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ABSTRACT. Linear impulsively controlled systems are suitable to describe a venue of real-life problems, going from
disease treatment to aerospace guidance. The main characteristic of such systems is that they remain uncontrolled for
certain periods of time. As a consequence, punctual equilibria characterizations outside the origin are no longer useful,
and the whole concept of equilibrium and its natural extension, the controlled invariant sets, needs to be redefined. Also,
an exact characterization of the admissible states, i.e., states such that their uncontrolled evolution between impulse
times remain within a predefined set, is required. An approach to such tasks — based on the Markov-Lukasz theorem —
is presented, providing a tractable and non-conservative characterization, emerging from polynomial positivity that has
application to systems with rational eigenvalues. This is in turn the basis for obtaining a tractable approximation to the
maximal admissible invariant sets. In this work, it is also demonstrated that, in order for the problem to have a solution,
an invariant set (and moreover, an equilibrium set) must be contained within the target zone. To assess the proposal, the
so-obtained impulsive invariant set is explicitly used in the formulation of a set-based model predictive controller, with
application to zone tracking. In this context, specific MPC theory needs to be considered, as the target is not necessarily
stable in the sense of Lyapunov. A zone MPC formulation is proposed, which is able to i) track an invariant set such that
the uncontrolled propagation fulfills the zone constraint at all times and ii) converge asymptotically to the set of periodic
orbits completely contained within the target zone.

1. INTRODUCTION

Impulsive systems are a subclass of dynamical systems (indeed, a hybrid dynamical system) in which resetting
or impulsive events produce a discontinuity of the first kind in the state trajectories. This kind of systems has been
extensively studied in the literature, and results concerning the existence, uniqueness and stability of solutions have
been achieved ([8, 44, 23]).

Particularly, when the impulsive nature of the control actions (inputs) is the one that produces the discontinuity,
we have an impulsively controlled system. Many control problems fall in the scope of impulsively controlled
systems, as it is the case of drug scheduling in several disease treatments (by taking pills [40, 41, 37, 34, 27] or by
applying injections [1, 20]), or that of aircraft guidance [4, 5, 32]. The objective in this kind of control problem is
to maintain the closed-loop system in a target region (defined by the problem itself) where the operation is safe.
According to the meaning of the state variables, these regions does not include the origin as an interior point, since
the origin uses to be a state of emptiness or rest, which is not safe. So, there is no formal equilibrium in the target
region, and the control objectives are redefined to steer the closed-loop system as close as possible to the target
region.

To accomplish the control objective properly —i.e., to ensure that the state will reach and remain inside the
target region — it is necessary to formally define both, an extended equilibrium and extended controlled invariant
set. Following the ideas in [42] and [38] a two-set definition can be used, in which an equilibrium or controlled
invariant set is such, only with respect to a larger set that contains the state free responses between the impulses.
Although potentially conservative (since the outer set can be as large as desired) these definitions show to be useful
to define equilibrium and controlled invariant sets with respect to target regions, and provides formal tools to set
the control problem, mainly when the controller is a model-based one [42, 38]. In addition, based on this two-set
generalization, formal notions of impulsive closed-loop convergence and stability [36, 13] can be applied.

In this work, we discuss the way to formally compute exact admissible sets for impulsively controlled lin-
ear systems, with respect to a given target set. In the seminal work [18], the study of admissible sets for linear
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continuous-time system is approached, where the initial state of an unforced linear system is called output admis-
sible with respect to a constraint set Y if the resulting output function satisfies the pointwise-in-time condition
y(t) ∈ Y, t ≥ 0. In this work, we will refer to admissible sets for constrained state trajectories during the inter-
val between impulses. For sake of shortness, we will omit to denote with admissible certain sets as equilibrium,
feasible and invariant sets, where their admissibility will be evident from context. This notion, already introduced
into the analysis of linear impulsive systems in [42] and mentioned in [38], was not exactly characterized yet: only
approximating techniques are proposed. In such context, a first contribution of this paper is to solve - by means of
a tractable methodology - the particular problem of characterizing the set of states for which the corresponding free
trajectories remain in a given target set (this set denoted as admissible set). The free propagation of the states is
expressed as univariate polynomial thanks to a relevant change of variable, and then the set of trajectories included
in the target set is characterized through the Linear Matrix Inequalities (LMI) conditions on the initial states. These
conditions are based on the Markov-Lukasz theorem (see [35]) and they have been inspired by the work [24].

A procedure is then proposed to compute the maximal invariant set with respect to the admissible set. The
resulting set - defined as impulsive invariant set - satisfies the constraints at all times, meaning property that the
system state remains within the set at the impulsive times (the times at which the impulsive inputs enter the system)
and does not leave the target set at any time.

A novel set-based MPC algorithm is proposed, that exploits the tractability and utility of this description, and
follows the procedure exposed in [3, 19, 15] extended through the explicit use of the new characterizations of
invariant sets. This way, a closed-loop stable controller able to steer the system to the target region, and to maintain
it in such a set indefinitely was obtained, with guaranteed feasibility at all times.

The main theoretical contribution of this work is the development of a proof of necessary conditions for the
validity of a target zone for a zone tracking control with impulsive control inputs.

The effectiveness of the proposed controller formulation is assessed through simulation.

1.1. Notation. Let X ⊆ Rn and Y ⊆ Rm. A correspondence c : X ⇒ Y defines for each x ∈ X a set c(x) ⊆ Y.
A correspondence (also denoted as set-valued function) is a generalization of the concept of function, f , which
for each x ∈ X defines a unique f(x) ∈ Y. The euclidean distance between two points x, y ∈ Rn is denoted by
‖x− y‖ := [(x− y)′(x− y)]1/2. The distance from x ∈ Rn to X ⊆ Rn is given by DistX(x) := infy∈X‖x− y‖.
The Minkowski sum X ⊕ Y is defined by X ⊕ Y := {x + y : x ∈ X, y ∈ Y}. The open ball with center in
x ∈ X and radius ε > 0 is given by Bε(x) := {y ∈ X : ‖x − y‖ < ε}. The ε-neighborhood of set X is given
by Bε(X) := {X ⊕ Bε(0)}. Given x ∈ X, we say that x is an interior point of X if it there exists ε > 0 such that
the open ball Bε(x) ⊆ X. The interior of X is the set of all interior points and it is denoted by intX. The infinite
sequence of elements, {xk}∞k=1, will be simply denoted as {xk}.

2. PRELIMINARIES

First, consider the following impulsively controlled linear system (ICSys)

ẋ(t) = Ax(t), t 6= τk,(2.1)

x(τk) = x(τ−k ) +Bu(τk−1), k ∈ N,

where x ∈ X ⊂ Rn represents the state, A ∈ Rn×n is the transition matrix, u ∈ U ⊂ Rm is the input, τk = kT ,
for a time period T > 0 is the jump or impulse time, and τ−k denotes the time just before τk (i.e., x(τ−k ) =
limδ→0+ x(τk − δ)). The state set X is assumed to be a closed polyhedron, the input set U is assumed to be a
compact polyhedron, and both are assumed to contain the origin in their nonempty interior.

For any t ∈ [τk, τk+1), k ∈ N, the solution of 2.1 is given by x(t) = eAtx(τk), and x(τk+1) = x(τ−k+1) +

Bu(τk). Given that x(τ−k+1) = eATx(τk), then, we can write

x(t) = eAtx(τk), t ∈ [τk, τk+1),(2.2)

x(τk+1) = eATx(τk) +Bu(τk),

which describe the free response and the jump produced by the input, respectively.
In order to properly characterize the equilibrium and invariant sets in the next sections, the following definitions

concerning the uncontrolled or free responses is made.

Definition 1 (Admissible set). Consider the ICSys system (2.1) and a polytopic non-empty set Y ⊆ X. The
admissible set of Y is given by

YA := {x ∈ Y : eAtx ∈ Y, t ∈ [0, T ]}.

Set YA is the set of initial states for which the free responses - that are independent of u - remain in Y for at
least an interval of length T . As in [42], this set can be described by the intersection of an uncountable set of
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constraints as follows:

(2.3) YA :=
⋂

τ∈[0,T )

e−AτY.

Note that for each τ ∈ [0, T ) the set e−AτY is polytopic, since e−Aτ is a linear map, so YA is given by the
intersection of (an uncountable number of) polytopes. As a result, set YA is closed and convex and can be char-
acterized and computed by following the ideas presented in [35, 25, 6] concerning spectrahedron representation.
The spectrahedron representation of admissible sets is one of the main contribution of this work, that allows us to
compute equilibrium and invariant sets for system (2.1), as detailed next in Subsection 3.1.

2.1. Sampling the ICS. By sampling the ICSys (2.1) at times τk, k ∈ N, the Discretized ICSsys (DICSys) —i.e.,
a discrete-time system associated to the ICSys— is obtained 1

x(τk+1) = Adx(τk) +Bdu(τk),(2.4)

withAd = eAT andBd = B. The idea is to use this simplified system to infer properties of the ICSys. Particularly,
easy computations of controlled invariant sets for the ICSys will be obtained based on controlled invariant sets for
DICSys. To this end, and for the sake of clarity, the following definitions —concerning classical equilibria and
controlled invariant sets for discrete-time systems— are recalled.

Assumption 1. The pair (Ad, Bd) is controllable and the state is measured at each sampling time.

Definition 2 (Controlled equilibrium set (CES)). Consider the DICSys system (2.4). A nonempty convex set Xds ⊂
X is a controlled equilibrium set if for every xs ∈ Xds exists us ∈ U such that xs = Adxs +Bdus.

Definition 3 (Controlled invariant set (CIS) [10]). Consider the DICSys system (2.4). A nonempty convex set
Xdinv ⊂ X is a controlled invariant set if for every x ∈ Xdinv exists u ∈ U such that Adx+Bdu ∈ Xdinv. A CIS with
nonempty interior is denoted a proper CIS.

Clearly, every CES is a CIS (although exceptionally are a proper CIS, since they use to have an empty inte-
rior). However, the fact that any CIS contains a CES is not trivial. In [17] (Theorem 3.3) a proof is given for
the continuous-time case, based on the theorem of Kakutani [28] (a generalization of the Brouwer’s fixed-point
theorem). The next theorem provides a similar result for linear discrete-time systems with polytopic constraints,
directly based on the Brouwer’s fixed-point theorem (Theorem 4 in Appendix 7).

Theorem 1. Consider the DICSys (2.4). Then, every compact and convex CIS Xdinv ⊂ X contains a CES Xds (this
set may be a singleton Xds = {xs}).
Proof. We present here a new proof of Theorem 1 (different from the one given in [17]) that is directly based on
the Brower fixed point. Consider a compact and convex CIS Xdinv and the autonomous (or closed-loop) system
x+ = fκ(x), where fκ(x) := Adx+Bdκ(x), for each x ∈ Xinv, and κ(x) is defined by

κ(x) := arg min
u∈U(x)

V (x, u),(2.5)

being U(x) := {u ∈ U : Adx+Bdu ∈ Xdinv} the set of all u’s that keep a particular x ∈ Xdinv in Xdinv, and V (x, u)
a real convex function on U, for each x ∈ Xdinv (for instance, V (x, u) := u2).

In the optimization problem (2.5), u is the optimization/decision variable, x the optimization parameter and
U(x) is a correspondence (U : Xdinv ⇒ U). By the definition of CIS, the correspondence U(x) is non-empty for
each x ∈ Xdinv, and U(x) is convex because Xdinv is convex and DICSys (2.4) is linear. Furthermore, U(x) is
compact because both, Xdinv and U are compact and the DICSys (2.4) is linear.

To show that U(x) is continuous on Xdinv, it is necessary to show that it is both upper and lower semicontinuous
(according to Definitions 7 and 8, in Appendix 8), which is proved in Lemmas 4 and 6, respectively, in the same
Appendix 8.

Summarizing, we have that V (x, u) is convex (and so, strictly cuasi-convex) and continuous on U ⊃ U(x),
while U(x) is non-empty, convex, compact for each x ∈ Xdinv, and continuous on Xdinv. Then, by Theorem 6, in
Appendix 8, it follows that κ(x) is a continuous function on Xdinv, which implies that fκ(x) is also a continuous
function. Finally, it is easy to see that fκ maps the compact and convex CIS Xdinv into itself and so, by the Brouwer’s
fixed point theorem (Theorem 4, in Appendix 7), there is a state xs ∈ Xdinv such that fκ(xs) = xs. This means that
xs = Adxs +Bdκ(xs), i.e., for the fixed point xs there exists an us ∈ U, us := κ(xs), such that xs is a controlled
equilibrium point for DICSys (2.4), which conclude the proof. �

Remark 1. Note that the compactness and convexity of Xdinv are crucial in Theorem 1. It is quite easy to find
counterexamples otherwise (see [10], chapter 4, exercise 3).

1Note that this is the sampling for an impulsively controlled system, which is different from sampled-data formulations, where usually a
zero order hold (ZOH) is assumed for the inputs.
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2.2. Controlled equilibrium and invariant sets for ICSys. In the context of ICSys, the equilibrium and its gen-
eralizations needs to be defined in a quite general form in contrast to typical continuous or discrete-time systems.
Indeed, given that there are periods of uncontrolled state evolution, the following definitions are necessary:

Definition 4 (Impulsively controlled equilibrium set (ICES) [38]). Consider the ICSys system (2.1) and a convex
set Y ⊆ X. A nonempty convex set Ys ⊆ Y is an impulsive controlled equilibrium set if for every xs ∈ Ys, it
follows that: (i) {eAtxs : t ∈ [0, T ]} ⊂ Y and (ii) it there exists us ∈ U such that eATxs + Bus = xs. Every
single state xs in Ys is denoted as impulsive equilibrium state w.r.t Y.

Remark 2. Note that in general, the only formal controlled equilibrium pair (xs, us) of ICSys (2.1) — i.e., those
that requires that both the jumps and the free response remains in a fixed state — is the origin, i.e.,(xs, us) = (0, 0)
[44], since this is the unique no-jump scenario. This fact critically shortens the application scope of impulsive
control systems representations, since the origin (meaning rest or emptiness) is not included into the target sets
(zones) of interest [42, 38].

Definition 5 (Impulsive controlled invariant set (ICIS) [42]). Consider the ICSys system (2.1) and a convex set
Y ⊆ X. A nonempty convex set Yinv ⊂ Y is an impulsive controlled invariant set if for every x ∈ Yinv exists
u ∈ U such that (i) {eAtx : t ∈ [0, T ]} ⊂ Y and (ii) eATx + Bu ∈ Yinv. An ICIS with nonempty interior is
denoted a proper ICIS.

Note that neither Ys nor Yinv are unique for a given Y. Clearly, for a given Y, an ICES is an ICIS (although
usually it is not a proper ICIS, i.e, it has an empty interior). Furthermore, ICES and ICIS for ICISys (2.1) are also
CES and CIS for the DICSys (2.4) (i.e., eAT (x+Bu) = Adx+Bdu), and CES and CIS for the DICSys (2.4) are
ICES and ICIS for ICISys (2.1) if Y = Rn. Finally, note also that an ICIS, Yinv, can be seen as a CIS contained in
YA (this subtle fact will be used next to characterize and compute ICIS).

A question that naturally arises at this point is if Theorem 1 can be extended to the case of ICISys (2.1).

Theorem 2. Consider the ICSys (2.1) and a convex set Y ⊆ X. Then, every compact and convex ICIS, Yinv,
contains an ICES, Ys.

Proof. Note first that conditions (ii) in Definitions 4 and 5 mean that the ICES and ICIS w.r.t. Y, for the ICSys
(2.1), are also CES and CIS, respectively, for the corresponding DICSys (2.4). Then, Yinv is also a CIS for the
DICSys and contains a CES, by Theorem 1. Denote this CES as Yds . Given that any state xs in Yds is also in Yinv,
and Yinv is an ICIS w.r.t. Y, then {eAtxs, t ∈ [0, T ]} ∈ Y, which means that Ys is a ICES w.r.t. Y. �

2.3. Control Problem. A control problem that frequently arises in applications of ICSys, known as Zone Track-
ing, can be stated as follows:

Control Problem. Given a compact convex set T ⊆ X, denoted as the target set, coming from the application
itself, the control objective is to feasibly steer the system state to T, and maintain it there indefinitely.

To feasibly steer the system to somewhere means fulfill the input and state constraints at all time instants, so
the control problem is closed related to the admissible set of T and X, TA and XA, respectively. Furthermore, to
remain indefinitely in a given set, by means of feasible control actions, means invariance.

Therefore, according to this latter concept, the set T coming directly from the applications needs to be refined
as

Definition 6 (Valid target set). Consider the ICSys system (2.1). A target set T ∈ X (coming from the control
problem definition) is a valid target set if it contains an impulsive controlled invariant set (ICIS)(i.e., it there exists
a non-empty Tinv).

The latter definition makes sense for most of the applications. Indeed, if the conditions of Definition 6 are not
fulfilled, then the problem is not well formulated, since it is not possible to remain in T indefinitely. Note that, in
some cases, to ensure that a given T is a valid objective region it is necessary to reduce the time period T since
shorter time periods produce smaller drifts (see [38] for details).

A direct consequence of Definition 6 and Theorem 2, is stated next.

Corollary 1. Consider the ICSys (2.1) and a valid target set T as the one defined in Definition 6. Then, T contains
a nonempty ICES, say Ts.

Figure 1 shows an schematic plot of the control problem for ICSys, while Figure 2 describes all the equilibrium
and invariant sets sets involved in it.
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x(τk)

x(τ−k )

TX

(A) Control objective for impulsively controlled systems.
The solid points represent the states at times τk, k ∈ N,
just after the jump, while the empty points represents the
states at times τ−k , just before the jumps. The solid black
lines represent the free response of the system, at each
interval t ∈ [τk, τk+1), k ∈ N.

x(τk)

x(τ−k )

TX

(B) Inadmissible trajectory for impulsively controlled
systems. Although the states sampled at times τk, k ∈ N,
just after the jump, and at times τ−k , just before the jumps
are feasible and converge to the target zone, the state tra-
jectories (solid black lines) leave the target and the feasi-
ble sets.

FIGURE 1. Illustration of the sets and trajectories for the zone tracking problem on impulsively
controlled systems.

XA T

TA
Tinv

Ts

X

Xs

FIGURE 2. Illustrative plot of the sets of interest in the problem description: X feasible set
(blue), XA the admissible set of X (yellow), T the valid target set (red), Xs and Ts the ICES in X
and T, respectively (the dash and solid orange lines), TA the admissible set of target set (cyan)
and the impulsive invariant set Tinv (green).

3. CHARACTERIZATION OF THE CONTROLLED INVARIANT SETS FOR ICSYS

In this section it is shown how to characterize impulsive control invariant sets of ICSys (2.1), by means of
control invariant sets of its sampled version, DICSys (2.4). Next, a key theorem of the article is introduced:

Theorem 3. Consider the ICSys (2.1) and a valid target set T ⊂ X. If a CIS Tdinv of the DICSys (2.4) is a subset
of TA, then it is also an ICIS of the ICSys (2.1). We denote this set as Tinv for clarity.

Proof. Given that Tinv ⊂ TA ⊆ T, then {eAtx : t ∈ [0, T ]} ∈ T for every x ∈ Tinv. Particularly, eATx is in T.
Furthermore, since Tinv is a CIS for the DICSys (2.4), then it there exists some u ∈ U such that x+ := eATx+Bu,
is in Tinv, which concludes the proof. �

Remark 3. Note that if a typical impulsive system representation - as the ones presented in [44, 39, 43] - is used to
describe the ICSys (2.1), almost all the previous definitions are still valid, but Theorem 3 is no longer true. Indeed,
if the free response is considered after the input jump, a CIS in TA is not necessarily an ICIS. This is so because in
that case it is not possible to characterize a single set {eAtTinv, t ∈ [0, T ]} which is in T, i.e., CIS condition only
says that for each x ∈ Tinv exists an u ∈ U such that eAT (x+Bu) ∈ Tinv, but the inputs are in general different
for different states. On the other side, with representation (2.1), the input effect occurs after the free response, and
the existence of an u ∈ U that take the state back to Tinv is enough.

Remark 4. Note also that if a given set Yinv is a CIS but is not contained in TA, then the set Yinv ∩ TA is not
necessarily a CIS and, so, the hypothesis of Theorem 3 are no longer fulfilled (and Yinv is not an ICIS). In other
words, for a set Yinv to be an ICIS, it should be computed from the beginning as a subset of TA, which is a point
to be discussed in the next section.

Figure 3 shows an schematic plot of a CIS Tinv ⊂ TA, which is also an ICIS.
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T

TA

Td
inv

xs

eATxs

eATTinv

Ts

Xs

FIGURE 3. Illustrative plot of . A CIS Tdinv contained in TA is also an ICIS, Tinv (green).

3.1. Admissible Set of T in spectrahedron representation. The idea now is to characterize the admissible set
of T, TA, as the intersection of an uncountable number of polytopic sets (in the form of hyperplane constraints),
which is known as spectrahedron representation. Let T be a polytopic set described by

(3.1) T = {x ∈ X : Hx ≤ v},

with H ∈ R`×n and v ∈ R`×1, where ` is a minimal number of hyperplanes that describe T. Next, the set TA will
be described in terms of linear matrix inequalities (LMI) as in [25]. For the sake of completeness, the analysis is
included in this work.

Assumption 2. (i) The eigenvalues of matrix A are rational numbers λr ∈ Q, with no imaginary part, so that
λr = ηr

ρ where ηr ∈ Z, ρ ∈ N is the least common denominator of the eigenvalues and r = 1, · · · , n. The
eigenvalues are ranked in increasing order, such that η1 is the smallest (possibly negative) integer and ηn is the
largest (possibly positive) integer. (ii) The eigenvalues of A are all distinct.

For T described as in (3.1), the admissible set is given by

(3.2) TA = {x ∈ X : HΦ(t)x ≤ v,∀t ∈ [0, T ]},

where Φ(t) = eAt is the transition matrix. Addressing inequality (3.2) row by row, it comes

(3.3) hi

n∑
j=1

Φj(t)xj ≤ vi, i = 1, · · · , l

where hi is the i-th row of H , vi is the i-th component of v and Φj the j-th column of the transition matrix.
Summation of the columns of the transition matrices scaled by the corresponding state component is just the
column-wise expression of the matrix-by-vector multiplication. This can be interpreted as the contribution of each
state component to the dynamic evolution through the transition Φ. The transition matrix can be expressed in its
modal form (see Appendix 9.5) as

Φ(t) =

n∑
r=1

φreλrt,

where λr is the r-th eigenvalue of the dynamic matrix A, and φr is the r-th matrix obtained from the modal
decomposition of Φ. This can be used to rewrite (3.3) as

(3.4)
n∑
r=1

βirxe
λrt ≤ vi, t ∈ [0, T ], i = 1, · · · , l,

with βir = hiφ
r, since hi can be moved inside the sum in (3.3).

Proposing the change of variables w = e−
1
ρ t, follows eλrt = (e−

1
ρ t)−ηr = w−ηr , the interval on the new

variable is w ∈ [W, 1] with W = e−
T
ρ and the inequalities (3.4) can be expressed as

n∑
r=1

γir(x)w−ηr − vi ≤ 0, w ∈ [W, 1], i = 1, · · · , l,

where γir(x) = βirx are linear functions of the initial state x and ηr ∈ Z, for r ∈ 1, · · · , n.
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At this point, we are interested in expressing the constraint as a polynomial with positive powers of the variable
w. If ηn —which is the largest exponent— is positive, we can multiply the previous expression by w−η and its
reciprocal such that all the resulting terms in the sum correspond to non-negative integer powers of w. We denote
this degree-shift as η̄ := max{0, ηn}, and it comes that

1

wη̄

[
n∑
r=1

γjr(x)w−ηr+η̄ − viwη̄
]
≤ 0, w ∈ [W, 1], i = 1, · · · , l.

Noting that the factor 1
wη̄ is non-negative in the interval w ∈ [W, 1], the previous condition can be written as a

polynomial positivity condition as follows

(3.5) Pi(w) =

η̄∑
d=0

πi,d(x)wd ≥ 0, w ∈ [W, 1], i = 1, · · · , l,

where πi,d(x) = −γjd(x) + δd,η̄vi, for d ∈ {0, · · · , ηn + η̄}, δi,j denotes the Kronecker’s delta function (the case
of null eigenvalues is considered in a single formulation). The vi coefficient is then considered for d = η̄.

The Lukasz-Markov theorem states that a polynomial Pi(w) is non-negative if and only if it can be written as a
weighted sum of squares (see Appendix 9.2). Also, from [24, Lemma 2] it can be stated that inequality (3.5) will
be satisfied (i.e. the polynomial Pi is non-negative) if its vector of coefficients πi,d(x) is the image of two positive
semi-definite matrices Yi,1 and Yi,2 through linear operators Λ∗i,1 and Λ∗i,2, as follows

(3.6) Pi(x) = Λ∗i,1(Yi,1) + Λ∗i,2(Yi,2), Yi,1, Yi,2 � 0.

The operators Λ∗i,1 and Λ∗i,2 are defined in [35]. Then, the set TA is described by a semi-algebraic set where each
element x fulfills the condition (3.6):

(3.7) TA = {x ∈ X : P (x) = Λ∗1(Y1) + Λ∗2(Y2), Y1, Y2 � 0}.

3.2. ICES computation. The ICES can be computed as the intersection of TA and the CES of the DICSys system
(2.4). The resulting ICES can be interpreted as a slice of the spectrahedric set TA defined by the LMI (3.7) and the
CES defined by equality constraints.

3.3. CIS computation - Polytopic Inner Approximation. Tools for invariant set computation for generic convex
sets (e.g. spectrahedra) are not widely available. Nevertheless, there are efficient algorithms for computing invari-
ant sets with respect to polytopes. Note that a polytope with all its extreme points contained in a spectrahedron
can be considered as an inner approximation. Then, inner polytopic approximation of the semidefinite constraints
enable the use of classical algorithms for computation of invariant sets.2

Let us denote T̂A a polytopic inner approximation of TA. By means of classical algorithms ([26, 29]), the
computation the maximal CIS for the DICSys (2.4) contained in T̂A is an invariant set for the DICSys. Also, note
that this set is also an inner approximation to the maximal ICIS for the ICSys (2.1) w.r.t. T, and the continuous
time trajectories lie within T at all times.

The set is typically computed recursively, where the successive controllable sets are obtained by the following
recursion

Sk+1 = {x|Adx+Bdu ∈ Sk, u ∈ U},
and terminating once Sk+1 = Sk.

In order to obtain the invariant set within the target zone T, the algorithm is initialized with S0 = T̂A. For
the computation of the feasible set with respect to X, the algorithm is initialized with S0 = X̂A, instead. The

resulting ICISs (which are also CISs, as previously explained) contained in X and T are denoted by X̂A
inv

and
T̂Ainv respectively.

The next section takes advantage of it to design a model predictive controller.

4. ZONE MPC CONTROL

This section is devoted to introduce zone model predictive control (zMPC) formulations that make an explicit
use of the ICIS characterized in the previous sections. The control objective — as stated in the Control Problem
definition of Subsection 2.3 — is to feasibly steer the impulsively controlled system (2.1) to the target zone T
(which does not necessarily contains the origin) and keep it there indefinitely.

2The subject of polytopic approximation of convex bodies is well studied and is beyond the scope of this work, but the reader is referred to
[21, 22, 12] for a thorough review on the subject.
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Two different controllers are presented next: the first one is an MPC based on the use of artificial equilibrium
variables [14], which ensures asymptotic stability. The second one is a set-based MPC [3, 30], which guarantees,
in addition, finite-time convergence.

4.1. Zone MPC based on Artificial Variables. The DICSys (2.4) is used for predictions and an invariant set Tdinv

contained in TA (prferably the largest) acts as target set. The cost function to be minimized on-line by the MPC is
given by

JN (x,u, xs, us) =

N−1∑
j=0

‖x(τj)− xs‖Q2 + ‖u(τj)− us‖R2 + γdistTA(xs)(4.1)

where x = x(τ0) represents the current state, u = {u(τ0), u(τ1), . . . , u(τN−1)} is the predicted sequence of
inputs, and Q and R are positive definite and semi-definite matrices, respectively.

Remark 5. The term distTA(xs) is approximated by using an additional optimization variable x∗, which is forced
to be in TA, and by including the cost term ‖x − x∗‖2. It is computed as the optimization problem given by
distTA(xs) = minx∗∈TA ‖xs − x∗‖. The problem in included into the MPC and is solved simultaneously by
modifying the cost function, which now reads

(4.2)
JN (x,u, xs, us, x

∗) =

N−1∑
j=0

‖x(τj)− xs‖Q2 + ‖u(τj)− us‖R2

+ ‖xs − x∗‖QO2 ,

and constraint x∗ ∈ TA is included in the optimization (4.3), introduced next.

The optimization problem to be solved at each time τk is as follows:

min
u,xs,us,x∗

JN (x,u, xs, us, x
∗)(4.3a)

s.t.

x(τ0) = x(4.3b)

x(τj+1) = Adx(τj) +Bdu(τj), j ∈ 0, · · · , N − 1(4.3c)

x(τj+1) ∈ XA, j ∈ 0, · · · , N − 1(4.3d)

u(τj) ∈ U, j ∈ 0, · · · , N − 1(4.3e)

Adxs +Bdus = xs, xs ∈ Xs,(4.3f)

x(τN ) = xs,(4.3g)

x∗ ∈ TA,(4.3h)

In the latter optimization problem, x is the optimization parameter while u, xs, us, x
∗ are the optimization

variables. Constraint 4.3f forces the pair of additional variables (xs, us) to be contained in (an inner polytopic
approximation of) the lifted admissible invariant set of the sampled system. The terminal constraint 4.3g forces
the last state on the control horizon to reach the equilibrium set, as this will be used to ensure stability. Constraint
4.3h is included to approximate the distance function in the cost by a quadratic term (Remark 5).

Once the MPC problem is solved at time τk, the optimal solution is given by the optimal input sequence

(4.4) u0(x) = {u0(x, τ0), u0(x, τ1), . . . , u0(x, τN−1)},
and the optimal additional variables (x0

s(x), u0
s(x)), while the optimal cost is denoted as J0

N (x) :=
JN (x,u0, x0

s, u
0
s). The control law, derived from the application of a receding horizon control policy (RHC),

is given by u(τk) = κMPC(x(τk)) = u0(x, τ0), where u0(x, τ0) is the first control action in u0(x).
The stabilizing properties of the controller are summarized in the following Property.

Property 1. The IES Ts is asymptotically stable for the closed-loop system ICS,

(4.5)

{
ẋ(t) = Ax(t), t 6= τk,

x(τ+
k ) = x(τk) +BκMPC(x(τk)), k ∈ N,

with x(0) = x0 , and a domain of attraction given by CN (Xs) .

Sketch of Proof: The proof follows the steps of the so called MPC for tracking zone regions, [16, 39]. The time
of the closed-loop is denoted by τk, as in (4.7), while the time for predictions, inside each optimization problem,
is denoted by τj .
The recursive feasibility of the sequence of optimization problems follows from the fact that, for every x ∈



CHARACTERIZATION AND COMPUTATION OF CONTROL INVARIANT SETS WITHIN TARGET REGIONS FOR LINEAR ICS 9

CN (Xs), the terminal constraint forces the system x(τj+1) = φ(T )x(τj) + Bu(τj) to reach an invariant set
(for instance the equilibrium set, Xs0), at the end of the control horizon. So, if the solution of the optimiza-
tion problem for x, at time τk, is given by u0(x), x0

s(x) and u0
s(x), then a feasible solution for the state x+,

at time τk+1, can be computed as ũ(x+) = {u0(x; τ1), u0(τ2), . . . , u0(τN−2), ũs(x
+)}, x̃s(x+) = xs(x) and

ũs(x
+) = us(x). This feasible solution produces a feasible sequence of states, given by x̃(x+) = {x0(x, τ1),

x0(x, τ2), . . . , x̃s(x
+), x̃s(x

+)}.
The attractivity of Xs follows from the fact that, J̃N (x+) ≤ J0

N (x) − α‖x − xs‖2 − β‖u − us‖2, where
J̃N (x+) = JN (ũ(x+), x̃s(x

+), ũs(x
+)) and u is the input injected to the system at time τk. Then, by optimality,

it is J0
N (x+) ≤ J̃N (x+), which means that J0

N (·) is a strictly decreasing positive function - i.e., J0
N (x+) ≤ J0

N (x)
- that only stops to decrease if x = x(τk) = xs and u(τk) = us. Furthermore, the fact that x(τk) → xs and
u(τk)→ us, as k →∞, implies that x(τk) tends also to TZ (by the effect of the cost term distTZ (xs), as stated in
Lemmas 1, 2 and 3, in [39]). This way, x(τk) tends to the intersections of Xs◦ and TZ , which represents the IES
Xs.

Remark 6. Note that it is not necessary to express explicitly the intersection to formulate the MPC. In fact, such
intersection is implicit in the controller formulation, by means of the additional variables (xs, us) - that are forced
to be in Xs◦ -, and the cost term distTZ (xs) which steers the states after the discontinuities, x◦(τk), to TZ .

Remark 7. In [39] a target set T, already accounting for the properties of Xs w.r.t. Z (i.e., accounting for
{Φ(t)xs, t ∈ [0, T ]} ∈ Z), needs to be outer-approximated by a polyhedron, and then explicitly used in the
controller formulation. In contrast, the proposed MPC steers the system to the exact set Xs, without the need of
explicitly compute it.

Remark 8. Another benefits of the proposed MPC to be emphasized is that it steers the system to an equilib-
rium region that fulfill continuous-time constraints by only considering a sampled discrete-time system, as it is
x◦(τj+1) = φ(T )x◦(τj) +Bu(τj).

4.2. Set-based Zone MPC For Impulsive Systems. This formulation is based on the ones reported in [3, 30],
which provide better transient performance of the zone tracking scheme, as they tracks an invariant set within the
target zone rather than steady-state setpoints and, furthermore, thy may guarantee finite time convergence. The
objective is to minimize the distance between the predicted state and inputs trajectory with respect to the lifted set
Z of the states and their corresponding inputs, such that Z = (x, u)|x ∈ Tinv, u ∈ U(x). The cost function to be
minimized on-line by the set-based MPC is given by:

LN =

n∑
j∗1

distZ((x(τj), u(τj)),

where the distance function is implemented as

distZ(x, u) = min
(x∗,u∗)∈Z

‖x− x∗‖+ ‖u− u∗‖.

The proposed formulation is

min
u,x∗,u∗

LN (x,u,x∗,u∗)(4.6a)

s.t.

x(τ0) = x(4.6b)

x(τj+1) = Adx(τj) +Bdu(τj), j ∈ 0, · · · , N − 1(4.6c)

x(τj+1) ∈ XA, j ∈ 0, · · · , N − 1(4.6d)

u(τj) ∈ U, j ∈ 0, · · · , N − 1(4.6e)

x∗(τj) ∈ Tinv, j ∈ 0, · · · , N − 1(4.6f)

u∗(τj) ∈ U, j ∈ 0, · · · , N − 1(4.6g)

Adx∗(τj) +Bdu∗(τj) ∈ Tinv, j ∈ 0, · · · , N − 1(4.6h)

x(τN ) = x∗(τN ).(4.6i)

Denoting the resulting receding horizon feedback law by κ∗MPC, the following property is obtained.

Property 2. The IES Ts , is asymptotically stable for the closed-loop system ICS,

(4.7)

{
ẋ(t) = Ax(t), t 6= τk,

x(τ+
k ) = x(τk) +Bκ∗MPC(x(τk)), k ∈ N,

with x(0) = x0 , and a domain of attraction given by CN (Tinv) .
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(A) Plot of the feasible (white), Ad-
missible (light gray) and Invariant
with respect to the admissible (dark
gray), admissible equilibrium (black),
sets.

(B) Plot of the target (light gray), Ad-
missible (medium gray) and Invariant
with respect to the admissible (dark
gray), sets.

(C) Target window and admissible
equilibrium set.

5. EXAMPLE

Consider the linear system 2.1 with dynamic and input matrices given by

A =

[
−1 1.2
0 0.2

]
, B =

[
3
−2

]
.

The state is constrained to a box defined by 0.5 ≤ x1 ≤ 4.5 and 0 ≤ x2 ≤ 4 and the input is bounded u ∈
[−0.2, 0.2]. The input impulses occur at intervals of T = 1[s]. The target window is a box with 2.5 ≤ x1 ≤ 4 and
1.5 ≤ x2 ≤ 3.5. The admissible polytopic approximation to the admissible spectrahedron and invariant set with
respect to the feasible state and target window are shown in figures 4a and 4b, respectively. The equilibrium set and
target window are shown in 4c, and makes evident that the target window is a valid target set. The eigenvalues are
−1 and .2. The autonomous system is unstable, diverging naturally from the target set. The controller is defined
with a horizon N = 5[s], and the weighting matrices are chosen as Q = 1, R = 10, Qf = 1, QO = 10. The
simulations are conducted using YALMIP [31], MPT3 [26] and Mosek [2].
For illustrative purposes, the resulting optimal trajectories and values for auxiliary ingredients of the proposed
controller with the system starting at (0.55, 0.55) are shown in Figure 5a. The state trajectory is shown to evolve
on a hybrid trajectory, continuously in the interval (tk, tk+1) and discrete jumps occur at tk. Also the state reaches
an equilibrium point of the discrete-time associated system given by (xs, us) shown in blue, which is a periodic
solution in continuous time. The distance function is implemented as indicated in (5) and the resulting value of x∗

is shown in green, which is a state contained in the admissible invariant set contained in the target window.
The resulting trajectories for the system starting at two different initial states (3.0, 0.15) and (4.45, 1.75) are

shown in Figure 5b. They correspond to 10 iterations of the optimal controller implementation. Both trajectories
converge to the target zone, more particularly to the admissible invariant set within the target. In fact, both reach
their respective admissible equilibrium solution, as expected. An important remark is that the the steady-state
solution for the discrete time systems -and the corresponding continuous time orbits- are not necessarily coincident,
although they fulfill the control problem objectives. It is also worth noting that the initial points are contained in,
and the sampled trajectory evolves within the invariant admissible set.

6. CONCLUSIONS

In this work, a exact characterization of admissible states for linear impulsively controlled systems is discussed,
with application to systems with different rational real eigenvalues. Using a description of the impulsive system
where the impulsive input is applied at the end of each sampling period, the admissible states can be determined
using a strategy based on the Lukasz-Markov theorem, exploiting and semidefinite descriptions and sum-of-squares
expressions of the system dynamics and constraints. This problem can be tractably solved using SDP and sparse
computational techniques. Conditions on the validity of a target zone are discussed, as well as a proof based on
the Brouwer fixed-points theorem is provided. This demonstrates the existence of equilibrium points within an
invariant set for linear systems, conforming a new approach to the proof using simple techniques. The strategies
already available in the literature relied on the more general Kakutani fixed-point theorem for correspondences.

It is shown that the inclusion of an equilibrium set in the target zone implies the validity of the target set and
follows that the system is able to be steered in such a way that its state remains inside the target zone. Classic
algorithms for the computation of an invariant set within a polytopic set is used, through inner approximation of
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(A) Optimal trajectory for initial state (0.55, 0.55). The
red curves indicate the predicted continuous system evo-
lution, the dotted lines the jumps on the state due to the
impulsive inputs. The blue trajectory indicates the impul-
sive periodic trajectory and the green asterisk indicates
the optimal x∗ for this solution.
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(B) Simulation of 10 iterations of the closed-loop sys-
tem, starting at two different initial states (3.0,0.15) and
(4.45,1.75). The system converges in both cases to the
zone, at different equilibrium states that correspond to
each initial point.

FIGURE 5. Single iteration and solution trajectories for the closed loop system. The target
window is shown in light gray and the admissible invariant set within the set is shown in darker
gray. Note that the continuous time trajectories fulfill the constraints at all times.

the constrained admissible set, which is defined as spectrahedron, a type of convex set described by semidefinite
inequalities. The resulting invariant set is used in a MPC formulation for zone tracking, and simulations are
included to illustrate the effectiveness of the proposal.

7. APPENDIX A. FIXED POINT THEOREM AND BERGE’S PRINCIPLE

First, the well known Brouwer fixed-point is established.

Theorem 4 (Fixed-point theorem, [11]). Given a compact and convex set Y ⊂ Rn and a continuous function
f : Y→ Y, then there is a point x0 ∈ Y such that f(x0) = x0; that is, x0 is a fixed point of f .

This theorem states that for any continuous function f mapping a compact convex set to itself, there is at least
one fixed point. For instance, every compact and convex invariant set for the autonomous system x+ = Adx, say
Xinv ⊂ X, includes an equilibrium point, xs = Adxs (as stated in [10], page 113, for both, the continuous and
discrete-time cases.).

Next, the Berge’s principle is established:

Theorem 5 (Berge’s principle [9]). Consider a variable y ∈ Y ⊂ Rn, a parameter p ∈ P ⊂ Rm (with Y and P
compact and convex), and the correspondence Γ : P ⇒ Y, defined by

Γ(p) := arg min
y∈Φ(p)

J(y, p), ∀ p ∈ P,(7.1)

where Φ(p) ⊂ Y, for all p ∈ P (Φ is a correspondence assigning a set to each p, i.e., Φ : P ⇒ Y) and
(i) J(y, p) is a continuous function on Y, for all p ∈ P ,
(ii) Φ(p) is a compact-valued correspondence (i.e., compact for each p ∈ P), and
(iii) Φ(p) is continuous (i.e., both, upper and lower semicontinuous), on P .
Then Γ(p) is nonempty-valued, compact-valued and upper semicontinuous in p ∈ P .

Note that, if Γ(p) is not only a correspondence, but also a function, the latter Theorem directly states that Γ(p)
is a continuous function on P (i.e., a function that is upper semicontinuous is continuous). From the mathematical
programming theory, conditions under which Γ(p) is a single-valued correspondence (i.e., a function) are the
conditions under which, for each p ∈ P , there is a unique solution Γ(p), i.e.:
(i) J(y, p) is a strictly quasi-convex function on Y, for all p ∈ P , and
(ii) Φ(p) is a nonempty-valued, convex-valued and compact-valued correspondence (i.e., nonempty, convex and
compact, respectively, for each p ∈ P).
So, by adding the latter conditions to the ones in Theorem 5, we have the following variant of the Berge’s principle:



12 I. SANCHEZ, C. LOUEMBET, M. ACTIS AND A. H. GONZALEZ

Theorem 6 (Variant of Berge’s principle). Consider the correspondence Γ(p), as the one defined in (7.1), with
(i) J(y, p) being a strictly quasi-convex, continuous function on Y, for all p ∈ P ,
(ii) Φ(p) being a nonempty-valued, convex-valued and compact-valued correspondence on P , and
(iii) Φ(p) being continuous (i.e., both, upper and lower semicontinuous) on P .
Then Γ(p) is a continuous function on P .

8. APPENDIX B. TECHNICAL LEMMAS

First, consider the definitions of upper and lower semicontinuity ([7]):

Definition 7 (Upper semicontinuity). A correspondence c : X ⇒ Y is upper semicontinuous at x0 if (and only if)
for every ε > 0 it there exists δ > 0 such that: x ∈ Bδ(x0)⇒ c(x) ⊆ Bε(c(x0)).

Definition 8 (Lower semicontinuity). A correspondence c : X ⇒ Y is lower semicontinuous at x0 if (and only if)
for every ε > 0 fulfilling Bε(c(x)) ∩ c(x0) 6= ∅ it there exists δ > 0 such that for every x ∈ Bδ(x0) it follows that
c(x) ∩ Bε(c(x0)) 6= ∅.

A useful property relating upper continuity and the graph of a correspondence is stated next.

Lemma 1. Let c : X ⇒ Y be a correspondence and let the image set (cX := ∪x∈Xc(x)) compact. Then, c is upper
semicontinuous on X if and only if its graph (Gr(c)) is closed.

Next Lemmas provide useful properties of the correspondence U(x) := {u ∈ U : Adx+Bdu ∈ Xinv} defined
in (2.5) (i.e., the set of all u’s that keep a particular x ∈ Xinv in Xinv).

Lemma 2. Consider DICSys (2.4) and a convex, compact, proper CIS, Xinv ⊂ X . Let UXinv
:= ∪x∈Xinv

U(x) be
the image set of U. Then, UXinv

is compact.

Proof. Compactness means closeness and boundness. Let us recall that a set is closed if every convergent sequence
in it converges to a point that is also in it.
Let {uk} be a convergent input sequence in UXinv , and let u its limits (i.e., {uk} → u). Since uk ∈ UXinv , for
all k ∈ I∞, it there exist states xk such that uk ∈ U(xk). This means that {xk} ⊂ Xinv and, given that Xinv is
compact (by hypothesis), then it there exists a subsequence {xki} which converges to x, and x ∈ Xinv. The fact
that uki ∈ U(xki), for all i ∈ I∞, means that wki := Axki +Buki is in Xinv, for all i ∈ I∞. Then, by continuity
of the linear system, {Axki + Buki} → Ax + Bu; that is, {wki} converges to w := Ax + Bu. But {wki} is a
convergent sequence in the closed set Xinv, then its limits w is also in Xinv. Then, since x ∈ Xinv and w ∈ Xinv,
we have that u ∈ U(x), which means that u ∈ UXinv

and so UXinv
is closed. Given that UXinv

⊂ U, and U is
bounded (compact), then UXinv

is bounded. Finally, UXinv
is both, closed and bounded, i.e., it is compact. �

Lemma 3. Consider DICSys (2.4) and a convex, compact, proper CIS, X ⊂ X . Let Gr(U) := {(x, u) : u ∈
U(x)} be the graph of U. Then, Gr(U) is closed and convex.

Proof. Let {(xk, uk)} be a convergent sequence in Gr(U), and let (x, u) its limit (i.e., {(xk, uk)} → (x, u)).
This implies that both, {xk} → x and {uk} → u. Furthermore, by the definition of the graph, uk ∈ U(xk) for
all k ∈ I∞, which implies that wk := Axk + Buk is in X. As {wk} converges to w := Ax + Bu, and every
convergent sequence in the closed set X converges to a point in X, then w ∈ X. Since x ∈ X and w ∈ X, then
u ∈ U(x), and (x, u) ∈ Gr(U).

In order to prove that Gr(U) is convex, take two different points (x1, u1) and (x2, u2) both in Gr(U). Then
both Ax1 + Bu1 and Ax2 + Bu2 belongs to Xinv. Since Xinv is convex λ(Ax1 + Bu1) + (1− λ)(Ax2 + Bu2)
also belongs to Xinv, for any λ ∈ [0, 1], which means that A(λx1 + (1 − λ)x2) + B(λu1 + (1 − λ)u2) ∈ Xinv.
Again since Xinv is convex λx1 + (1− λ)x2 ∈ Xinv and so λu1 + (1− λ)u2 ∈ U(λx1 + (1− λ)x2). Therefore
λ(x1, u1) + (1− λ)(x2, u2) ∈ Gr(U), for any λ ∈ [0, 1], and so Gr(U) is convex. �

Lemma 4 (Upper hemicontinuity of U(x)). Consider DICSys (2.4) and a compact and convex CIS Xinv ⊂ X.
Then correspondence U(x) := {u ∈ U : Adx+Bdu ∈ Xinv} is upper hemicontinuous.

Proof. The proof follows directly from Lemmas 1, 2 and 3. �

In order to prove the lower hemicontinuity, let us first introduce some preliminary definition and result.

Definition 9 (Radially convex set). A set X is radially convex at a point x ∈ X if there exists ε > 0 such that for
every z ∈ X ∩B(x, ε), with z 6= x, there exists w ∈ X ∩ ∂B(x, ε) and λ ∈ (0, 1) for which z = λx+ (1− λ)w.

In words, a set X is radially convex at a point x ∈ X if there exists a ball such that every point of X that is inside
the ball, can be represented as a strict convex combination of the center of the ball and some point of X that lies on
the boundary of the ball. For example, in Figure 6 we present two examples, one that is radially convex at a point
x and one that it is not.
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FIGURE 6. A radially convex set in x (left) and one that it is not (right)

Note that the radially convex set that was chosen in the figure as an example is a polytope. This is not casual, it
is in indeed the general case in the context of compact convex sets. We state this result in the following lemma.

Lemma 5 (Polytope characterization). Let X be a compact convex set of Rn, then the following assertion are
equivalent:

• X is polytope.
• X is radially convex at every x ∈ X.

The proof of this result can be found in [33, Lemma 1]. This result is the key stone to prove the lower hemicon-
tinuity of U(x) and brings out the necessity of working with polytopes.

Lemma 6 (Lower hemicontinuity of U(x)). Consider DICSys (2.4) and a compact convex polytope CIS Xinv ⊂ X.
Then correspondence U(x) := {u ∈ U : Adx+Bdu ∈ Xinv} is lower hemicontinuous.

This result can also be found in [33, Theorem 2] in a more general context. For the sake of completeness and
clarity we decided to include it here.

Proof. Let x ∈ Xinv and {xk} ⊂ Xinv a sequence such that {xk} → x, when k → ∞. Let u ∈ U(x). To show
that the correspondence U(x) is lower hemicontinuous we need to construct a sequence of controls uk ∈ U(xk)
such that uk → u, when k →∞.

Since Xinv is a compact convex polytope by Lemma 5 there exists ε > 0 such that B(x, ε) ∩ Xinv is radially
convex at x. Since {xk} → x, there exists K > 0 such that xk ∈ B(x, ε) ∩ Xinv for every k ≥ K. Then for every
k ≥ K there exist wk ∈ Xinv ∩ ∂B(x, ε) and λk ∈ (0, 1) for which xk = λkx + (1 − λk)wk. Since {wk} is
bounded (wk ∈ Xinv) and xk → x, we have that λk → 0, when k →∞.

For every k ≥ K, fix a sequence of controls vk ∈ U(wk). By Lemma 3 Gr(U) is convex, so λk(x, u) + (1 −
λk)(wk, vk) ∈ Gr(U), i.e. (xk, λku+(1−λk)vk) ∈ Gr(U). Hence uk := λku+(1−λk)vk ∈ U(xk). Since {vk}
is bounded (vk ∈ UXinv ) and λk → 0, we have that uk → u when k → ∞. Therefore U is lower hemicontinuous
at x. �

9. APPENDIX C. POSITIVE POLYNOMIALS ON A FINITE INTERVAL

For sake of self containment, we recall here some concepts introduced in sections 3.3, of [35]. The following
sections discuss how the cone of cofficients of univariate polynomials can be represented as linear images of
the cone of positive semi-definite matrices. This enables solving the corresponding optimization problems using
semidefinite programming schemes. Let S = {u(1)(x), · · · , u(m)(x)}, x ∈ ∆, be an arbitrary system of linearly
independent functions. Definine the finite-dimensional functional subspace

F(S) = {q(x) =

m∑
k=1

q(k)u(k)(x), q = (q(1), · · · , q(m)) ∈ R}.

The convex cone

K = {p(x) =

N∑
i=1

q2
i (x), qi(x) ∈ F(S), i = 1, · · · , N}

can be described by the squared functional system

S2 = {vij(x) = u(i)(x)u(j)(x), i, j = 1, · · · ,m}.
Define v(x) the vector of components of a basis of S2. Define the vector coefficients λij ∈ Rn as:

u(i)(x) · u(j)(x) = λTijv(x),∀x ∈ ∆
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A matrix valued operator can be defined as:

(Λ(v))iju(i)(x) · u(j)(x) = λTijv(x),∀x ∈ ∆

Note that
u(x)u(x)T ≡ Λ(v(x)), x ∈ ∆

The adjoint linear operator Λ∗(Y ), Y ∈ Rm×m is defined as

< Y,Λ(v) >=< Λ∗(Y ), v >

9.1. LMI representation of a cone.

Theorem 7. (i) The function p(x) = pT v(x), p ∈ Rn, belongs to K if and only if there exists a positive
semidefinite (m×m)-matrix Y such that p = Λ∗(Y ):

(9.1) K = {p ∈ Rn : p = Λ∗(Y ), Y � 0}.
(ii) Any p ∈ K can be represented as a sum of at most m squares,

p(x) =

k∑
i=1

q2
i (x), qi(x) ∈ F(S), i = 1, · · · , k ≤ m.

9.2. Representation of a non-negative polynomial as LMI. Consider a fixed interval [a, b] ⊂ R, the vector
function v(w) = (1, w, w2, · · · , wn) ∈ Rn+1, w ∈ [w, b]. Define the following convex cone:

Ka,b = p ∈ Rn+1 : pT v(w) ≥ 0,∀w ∈ [a, b].

This cone describes the set of coefficient vectors such that the polynomial pT v(w) is non-negative for allw ∈ [a, b].
Now, let n = 2m and denote

u1(w) = (1, w, · · · , wm) ∈ Rm+1,

u2(w) = (1, w, · · · , wm) ∈ Rm−1,

From Markov-Lukasz theorem, non negative polynomials can be represented as

(9.2) p(w) = (qT1 u1(w))2 + (w − a)(b− w)(qT2 u2(w))2

with some q1 ∈ Rm+1, q2 ∈ Rm. This configures a sum of weigthed squares.

9.3. Matrix exponential. Given a square n×n diagonalizable transition matrixA = V ΛV −1 with eigensolutions
Axk = λkxk, (k = 1, 2, · · · , n). The solution to the system ẋ = Ax can be written as

x(t) =

n∑
i=1

cie
λitvi

where c = V −1x(0).

9.4. Modal Coordinates. Considering a dynamic system wint n distinct eigenvalues, its free response can be
decomposed in modal form

(9.3) x(t) = eAtx(0) = eV ΛV −1tx(0),

where the i-th column of V = [v1 · · · vn] is the i-th eigenvector and Λ is a diagonal matrix with the eigenvalues as
its entries. Noticing that for any matrix B and nonsingular matrix P

(9.4) eV ΛV −1t = V eΛtV −1,

or, equivalently,

(9.5) eAt = V


eλ1t 0 · · · 0

0 eλ2t · · · 0
· · · 0

0 · · · 0 eλnt

V −1,

Moreover, this can be expressed as

(9.6) eAt =

n∑
i=1

V δni V
−1eλnt

or in a short form as

(9.7) eAt =

n∑
i=1

φie
λnt

using φi = V δni V
−1 and δni is a n× n matrix filled with zeros except at the i, i-th element where it is 1.
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9.5. Spectral Representation of the Positive Definite Matrix. Suppose positive semidefinite (symmetric) matrix
A ∈ Rn×n, all eigenvalues λi are distinct, for linear independent eigenvectors ai, with normalized a′iaj = δij .
Decomposing A =

∑n
i=1 aia

′
iλi and applying the well-known Taylor expansion for eA,

(9.8) eA =

n∑
i=1

aia
′
ie
λ
i

(9.9) Φ(t) = eAt =

n∑
i=1

aia
′
ie
λit

denoting αr = ara
′
r the matrix corresponding to the r-th eigenvector and αrij the ij-th singleton, each singleton in

the transition matrix can be expressed as

(9.10) Φij(t) =

n∑
r=1

αrije
λrt
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