
obtained in [4] (see also [5,6]) is given in such a case by

DðEÞ ≃ c
3
lc

�
4

�
E
Ec

�
2

þ 0.9

�
E
Ec

�
þ 0.23

�
E
Ec

�
1=3

�
: ð2Þ

The energy dependence can also be evaluated for other
types of turbulence, such as for instance one with a
Kraichnan distribution.
Our analyses will be performed in terms of E=Ec for

given source distances and duration of their emissivity.
Precise values of the extragalactic magnetic field param-
eters are not known, and they likely depend upon source
location. Realistic estimates range around 1–100 nG for
their rms strength in the Local Supercluster region, and
the coherence length may range from 10 kpc to 1 Mpc
(see e.g., [7–9]).
Our aim is to characterize the spectrum and angular

distribution of the CRs that reach Earth from a transient
source at distance rs after propagation in a turbulent
magnetic field. We do so following the method imple-
mented in [3]: a numerical integration of the stochastic

differential equation that describes the scattering of
UHECRs in a turbulent homogeneous and isotropic mag-
netic field [10]

dni ¼ −
1

lD
nicdtþ

1ffiffiffiffiffi
lD

p PijdWj; ð3Þ

where Pij ≡ ðδij − ninjÞ is the projection tensor onto the
plane orthogonal to the direction of the CR velocity given
by n̂≡ ðn1; n2; n3Þ, repeated indices are summed and
(dW1; dW2; dW3) are three Wiener processes such that
hdWii ¼ 0 and hdWidWji ¼ c dt δij. Implementing this
method, we have characterized in [3] the distribution of
arrival directions in different propagation regimes for
UHECRs originated from steady sources active since
infinite time in the past. In the present work we will
implement the same formalism to analyze the angular
distribution from the diffusive to the ballistic regimes of
UHECRs emitted by transient sources, both of a bursting
nature as well as those steadily emitting since a given finite
initial time in the past.
Note that the approach described above does not con-

sider a fixed realization for the turbulent magnetic field, but
rather averages over possible deflections in random real-
izations, and hence it reproduces the general expected
features of the diffusion process. However, the specific
details of the deflections may differ in a given realization
when the propagation is almost rectilinear, in particular
when the maximum transverse deflection between alter-
native trajectories becomes comparable or smaller than the
coherence length lc. In this latter case, a different approach
would be required, and one expects to observe separate
multiple images of the source, with potentially strong
energy dependent magnifications of their fluxes, as was
discussed in [11]. We also note that besides the extra-
galactic turbulent fields, CRs have to traverse the Galactic
magnetic field, which has both a turbulent and a regular
component. The effects of the turbulent Galactic field is
however expected to be smaller than those of the extra-
galactic fields considered here, given that the former has a
much smaller spatial extent.1 At the high energies consid-
ered here, the regular Galactic field will contribute mainly
to a global energy dependent coherent deflection of the
images, in an amount and direction depending on the arrival
direction considered, which can in principle be accounted
for separately (their size is typically of order one degree for
protons with an energy of 100 EeV). Large scale coherent

1In order that the deflection in the extragalactic turbulent
magnetic field that we consider be larger than the deflection
in the turbulent Galactic magnetic field, of strength Bg and
coherence length lgc , one needs that B=nG > 0.1ðBg=μGÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð10 Mpc=rsÞð100 kpc=lcÞðL=kpcÞðlgc=10 pcÞ
p

, with L the dis-
tance traversed through the Galactic turbulent field and rs the
distance to the extragalactic source.
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extragalactic magnetic fields, in case they were to exist,
could further contribute to these deflections.

III. THE CASE OF A BURSTING SOURCE

Let us start by considering a source at a distance rs that
emits CRs during a brief period of time, with duration
negligible with respect to the time for straight propagation
from the source to the observer, so that one may consider
the emission to be a burst (see [12–14] for some initial
studies on this subject). If the emission happened a time t
before the observation, so that the distance traveled by the
CRs along their trajectory is ct, we will denote d≡ ct=lD,
which is the distance traveled in units of the diffusion
length (note that the latter is energy dependent). We will
similarly consider the distance from the source in units
of the diffusion length as R≡ r=lD, and the predictions
can then be conveniently expressed in terms of d and
Rs ¼ rs=lD. For the CRs to be able to reach the Earth one
clearly needs that d > Rs (i.e., ct > rs).
In the spatial diffusive regime that applies when the

distance traveled is much larger than the diffusion length
(d ≫ 1), the CR density as a function of the distance from
the source is generally described by the solution of the
diffusion equation

Ndiffðr; tÞ ¼
N0

ð4πlDct=3Þ3=2
exp

�
−

3r2

4lDct

�
; ð4Þ

with the normalization being such that the density Ndiff
integrates over the whole space to the total number of
particles N0 emitted in the burst (for a given differential
energy bin). It is convenient to introduce a rescaled density
depending just on R and d, whose integral over R is unity,
through

ndiffðR;dÞ≡Ndiffðr;tÞ
l3D
N0

¼ 1

ð4πd=3Þ3=2exp
�
−
3R2

4d

�
: ð5Þ

The above expressions have the drawback that they do
not vanish for r > ct (i.e., for R > d), implying an
unphysical “superluminal” motion. A possible fix to this
problem was proposed in Ref. [15], relying on the
relativistic Jütner propagator [16] (and generalized to
the case including energy losses in [17]), through the
expression

N0
diffðr; tÞ ¼

3N0

8πðctÞ2K1ð1.5ct=lDÞlD
1

½1 − ðr=ctÞ2�2

× exp
�
−

3ct

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr=ctÞ2

p
�
; ð6Þ

with K1 being the modified Bessel function. Note that in
the limit ct ≫ r one has that N0

diff → Ndiff . It is useful to
also introduce in this case a rescaled density through

n0diffðR; dÞ ¼ N0
diffðr; tÞ

l3D
N0

¼ 3

8πd2K1ð1.5dÞ
1

½1 − ðR=dÞ2�2

× exp

�
−

3d

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR=dÞ2

p
�
: ð7Þ

In Fig. 1 we show the CR densities, obtained through
simulations of a large number of CR trajectories computed
by solving the stochastic equations, for several values of d.
For the illustrative cases d ¼ 2, 8, and 32 we also displayed
the curves corresponding to the expressions in Eqs. (5) and
(7). For the cases shown with d ≥ 8 the good agreement
obtained with Eq. (7) is apparent, while Eq. (5) is only
accurate when the distance from the source is much smaller
than the distance traveled, i.e., for R ≪ d. However, for
smaller values of d the match with the analytic expression is
not good, and the disagreement becomes more pronounced
as the value of d decreases. The main reason for this is that
for d < 2π the typical CR trajectories do not manage to
make more than one whole turn (remember that lD is the
distance over which the particle deflections are of order of
1 rad), and hence in this case there is still a strong memory
of the initial velocity direction that the particles had when
they exited the source. This translates into a density
distribution with the shape of an inflating balloon that
gets progressively thicker and eventually dissolves into the
flatter profile associated with the diffusive regime, as is
seen in Fig. 1. We will discuss here in detail the main
features of this initial period, that we refer to as the prompt
phase. The study of this phase is particularly relevant
because it is in this regime that one expects that the CR flux
excesses could become more localized in the sky.2
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FIG. 1. Density distribution as a function of R for different
values of d. For the illustrative cases d ¼ 2, 8, and 32 we
also show the curves that correspond to the distributions in
Eqs. (5) and (7).

2See [18] for a different approach to include a ballistic regime
in terms of a subpopulation of particles which are assumed not to
be scattered by the magnetic fields.
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Although we do not have an exact solution for this
transient phase, we provide here an analytic fit to the results
of the simulations that is quite accurate and is helpful to
understand the main features of this regime. We model the
prompt contribution to the density as a Gaussian centered
at a radius R̄ðdÞ and with dispersion σRðdÞ, conveniently
distorted so as to ensure the absence of superluminal
particles (in the spirit of [16]). In this phenomenological
approach, the prompt CR density is taken as

npromptðR; dÞ ¼ n1ðdÞ exp
�
−

ðR − R̄Þ2
2σ2Rð1 − ðR=dÞ2Þα

�

×
1

½1 − ðR=dÞ2�1.5 ; ð8Þ

with α ¼ 1.25 − 0.1=d. To account for the d dependence of
R̄, we exploit the analytic solution for hR2i derived in [10],
where it was found that

hR2i ¼ 2½d − 1þ expð−dÞ�; ð9Þ

and adopt R̄ ¼
ffiffiffiffiffiffiffiffiffi
hR2i

p
(no analytic solution for hRi is

available). For σR we exploit the knowledge of the
dispersion of the particles along the direction of their
initial velocities, denoted as σz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2i − hzi2

p
, with [10]

hz2i ¼ 2

3

�
d−

1

3
½1− expð−3dÞ�

�
; hzi ¼ 1− expð−dÞ:

ð10Þ

The actual dispersion in the radial direction is expected to
be qualitatively similar but smaller than that along the
initial velocity direction, and we have found that a good fit
to the results is obtained just setting σ2R ¼ 0.75σ2z . The
normalization factor n1ðdÞ is obtained requiring that

4π

Z
d

0

npromptðR; dÞR2dR ¼ 1: ð11Þ

Finally, the total rescaled density will be the weighted
sum of the prompt and diffusive contributions,

nðR; dÞ ¼ fðdÞnpromptðR; dÞ þ ½1 − fðdÞ�ndiffðR; dÞ; ð12Þ

where fðdÞ is the fraction of the emitted particles that are
described by the prompt density profile at the time para-
metrized by d. One expects that f → 1 for d ≪ 1 while
f → 0 for d ≫ 2π. The fitted density profiles for the values
d ¼ 0.5, 1, 2, and 4 are shown in Fig. 2, and the agreement
with the simulations is quite good in all cases.
A plot of the values of the fraction f associated with

the prompt component, together with an analytic fit of the
form fðdÞ ¼ ½1þ Erfð0.59 − logðdÞÞ=0.44�=2, is shown in
Fig. 3.

To apply the previous results to a specific physical
situation, we consider a scenario in which one has a source
at a distance of 4Mpc, which is similar to the distance to the
nearby AGN Centaurus A. Given the uncertain coherence
length and strength of the turbulent extragalactic magnetic
field, we consider two values lc ¼ 30 kpc and 100 kpc, and
give the results in terms of the energy ratioE=Ec for different
values of ct. Figure 4 shows the CR density that would be
observed at the Earth, normalized to the injection of one
particle in a given energy bin (equivalently this would be the
density for a flat energy spectrum). For the smaller values
of ct we also show separately the prompt and diffusive
contributions. Note that the fraction fðdÞ is non-negligible
only for d < 10 (Fig. 3), which approximately corresponds
to E=Ec > 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct=10 Mpc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30 kpc=lc

p
. One should keep in

mind that fd is the fraction of the prompt component after
integration over all space, but the fraction contributed by the
prompt flux is not uniform in space and depends on the
actual distance from the observer to the source, rs. In
particular, the prompt fraction at the observer location
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FIG. 2. Density distribution as a function of R for different
values of d ≤ 4. Also shown are the profiles expected according
to Eq. (12) and with dotted lines the individual contribution from
the prompt component, while with dashed lines that of the
diffusive component.
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FIG. 3. Fraction of the prompt contribution fðdÞ as a function
of d, together with the fit (see text).
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may become actually much smaller than fðdÞ if
ct − rs ≫ lD. One can see that the main effect of increasing
the coherence length for a fixed source distance is to shift the
spectrum to smaller values of E=Ec, with the shift scaling
approximately as l−1=2c (since for E > Ec one has that
lD ∝ lcðE=EcÞ2), but for increasing lc the distributions
become alsowider in logarithmic scale forE < Ec, in which
case one approaches the resonant diffusion regime for
which lD ∝ lcðE=EcÞ1=3.
The actual differential density nðEÞ can be found by

multiplying the normalized density discussed above by
dN=dE, that is the number of CRs emitted by the burst in a
given energy interval. In particular, for a power-law
spectrum such that dN=dE ∝ E−α, one would have that
EαnðEÞ will have a similar shape as the normalized
densities shown in Fig. 4. Note that once the turbulent
magnetic field parameters B and lc are fixed, the variable
E=Ec is just proportional to the rigidity E=Z of the
particles. Thus, if the source is emitting a mixed compo-
sition of nuclei with various charges Z, the heavier nuclei
will have similar spectra as protons, shifted to the right by a
factor Z. In the region where particles are diffusing, the

maximum of the distribution is reached for an energy Emax

such that lDðEmax=EcÞ ≃ r2s=2ct [1]. In particular, if the
maximum appears at energies larger than Ec, so that
lD ≃ 4lcðE=EcÞ2, one would get Emax ≃ Ec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s=8lcct

p
.

When the prompt phase gives a relevant contribution,
the maximum is slightly shifted to larger energies, as
can be seen in Fig. 4.
The other important feature of the CR flux is the

distribution of arrival directions at a given source distance.
This is depicted in Fig. 5, where the distribution in cos θ is
shown, with θ being the angle with respect to the source
direction. This distribution is displayed for two different
source distances Rs ¼ 0.5 and 2, and for different values
of d. By comparing the different curves in each plot, one
can see that for d=Rs < 1.3 the distribution is very peaked
in the forward direction, since in this case one would be
directly observing the passage of the front of the prompt
shell of CRs. However, one also finds that for Rs < 2, in
which case the propagation is quasirectilinear, the distri-
bution starts to become suppressed in the direction towards
the source for d − Rs ≃ 0.2 to 1, because in this case the
particles having the straighter trajectories would have
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FIG. 4. Normalized CR density as a function of E=Ec for a source at rs ¼ 4 Mpc. For the smaller values of ct ¼ 4.5 and 5 Mpc, the
long dashed lines indicate the contribution from the prompt component, and short dashes that from the diffusive component. For the
larger values of ct shown the prompt component becomes negligible. Left panel is for lc ¼ 30 kpc, right panel for lc ¼ 100 kpc.
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2. The lines correspond to different values of d, which is the distance traveled by the particles since the emission of the burst, in units of
lD. When d=R is larger than a few, the distribution approaches that of a dipole with amplitude R=2d.
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already passed through the Earth in the far past, while those
that do reach the observer are subject to increasingly large
average deflections as d increases, so that they arrive
preferentially sideways. When Rs is small, as can be seen
in the case with Rs ¼ 0.5, the flux can be suppressed in the
direction to the source for d ≤ 2, and it actually may
get enhanced in the hemisphere opposite from that of
the source, as is apparent in the case shown with d ¼ 2.
In the regime with d − Rs ≫ 1 the distributions flatten
due to the contribution of particles that made more than one
turn along their trip. The main feature in this regime is the
presence of a dipolar component in the flux distribution,
whose amplitude is given by Δ ≃ 1.5Rs=d ¼ 1.5rs=ct,
which is actually independent of the energy considered
[12,19].
In Fig. 6 we illustrate the features described above within

a specific physical scenario, assuming a source 4 Mpc away
and an extragalactic magnetic field with coherence length
lc ¼ 30 kpc. The distributions of arrival directions are
shown for bursts for which the CR travel time was factors
1.1, 1.5, 2, and 4 times larger than the straight trajectory
travel time. They are displayed for different values of the
particles rigidities, in terms of E=Ec. We note that for the
chosen source distance and coherence length the energy at
which the rms deflection is 1 radian corresponds to 8.5Ec.
The top-left panel illustrates that if the burst occurred at a

time only slightly larger than the time needed for rectilinear
propagation, then the distribution does not change appre-
ciably with energy. This is so because only almost recti-
linear trajectories can reach Earth within such relatively
short time. While the distribution does not change appreci-
ably, clearly the fraction of trajectories that can arrive does
significantly decrease with energy, as was shown in Fig. 4.
The subsequent panels, considering bursts that occurred at
increasingly larger times in the past, illustrate the energy
dependence of the distributions and their different features.
Since the CRs with quasirectilinear trajectories have
already passed by, the distributions at the highest energies
shown are peaked at increasingly sideways directions and
then to backwards arrivals for earlier bursts. For lower
energies the distributions flatten due to the spatial diffusion.
At comparable energies the flattening is more pronounced
for earlier bursts, since in this case there was more time
available for the particles to diffuse.
The average values of cos θ as a function of Rs, for

different values of d, are shown in Fig. 7 (left panel). The
features described above are apparent also in these plots, and
one can see that for values of d > 8 a very good fit to the
results is obtained with hcos θi ≃ Rs=ð2dÞ½1þ ðRs=dÞ2.5� in
all the rangeRs < d. In the right panel of Fig. 7 we show the
average values of cos2 θ as a function of Rs, for different
values of d, together with the fits with the function
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hcos2 θi ¼ ð1þ ðRs=dÞ4ð1þ ðRs=dÞ8ÞÞ=3, which accu-
rately reproduces the results of simulations for d > 8.
Note that in the diffusive regime, the dipolar component

of the distribution is characterized by Δ ≃ 3hcos θi, while
the quadrupolar term by q ≃ 45=4ðhcos2 θi − 1=3Þ, hence
their ratio is approximately given, in the limit d ≫ Rs,
by q=Δ ≃ 7.5ðRs=dÞ3.

IV. THE CASE OF A SOURCE EMITTING
STEADILY SINCE A GIVEN TIME

The ideal case of a steady source emitting since an
infinite time leads to a distribution of particles which is
independent of time. The angular distribution of the
observed particles depends only on the ratio of the source
distance to the diffusion length, Rs, as has been described
in [3]. It was shown there that a good fit to the angular
distribution obtained in numerical simulations of particle
trajectories with stochastic deflections is given by a Fisher
distribution characterized by a concentration parameter κ,
describing how much the deflections have dispersed the
arrival directions from the source position, plus an isotropic
contribution characterized by a parameter i, measuring the
fraction of particles that diffused for very long times and
thus arrive almost isotropically distributed. The angular
distribution is given by

1

N
dN

d cos θ
¼ i

2
þ ð1 − iÞ κ expðκ cos θÞ

2 sinh κ
: ð13Þ

The first two moments of this distribution are

hcos θi ¼ ð1 − iÞ
�
coth κ −

1

κ

�
ð14Þ

and

hcos2θi ¼ i
3
þ ð1 − iÞ

�
1þ 2

κ2
−

2

κ tanh κ

�

¼ 1 −
2hcos θi

κ
−
2i
3
: ð15Þ

If the distribution of arrival directions is well characterized
by Eq. (13), any pair of the quantities κ, i, hcos θi, or
hcos2 θi can be used to describe it. The parameters κ and i
can in fact be obtained from hcos θi and hcos2 θi using that

2

3ðcoth κ − 1=κÞ −
2

κ
¼ hcos2θi − 1=3

hcos θi ≡ α: ð16Þ

An approximate solution to this transcendental equation is
given by

κ ≃
5α − 27α2=4þ 27α3=8

2=3 − α
: ð17Þ

Finally,

i ¼ 1 −
hcos θi

coth κ − 1=κ
: ð18Þ

Notice that in a multipolar expansion of the angular
distribution [where dN= d cos θ ≃ ðN=2Þð1þ Δ cos θþ
qðcos2θ − 1=3Þ þ…Þ], the dipolar component satisfies
Δ ¼ 3hcos θi and the quadrupolar component satisfies
q ¼ ð45=4Þðhcos2θi − 1=3Þ. Thus, hcos θi is directly
related to the dipolar component of the anisotropies. On
the other hand, κ gives a good description of the angular
extension of small and intermediate scale anisotropies, with
hθ2i ≃ 2=κ. For large deflections, i.e., for κ ≪ 1, the dipole
and quadrupole of the distribution satisfy Δ ¼ ð1 − iÞκ
and q ¼ ð1 − iÞκ2=2.
For a steady source, good fits to both hcos θi and κ have

been obtained in Refs. [4,3], respectively,
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hcos θisteadyðRsÞ ¼
1

3Rs
½1 − exp ð−3Rs − 3.5R2

s Þ�≡ CðRsÞ;

ð19Þ

κsteadyðRsÞ ≃
1

Rs
½2þ exp ð−2Rs=3 − R2

s=2Þ�: ð20Þ

As for a steady source the density of particles reaches a
stationary regime in which it does not depend on time, the
flux of particles through any sphere around the source has
to be the same. Exploiting the spherical symmetry of the
problem, we then obtain the general relation

nsteadyðr; EÞ4πcr2Cðr=lDÞ ¼ QðEÞ; ð21Þ

with QðEÞ the emissivity of the source (differential in
energy). For values of r ≪ lD, which correspond to small
distances from the source and/or very high energies, one
has that Cðr; EÞ ≃ 1 and hence the density of particles
decreases as QðEÞ=4πr2 (rectilinear propagation). For
larger distances and/or smaller energies, the diffusion
process leads to an enhancement of the density by a factor
equal to 1=Cðr=lDÞ with respect to the rectilinear case,
and hence there is a direct relation between the density
enhancement and the dipolar anisotropies.
If we consider instead a source that emitted steadily but

since a finite time ti before the observation, so that the
maximum distance traveled by the observed CRs is cti, the
density of low energy particles will get suppressed due to
the magnetic horizon effect [5,20,21], since being their
trajectories substantially deflected the low energy particles
may have not enough time to reach the observer. The
energy Es below which this suppression appears is deter-
mined from the relation lDðEsÞ ∼ r2s=cti (i.e., for di ∼ R2).
The density of particles as a function of the emission

period measured in units of the diffusion length,
di ≡ cti=lDðEÞ, can be written following Ref. [1] as

n ¼ Q
4πcr2

ξðR; diÞ; ð22Þ

where ξ is the enhancement factor in this case. The factor ξ
obtained in numerical simulations is shown in Fig. 8 as a
function of R and for different values of the emission period
di. For small values of R, the factor ξ is close to unity, as
expected,while for increasingR the factor ξgrows as a result
of the diffusion enhancement and then drops due to the effect
of the magnetic horizon. As the period of emission shortens,
less diffusion is possible and thus the enhancement of the
density gets smaller. Also the cutoff at large R becomes
steeper for decreasing di, converging to the sharp cutoff of
the classical rectilinear propagation horizon at R ¼ di, as is
apparent for the lowest values of di displayed.
The lines shown in Fig. 8 correspond to a fit to ξ,

following Ref. [1], with the expression

ξðR; diÞ ¼
1

CðRÞ exp
�
−
�

R2

0.6di

�
0.8
�
: ð23Þ

For the two shortest periods considered, for which the
maximum distance traveled is smaller or equal to twice the
diffusion length (di ≤ 2), this diffusion inspired fit is not
expected to describe them, and hence the lines are not
plotted. In these cases the distribution is actually closer to
that expected for rectilinear propagation with a cutoff
at R ¼ di.
Regarding the distribution of the arrival directions

around the source position, we show it in Fig. 9 for two
different values of the source distance to diffusion length
ratio, Rs ¼ 0.5 and 2, and for several values of the duration
of the emission period di. In all cases they are smoothly
spread around the source and it turns out that the function in
Eq. (13) provides a reasonably good description, especially
in the directions close to the source position. As previously
discussed, this can be characterized by the values of hcos θi
and κ, and we now analyze the dependence of these
quantities on the source distance and duration of the
emission period in units of the diffusion length, Rs and
di, respectively.
We show in the left panel of Fig. 10 the results for hcos θi

as a function of Rs for several values of di. The distribution
is more isotropic for longer emission times, as expected.
The arrival directions are very concentrated around the
source direction when the diffusion length is much larger
than the source distance (Rs ≪ 1) and also for di → Rs, in
which case only the small fraction of particles emitted at the
beginning that suffered the smallest deflections had time to
reach the observer.
From the values of hcos θi and hcos2 θi obtained with the

simulated particles, the value of κ can be obtained from
Eq. (17). This is shown in the right panel of Fig. 10 for the
same values of Rs and di reported in the left panel. The
concentration parameter is very large for small values of Rs,
as the propagation is close to rectilinear, and decreases for
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FIG. 8. Enhancement factor of cosmic ray density as a function
of R for sources emitting since different times, parametrized by
the values of di quoted.
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increasing Rs due to the diffusion. The curves rise again at
large Rs, as the particles suffering large deflections have not
enough time to reach the observer.
We provide now some fitting functions for hcos θi and κ

as a function of Rs and di, that are useful to describe the
distribution of arrival directions for different physical
parameters (distance to the source and emission period,
magnetic field amplitude and coherence length, energy and
charge of the particles) without the need to perform new
simulations for each case.
In the diffusive regime, the dipole amplitude is related to

the density through Δ ¼ lD∇n=n, and from this relation a
good fit to hcos θi was obtained in [1] for the case of a
steady source. That fit can be slightly modified so that it
also applies for finite di values, as

hcos θi ≃ CðRsÞ
�
1þ

�
1.6 −

3

2di

��
R2
s

0.7d

�
0.8−0.5=di

�

≡ C0ðRs; diÞ: ð24Þ

This expression is accurate as long as Rs < di=2, in which
case the deflections of the particles are large. One may

further improve the agreement with the simulations by
requiring that in the limit Rs → di, where only particles
suffering very little deflections can reach the observer, one
should have that hcos θi → 1. A reasonable fit to the results
of the simulations can be obtained with the expression

hcos θi ≃ C0ðRs; diÞ þ ð1 − C0ðRs; diÞÞðRs=diÞ3; ð25Þ

as shown in Fig. 10. This expression is valid for all values
of Rs but as long as di > 2. For smaller values, i.e., when
the particles traveled less than a few diffusion lengths, the
above expression turns out to overestimate the actual value
of hcos θi.
For shorter maximum emission times, when di ≤ 2, a

good fit is given by

hcosθiðRs; diÞ≃ exp

�
−
Rsð1þRsÞ

3

�

þ
�
1− exp

�
−
Rsð1þRsÞ

3

���
Rs

di

�
3.7=di

:

ð26Þ
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The concentration parameter κ can be fitted by adding to
the steady result given in Eq. (20) a term describing the
observed growth as Rs approaches di, with the expression

κðRs; diÞ ≃ κsteadyðRsÞ þ
0.44

ðdi=RsÞ0.8þ0.4=di − 1
: ð27Þ

In Fig. 9 we show, with dashed lines, the Fisher distribu-
tions in Eq. (13) with values of κ and i as given by Eqs. (27)
and (18), using Eq. (25) or (26) depending on the value of
di, for the two values of Rs reported. It can be seen that the
curves provide a good description of the simulated dis-
tribution in all cases in the region where the density of
particles is significant. Small differences appear only in
some cases when considering backward directions with
respect to the source, which are associated with very low
fluxes when the propagation is quasirectilinear.
From the values of the enhancement factor ξ, hcos θi, and

κ as a function of Rs and di, we can describe the expected
density and angular distribution of arrival directions for any
situation by specifying the magnetic field, source distance,

and emission time of interest. As an example, we show in
Fig. 11 the enhancement factor that allows to obtain the
spectrum, for a source at a distance of 4 Mpc, emitting since
different initial times (as labeled in the plot) in the presence
of a turbulent magnetic field with a coherence length equal
to 30 kpc. The enhancement factor is plotted as a function
of E=Ec, which means that the spectrum of particles with
the same rigidity experience the same enhancement. The
enhancement factor tends to unity at high energies, where
the propagation is quasirectilinear, and it increases for
lower rigidities due to the diffusion, and finally drops at the
lowest rigidities due to the magnetic horizon effect. The
maximum of the enhancement is attained at the energy for
which lDðEmax=EcÞ ≃ 1.1r2s=cti, and the enhancement
factor at that energy is ξmax

i ≃ 0.8cti=rs [1]. The peak will
thus appear at higher energies for heavier nuclei. If the
source were to emit a mixed composition, with the same
spectral shape for each component as a function of the
rigidity, the enhancement factor found would then lead to
an increase in the average mass number as the energy
increases.
In Fig. 12 we show the values of hcos θi and κ as a

function of E=Ec for the same source distance and
coherence length considered in Fig. 11. These parameters
are relevant to obtain the expected dipolar amplitudes and
the anisotropies on smaller angular scales, respectively.
Notice that the total dipole will be a superposition of

the contributions from all the individual sources, where
each nuclear component j of a source in the direction k̂i
contributes to Δ⃗ðjÞ

i ðEÞ ¼ 3hcos θiðjÞi k̂i, where hcos θiðjÞi is
the mean cosine angle around the source position for nuclei
jwith energy E. Then, if fj is the fraction of the source flux
emitted as nuclei of type j (in a differential energy bin
around E), considered to be the same for all sources for
simplicity, the total dipole can be obtained as

Δ⃗ðEÞ ¼
X
i;j

fj
nðjÞi ðEÞ
ntðEÞ

Δ⃗ðjÞ
i ðEÞ; ð28Þ

 1

 10

 100

 0.1  1  10  100

rs = 4 Mpc
lc = 30 kpc

en
h

an
ce

m
en

t 
fa

ct
o

r

E/Ec

cti = 5 Mpc
20 Mpc
80 Mpc

320 Mpc
steady

FIG. 11. Enhancement factor ξ for a source at a distance
rs ¼ 4 Mpc, and for different extension of the emission period
as a function of E=Ec. A coherence length of 30 kpc was adopted
for the turbulent magnetic field.
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where ntðEÞ ¼
P

i;j fjn
ðjÞ
i ðEÞ, with nðjÞi ðEÞ being the

density at the observer’s position that would result if the
source i were just emitting nuclei of type j. From the left
panel of Fig. 12 we see that if there is a significant
contribution of cosmic rays coming from a very local
source, the time since it started to emit cannot be too short
in order that the dipole anisotropy does not exceed the
values of few % (< 10%) observed in the energy range
from 4 to 30 EeV [22].
Regarding the anisotropies at smaller angular scales,

since hθ2i ≃ 2=κ, only for values κ > 2 they are expected to
be present. For the example shown in the right panel of
Fig. 12, this can only be expected to happen for energies
larger than about 5Ec.

V. DISCUSSION

We have considered CR propagation through the turbu-
lent extragalactic magnetic fields, and studied the effects on
the spectrum and anisotropies that result when the source
emission is transient. This can result either from a burst in
the source activity or be due to the finite time elapsed since
a continuous emission started. We considered the main
changes that take place in the diffusive regime, and then
focused in the transition to the quasirectilinear regime,
which is the situation in which one expects to see more
localized CR flux excesses around the source direction. We
also compared the results obtained with the ones usually
considered, that correspond to steady sources emitting for
very long times. The main results of this study are:

(i) The finite time of the emission leads in general to a
suppression of the spectrum at low energies, an
effect that is usually referred to as the “magnetic
horizon” suppression. This is because at low ener-
gies it can take a time much longer than the age of
the source for the diffusing particles to reach the
observer, and hence essentially no CR flux is
observed from the source. This feature can be
helpful to account for the apparently very hard
spectrum associated with each observed mass com-
ponent at ultrahigh energies.

(ii) In the case of a bursting source, also a suppression
appears at the high-energy end due to propagation
effects, leading to a spectral density peaked when
lDðE=EcÞ ≃ r2s=2ct (see Fig. 4). The fact that the
peak appears at higher energies for higher mass
components can give rise to scenarios that could
explain the spectrum and composition observations
at the highest energies [1]. A detailed comparison
with the experimental results, including the expected
anisotropies, would constrain the relevant parame-
ters characterizing the bursting source and mag-
netic field.

(iii) For the bursting source, only if the traveled distance
ct is slightly larger than rs one can expect that the

arrival directions would be strongly concentrated
around the source direction, having a typical spread
θ̄ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hcos θip

≃ 1.1ðd=Rs − 1Þ, so that for in-
stance for d ¼ 1.3Rs one has that θ̄ ≃ 20°.

(iv) If the propagation time is larger, one may actually
have a deficit in the CR flux around the source
direction at the energies for which the diffusion
length becomes comparable or larger than the
distance to the source (Rs < 1). In this situation,
the CRs would actually arrive preferentially side-
ways with respect to the direction to the source, and
in some cases the CRs may even arrive preferentially
from the opposite hemisphere with respect to the
source, as is apparent from the negative values of
hcos θi appearing in Fig. 7 for d ≤ 2. This is because
in these conditions the CRs typically make less than
a whole turn in the available time, but those traveling
straighter from the source have already passed
through the Earth in the past.

(v) When the burst time is farther in the past, such that
the distance traveled is much larger than both the
diffusion length (d ≫ 1) and the source distance
(d ≫ Rs), the observed CR distribution acquires an
approximately dipolar shape, with Δ ≃ 1.5Rs=d,
and the quadrupolar component is subdominant,
with q=Δ ≃ 7.5ðRs=dÞ3.

(vi) For a source emitting continuously since a given
initial time ti, one has that the distribution is always
peaked towards the source direction. It can generally
be described with a Fisher distribution, except
possibly for backward directions when the propa-
gation from the source is quasirectilinear, in which
case almost no particles can arrive from directions
opposite to that of the source.

(vii) It is useful to view this case as a succession of many
bursts, since the initial emission time up to the
present, and the contribution which is more localized
towards the source direction would be that emitted
later, involving travel times only slightly larger that
of straight propagation from the source, while those
emitted earlier should arrive more isotropically
distributed (as long as di − Rs ≫ 1).

(viii) It is clear that if the emission were not constant in
time after the source started its activity, the relative
weight of the different “bursting episodes” in the
above picture would be affected and hence the final
appearance of the CR distribution would be accord-
ingly modified. For instance, an increased emission
in more recent times would make the source appear
more pointlike.

(ix) If a localized excess in the CR arrival distribution
were to be detected with large significance at the
highest observed energies, the results obtained in
this paper could be useful to better characterize
the source emission history. Given that there are

COSMIC RAY ANISOTROPIES FROM TRANSIENT … PHYS. REV. D 103, 023012 (2021)

023012-11



indications that the CR fluxes may consist of a
superposition of different nuclear charges, the pic-
ture would be further complicated by the combina-
tion of the different images of each nuclear
component. In some cases, such as in that of a
bursting source, the almost independence of the
anisotropy signal with energy in the diffusive regime
could however simplify the analysis. In this case, the
superposition of the dipolar pattern from the source,
which is similar for all components as long as they
diffuse, with an isotropic background population,
could result in a dipolar pattern that will just change
with energy due to the energy dependence of the

relative contribution of the bursting source to the
overall CR flux. Moreover, a departure from a
dipolar pattern would be expected for d < 2π, i.e.,
if the propagation is close to the quasirectilinear
regime, in which case the CR distribution may turn
out to actually be enhanced along directions away
from the source location.
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