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ABSTRACT: Cruzipain (Cz) is the major cystein protease of the protozoan Trypanosoma cruzi, etiological agent of Chagas disease. From a 
163-compound dataset, a 2D-classifier capable of identifying Cz inhibitors was obtained and applied in a virtual screening campaign on the 
DrugBank database, which compiles FDA-approved and investigational drugs. 54 approved drugs were selected as candidates, 4 of which 
were acquired and tested on Cz and T. cruzi epimastigotes. Among them, the antiparkinsonian and antidiabetic drug bromocriptine and the 
antiarrhythmic amiodarone showed dose-dependent inhibition of Cz and antiproliferative activity on the parasite.   

INTRODUCTION 

Chagas disease (or American trypanosomiasis) is a tropical parasit-
ic disease caused by the flagellate protozoan Trypanosoma cruzi. T. 
cruzi life-cycle includes both vertebrate (among them, man) and 
invertebrate (haematophagous triatomine bugs) hosts. Around 80-
90% of infections in humans occur when the bug feces come into 
contact with wounded skin or mucosae1. Other infection ways 
include blood-transfusion and congenital transmission. Even 
though a series of control campaigns (with an emphasis on vector 
control) undertaken by World Health Organization (WHO), Pan 
American Health Organization (PAHO) and national authorities 
have dramatically reduced Chagas disease prevalence in the last 
fifteen years, there are still almost 8 million infected people, 28 
million people at risk and more than 40,000 annual new cases2-4.    

Current treatment against Chagas relies on only two agents devel-
oped during 1960s-1970s, namely nifurtimox and benznidazole, 
which are not effective in the late chronic phase of the disease and 
present severe side-effects and resistance issues5-7. This explains 
why American trypanosomiasis has long been regarded as an or-
phan or neglected disease. It is worth noting, however, that im-
portant advances have been made in the field of biochemistry and 
molecular biology of T. cruzi and novel antichagasic therapeutics4, 8-

11. Cystein protease inhibitors are among the most investigated 
candidates against T. cruzi11. Cruzipain (Cz), the major cystein 
protease of the parasite, has been particularly explored as new drug 
target. Cz is essential for replication of the intracellular form of T. 
cruzi and plays a role in host-parasite interactions12. Since it is auto-

catalytic, it is believed that Cz inhibition produces accumulation of 
the inactive precursor of the proteinase within the Golgi complex, 
which eventually leads to osmotic shock and cell death13.  

Here, we present the development of a 2D classification model 
from a 163-compound dataset which includes both Cz inhibitors 
and non-inhibitors. The model has later been applied in a virtual 
screening (VS) campaign to explore the DrugBank small molecule 
database in order to identify novel Cz reversible inhibitors. Four of 
the selected candidates were acquired and tested both biochemical-
ly and biologically, validating the model.  

 It is worth signaling that DrugBank compiles FDA-approved and 
experimental drugs (including biotech molecules and 
nutraceuticals)14,15. It is therefore particularly useful to conduct VS 
campaigns aimed to drug repurposing (i.e. searching for second or 
further medical uses of known drugs). The application of VS to 
chemical libraries compiling known therapeutics can be considered 
as a form of knowledge-based, rational drug repositioning16-19, 
(chemoinformatics- and bioinformatics-based, and others) which 
has been recently signaled as a relevant strategy to aid discovering 
novel treatment for rare and neglected conditions20-22.      

 

RESULTS 

Clustering procedure was applied on the dataset using a combina-
tion of Maximum Common Structure (MCS) hierarchical cluster-
ing and optimization by k-means clustering (see Experimental 
Section for details). Such procedure revealed 5 groups of at least 6 



 

compounds in the ACTIVE category and 7 groups of at least 7 
compounds in the INACTIVE class. According to MCS clustering, 
there are 4 compounds in the ACTIVE class which can be consid-
ered outliers (they are clustered alone or in groups of only two 
compounds, meaning they have no MCS above the specified num-
ber of atoms), whereas the INACTIVE category presents 14 outli-
ers. On the basis of the clustering procedure, 25% of each cluster 
was assigned to the test set for external validation purposes, while 
the remaining 75% of each cluster were assigned to the training set 
upon which the model was derived.     

 

The following model was obtained through Linear Discriminant 
Analysis (LDA): 

 

Class = -0.959 + 1.764*GGI7– 0.287*nS + 0.280*nCN 

 

Wilks’ λ = 0.56        F (3,117) = 31.24      p<0.0000 

N=121       

 

where GGI7 represents Galvez topological charge index of order 7, 
nS represents the number of sulfur atoms and nCN represents the 
number of aliphatic nitriles. The magnitudes of the beta coefficients 
of such descriptors are, in that order, 0.583, 0.183, 0.136, showing 
that GGI7 is the more relevant independent variable of the model. 
It should be highlighted that the model presents an excellent cases 
per predictor ratio (above 40) which indicates a very low chance of 
overfitting, as confirmed later in the external validation results. 
Furthermore the pairwise correlation between the descriptors 
included in the model is negligible, 0.147, being the correlation 
coefficient between the most correlated predictors. When using 0 
as a score threshold to differentiate active from inactive com-
pounds, the model presents 74% of good classifications among the 
training set inactive compounds, 80% of good classifications among 
the training set active compounds, and an overall of 77% good 
classifications. Regarding the test set, the model accurately classifies 
81% of the active and 90.5% of the inactive compounds, with an 
overall good classification of 86%. These results seem to confirm 
that no overfitting has occurred, since the performance on the test 
set is similar to (and in fact, better than) the performance on the 
training set. The average performance of the randomized models 
was 63.6% (sd = 3.5) showing that the randomized models were 
significantly outperformed by the real model, as expected. The 24-
fold cross-validation resulted in an average percentage of good-
classifications of 77.6%, which is very similar to the performance of 
the original model on the training set.    

We resorted to Pharmacological Distribution Diagrams (PDD) 
and Receiving Operating Characteristic (ROC) curves in order to 
optimize the chosen threshold score on a rational basis23-24. Figures 
1 and 2 present, respectively, the PDD and training set ROC curve. 
The area under the  curve (AUC) for the training and test sets 
ROC curves were, respectively, 0.893 and 0.921 (1 represents 
perfect classification, while 0.5 represents random classification). 
Note that the distribution of active and inactive compounds in 
relation to the model score are almost identical (Figure 1). It is also 
interesting to underline that 6 of the misclassified compounds (4 
actives and 2 inactives) correspond to the ones identified as outliers 

during the hierarchical clustering procedure (that is, compounds 
which do not share a 9-atom MCS with the rest). On the basis of 
the results, 0.29 was defined as cutoff value to differentiate active 
from inactive compounds in the VS campaign. According to the 
ROC curves data, this corresponds to a sensitivity of 67% and a 
specificity of 95% in the training set, and a sensitivity of 75% and a 
specificity of 100% in the test set. As stated by Triballeau in the 
original application of ROC curves to VS, the selection of a given 
balance between sensitivity and specificity is not a statistical matter 
but a context-dependent decision. In our case, due to a limited 
budget to acquire and test compounds, we have prioritized specific-
ity (i.e. reducing the chance of false positives) over sensitivity. This 
means that potentially valuable active scaffolds will be loss during 
the screening, in order to reduce the chance of sending an inactive 
compound (false positive) to experimental testing.  

 

 
Figure 1. PDD showing the distribution of training and test set 
active and inactive compounds along the score values of the model. 
A fine superposition between training and test set is observed.  

 

 
Figure 2. Training set ROC curve.   

 

From 6684 small approved and investigational molecules of the 
DrugBank 3.0 database, 256 candidates belonging to the model’s 
applicability domain presented a model score above the selected 
threshold; 54 of them correspond to approved drugs, which are the 



 

straightforward candidates for repositioning purposes. On the basis 
of their accessibility, 4 of them (Figure 3) were acquired and exper-
imentally tested in enzymatic assay on Cz crude extract. The ac-
quired candidates were amiodarone (currently marketed as anti-
arrhythmic), bromocriptine (approved as antiparkinsonian and 
antidiabetic), colchicine (gout treatment) and escitalopram (anti-
depressant). Figure 4 shows the effect of 100 μM solutions of the 
four candidates on the Cz activity from T. cruzi crude extracts. 
Amiodarone and bromocriptine showed a significant inhibitory 
effect on Cz activity from cell extracts. Such inhibition proved to be 
dose-dependent on purified Cz (Figure 5), with a median inhibito-
ry concentration (IC50) approximately of 219,8 μM for amiodarone 
and 84,2 μM for bromocriptine  

Both candidates also showed a notorious effect on T. cruzi 
epimastigotes proliferation (Figure 6) presenting values of median 
inhibitory dose (ID50) around 22 μM for amiodarone and 15 μM 
for bromocriptine at the middle log phase of controls (4th day) . 
The fact that amiodarone presents higher effects on epimastigotes 
culture than on Cz activity could be explained by a pleiotropic 
effect of the drug, as it has been prevoiously showed on parasites´ 
Ca2+ homeostasis and on ergosterol biosynthesis25. Even though, it 
should be highlighted that this is the first time that the 
antitrypanosomal effect of amiodarone, at least partially, is related 
to Cz activity.  

Bromocriptine showed a significant effect on parasite morphology 
(Figure 7) as well as amiodarone (not shown). 

 

 
Figure 3. Molecular structures of the four candidates selected for 
enzymatic testing.   

  
Figure 4. Inhibitory effect of the four selected candidates on Cz 
activity from T. cruzi crude extracts. The final concentration of each 
compound was 100 μM. Protease activity is expressed as percent-
age of the control condition (2% DMSO. Results represent the 
mean of three independent experiments. Asterisks indicate signifi-
cant differences respect of the control (*** p<0.005). 

 

 

 

 
 

 



 

 

Figure 5. Dose-dependent inhibitory effect of amiodarone (A) and 
bromocriptine (B) on purified Cz activity. Both candidates were 
assayed in a concentration range of 0-300 μM. Remanent Cz activi-
ty was expressed as a percentage of the control (0 μM compound, 
2% DMSO). Results represent the mean of two independent exper-
iments. Asterisks indicate significant differences (** p<0.01, *** 
p<0.005). 

 

 

 

 
Figure 6. Effects on T. cruzi epimastigotes proliferation of (A) 
amiodarone and (B) bromocriptine. To determine the growth rate, 
107 cells/ml were seeded in BHT medium and maintained at 28°C 
for ten or eight days, respectively. The control condition was done 
with 2% DMSO. Parasites were counted using a hemocytometer 
chamber. Results represent the mean ± SD of a representative 
experiment. 

 

 

 

 
Figure 7. Effect of bromocriptine on T. cruzi morphology. A) 
Quantitation of morphological changes in cells that have been 
cultured in absence or presence of bromocriptine (50-200 μM) for 
four days. At least 100 cells were counted for each condition classi-
fying in normal and rounded parasites. Results represent the means 
of the two independent experiments. (*** p<0.005, respect to 
0uM). B) Differential interference contrast (DIC) photos of cells 
incubated for four days in presence (normal morphology) or ab-
sence (rounded morphology) of 50 μM bromocriptine. Results 
represent images of an experiment representative. 

 

 

DISCUSION AND CONCLUSIONS 

 

A 3-descriptor 2D classification model was derived from a 163-
compound dataset which compiled Cz inhibitors and non-
inhibitors extracted from literature. The model presented an excel-
lent case to descriptor ratio and similar performance on both the 
training and the test sets, which suggest good predictive ability and 
absence of overfitting. Since only conformation-independent de-
scriptors were included in the model, it is particularly suitable for 
efficient exploration of drug libraries through VS campaigns with-
out requiring any preprocessing of the library structures.  

Having in mind the potential of knowledge-based drug reposition-
ing to develop novel drugs for neglected and rare diseases, the 
model was applied in a VS campaign to select potential antichagasic 
drugs from the DrugBank database, which compiles approved and 
investigational active ingredients. PDD and ROC curve analysis 
were conducted in order to select a score cutoff value to differenti-
ate active and inactive agents on a rational basis. 



 

Four candidates were acquired and experimentally tested in enzy-
matic and inhibitory assays. Among them, amiodarone (approved 
as antiarrhythmic) and bromocriptine (traditionally used against 
Parkinson and more recently repurposed for the treatment of dia-
betes) showed a weak but dose-dependent inhibition on Cz activity 
with clear effects on T. cruzi proliferation and morphology. The 
results illustrate the possibilities of computer-aided drug reposi-
tioning in the search of novel medications for neglected diseases.  

It should be mentioned that two of the four candidates showed no 
or almost no activity on the enzyme, thus suggesting that either the 
model should be optimized or a stricter cutoff value should be 
selected to reduce the false positive rate (e.g. score above 0.5). As 
discussed by Triballeau et al. in the original application of ROC 
curves to VS campaigns24, the probability of finding an active com-
pound critically depends on the yield of active compounds of the 
screened database. The Positivity Predictive Value, which repre-
sents the probability that a given candidate with a score above the 
selected threshold will be actually active can be calculated through 
the following expression: 

 

	
	 1 1

 

 
where Se represents the sensitivity of the model (or true positives 
rate) and Sp represents the specificity of the model (or true nega-
tives rate). Ya symbolizes the yield of actives, that is, the number of 
active drugs in the screened database divided by the total number 
of compounds in the database. Ya is not known in real VS applica-
tions. The influence of Ya on the probability that a given selected 
compound is actually active means that even a highly specific and 
sensitive model may retrieve a high proportion of false positives 
from a screened library if the yield of actives in the library is low. As 
it has been recently pointed out by Scior et al., the confirmed hit 
rate in VS real-world applications is often very low, between 0.01 
and 0.14%25. Noteworthy, if the selected cutoff value was 0.5, only 
bromocriptine among the four compounds would have overcome 
the screening and thus experimentally tested.   

 

EXPERIMENTAL SECTION 

 

Dataset compilation and splitting 

A 163-compound balanced dataset including 82 Cz reversible 
inhibitors and 81 non-inhibitors was compiled from literature26-38. 
In order to split the dataset into representative training and test 
sets, the LibraryMCS v0.7 (ChemAxon) hierarchical clustering 
approach was applied in combination with the k-means clustering 
as implemented in Statistica 10 Cluster Analysis module (Statsoft 
Inc, 2011). LibraryMCS relies on the Maximum Common Sub-
structure (MCS, i. e. the largest subgraph shared by two chemical 
graphs) to cluster a set of chemical structures. The algorithm ap-
plies a similarity search to the pool of molecules and the two struc-
tures with the highest similarity coefficient are considered more 
likely to share a large MCS. Once this likely MCS has been estab-
lished, substructure search is carried out in order to find the MCS 
of multiple structures efficiently, without exhaustive pairwise com-
parison. Certainly, it is possible that the two structures exhibiting 

the highest similarity coefficient do not share the largest MCS; 
thus, Library MCS leads to reproducible but approximate solu-
tions39. As suggested by Everitt et al.40, hierarchical clustering has 
been applied here to define an initial partition of n objects into g 
groups, selecting a smallest common substructure of 9 atoms, and 
the groups of compounds were later optimized by k-means algo-
rithm, minimizing the Euclidean distance to the group centers. A 
series of descriptors computed with Dragon 4.0 (Milano 
Chemometrics, 2003) representing different aspects of molecular 
structure (namely molecular weight, log P, polar surface area, num-
ber of H bonds acceptors, information index of atomic content, 
sum of atomic van der Waals volumes) were normalized and ap-
plied to calculate such distance. Once the clusters were separately 
identified in the inhibitors and non-inhibitors classes, 25% of each 
cluster was assigned to an independent test set for validation pur-
poses, while the remaining 75% of the clusters were retained as 
training set for modeling purposes. The structures of both training 
and test set compounds are provided as Supplementary infor-
mation.   

 

Descriptor calculation and modeling 

877 molecular 0D-2D molecular descriptors (constitutional and 
topological descriptors, functional group counts and atom-centered 
fragments) were computed with Dragon 4.0 Academic version. The 
values of such descriptors are conformation-independent, thus 
being particularly suitable for their application in VS campaigns, 
since no preprocessing of the database structures (e.g. conforma-
tional analysis or optimization) is required.  From the 877 de-
scriptors, 30 random subsets of no more than 254 descriptors were 
generated, and these subsets were used as descriptor pools for 
modeling purposes.   

Linear Discriminant Analysis (LDA) was conducted in order to 
derive a classification model capable of distinguishing Cz inhibitors 
from non-inhibitors. LDA is a qualitative supervised learning 
method aimed to finding a linear combination of independent 
variables to discriminate between two or more categories of ob-
jects. Each object class is associated to a given value (an integer 
value) of an arbitrary variable that serves as class label. In our case, 
only two object classes (ACTIVE – Cz inhibitors, and INACTIVE 
– non-inhibitors) were considered, thus the class label assumes two 
observed values (1 and -1, respectively). Since the output of the 
function being searched is not a continuous variable but only an 
object category, LDA and other classificatory techniques may be 
useful to handle noisy data, e.g. if a given experimental endpoint is 
associated to large variability or if experimental data from a diversi-
ty of laboratories are compiled41.  
The Discriminant Analysis module of Statistica 10 was used to 
derive the models. A tolerance value of 0.5 was selected in order to 
exclude highly correlated descriptors from the model. All the coef-
ficients linked to the models descriptors were significant at a 0.05 
level. A minimum ratio of 15 between the number of training set 
compounds and the number of independent variables was used in 
order to reduce the chances of overfitting. Parsimony principle, 
Wilks’ lambda and the performance of the model on the test set 
were used to select the best model. Standard validation approaches 
(leave-group out cross-validation, Fisher’s randomization test and 
external validation) were used to assess the model’s robustness and 



 

predictive ability42. Stratified 24-fold cross-validation and 55 ran-
domization tests were applied.   

 

Virtual Screening 

DrugBank 3.0 was used for VS. Only approved and experimental 
small molecules and nutraceuticals (6684 total compounds) were 
considered (biotech drugs were excluded a priori). PDD and sepa-
rate ROC curves were constructed for both the training and test 
sets, in order to select the discrimant function (score) threshold 
value to be used in the VS campaign24. To built ROC curves 
MedCalc ROC curves analysis tool was used (Medcalc software, 
2012). Finally, the leverage approach was used to define whether a 
given prediction belonged or not to the model’s applicability do-
main43. Briefly, the leverage for a compound i is defined as hi = xi

T 

(XT X)-1 xi, where xi is the descriptor vector for compound i and X is 
the model matrix derived from the training set descriptor values. 
The warning leverage was fixed at 3k/n, k befring the number of 
model parameters and n the number of training set compounds. 

 

Inhibitory effect on Cz activity assay 

Four candidates from the VS were acquired and their ability to 
inhibit Cz was assessed. Amiodarone hydrochloride was a kind gift 
from Vannier Labs. Escitalopram oxalate was a kind gift from Bagó 
Labs. Bromocriptine and colchicine were acquired from Saporiti.  

Parasite cultures were harvested, washed and incubated with ly-
ses buffer (Hepes 50 mM pH 7.4, NaCl 200 mM, NP-40 1%). Cz 
activity from the extracts was assayed with 0.3 mM Bz-Pro-Phe-
Arg-pNA (Bz-PFR-pNA) as substrate, as described previously44. 
Briefly: a diluted aliquot from the cell extract was incubated in 
buffer 50 mM Tris-HCl pH 7.6, 5 μM Dithiothreitol (DTT) and 
250 μM.N-benzoil N-Benzoyl-Pro-Phe-Arg-p-nitroanilide (Sigma), 
in presence or absence of the indicated compounds. The reaction 
was measured spectrophotometrically at room temperature, at 410 
nm for 5 minutes (Beckman CoulterTM DU®530 Life Science 
UV/Vis Spectrophotometer.). The values obtained were converted 
into pmol of hydrolysed substrate per min by using the extinction 
coefficients 8.800 M-1 cm-1 (p-nitroanilides) . The inhibitory 
effect of the selected candidates was expressed as a percentage of 
residual activity of Cz respect of the assay without inhibitors.  
To confirm the specificity of the observed effect of bromocriptine 
on Cz activity, the enzyme was partially purified by ammonium 
sulfate precipitation followed by affinity column chromatography 
on concavalin A-sepharosa (Sigma), as previously described45. The 
activity of the partially purified Cz was assayed using increasing 
bromocriptine concentrations  

 

Inhibitory effects on growth curves of T. cruzi epimastigotes 

Epimastigotes of the T. cruzi  strain Y, were cultured at 28°C in 
BHT medium with 20mg/l Haemin, 20% heat-inactivated fetal calf 
serum and antibiotics (100 μg/ml streptomycin and 100 U/ml 
penicillin)46, adding the indicated bromocriptine concentration (0 
– 200uM). 

Cultures were initiated at 106 cells/ml and the proliferation was 
followed daily by cell counting in hemocytometer chamber. 

For microscopy, freshly grown trypanosome samples were washed 
twice in PBS. After letting the cells settle for 30 min at room tem-
perature in poly-L-lysine coated coverslips, parasites were fixed at 
room temperature for 20 min with 1% formaldehyde in PBS. Slides 
were mounted using Vectashield (Vector Laboratories). Cells were 
observed in an Olympus BX51 fluorescence microscope. Images 
were recorded with an Olympus XM10 camera. 

The percent of rounded parasites was determined using an Zeiss 
Axiovert 25 microscope,   

ASSOCIATED CONTENT  
The compounds that compose the training and test sets are provided as 
Supplementary information. This material is available free of charge via 
the Internet at http://pubs.acs.org.  
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