


WAAUP

27th Conference of the World Association for the Advancement of Veterinary Parasitology

JULY 7 - 11, 2019 | MADISON, WI, USA

Dedicated to the legacy of Professor Arlie C. Todd

Sifting and Winnowing the Evidence in Veterinary Parasitology

Abstract Book

Joint meeting with the 64th American Association of Veterinary Parasitologists Annual Meeting & the 63rd Annual Livestock Insect Workers Conference

www.WAAVP2019.com #WAAVP2019

Table of Contents

Table of Contents				
Keynote Presentation		84-89 89-92	OA22 Molecular Tools II OA23 Leishmania	
4	Keynote Presentation Demystifying One Health: Sifting and Winnowing	92-97	OA24 Nematode Molecular Tools, Resistance II	
	the Role of Veterinary Parasitology	97-101 101-104	OA25 IAFWP Symposium OA26 Canine Helminths II	
Plenary Lectures		104-108 108-111	OA27 Epidemiology OA28 Alternative Treatments for	
6-7	PL1.0 Evolving Approaches to Drug Discovery	111-113 114-116	Parasites in Ruminants I OA29 Unusual Protozoa OA30 IAFWP Symposium	
8-9	PL2.0 Genes and Genomics in Parasite Control	116-118	OA31 Anthelmintic Resistance in Ruminants	
10-11	PL3.0 Leishmaniasis, Leishvet and One Health	119-122 122-125	OA32 Avian Parasites OA33 Equine Cyathostomes I	
12-13	PL4.0 Veterinary Entomology: Outbreak and Advancements	125-128	OA34 Flies and Fly Control in Ruminants	
Oral Sessions		128-131 131-135	OA35 Ruminant Trematodes I OA36 Treatment and Control of GI Nematodes in Ruminants	
15-18 18-21	OA01 Canine Heartworm I OA02 Diagnosis and Decision	136-139	OA37 Poultry Coccidia, Aquatic Infections	
	Support for GI Nematodes in Ruminants I	139-144 144-148	OA38 Equine Cyathostomes II OA39 Insecticide and Acaricide	
21-24 25-28	OA03 North American Ticks OA04 Coccidia	149-152	Resistance in Ruminants OA40 Zoonoses	
28-30	OA05 Worldwide Vector-Borne Infections in Companion Animals	153-155	OA41 Biology and Pathology of GI Nematodes in Ruminants	
30-35 35-38	OA06 Canine Heartworm II OA07 Host Responses Against	155-158 159-161	OA42 Diagnostic Techniques OA43 Equine Parasites	
39-42	Helminths in Ruminants OA08 Tick Disease Transmission	161-164 164-167	OA44 Canine Arthropods OA45 Ruminant Trematodes II	
43-46	OA09 Wildlife Parasites	168-171	OA46 Gastrointestinal Protozoa in	
46-49	OA10 New Tools and Big Data for	171 175	Ruminants	
	Evaluating Intestinal Parasite Infections in Companion Animals	171-175 175-179	OA47 Wildlife Helminths OA48 Equine Ascarids	
50-52	OA11 Canine Protozoa	179-183	OA49 Ticks on Cattle	
53-56	OA12 Diagnosis and Decision Support for GI Nematodes in Ruminants II	183-187	OA50 Alternative treatments for Parasites in Ruminants II	
56-59 60-62	OA13 Flea and Tick Treatment OA14 Protozoan Parasites	Poster	Sessions	
62-65	OA15 Education	189-234	PS01 Poster Session 1	

189-234	PS01 Poster Session 1
234-280	PS02 Poster Session 2
280-326	PS03 Poster Session 3

65-68

68-71

71-74

74-78

78-80

80-84

OA16 Canine Helminths

OA17 Molecular Tools I

OA20 IAFWP Symposium

OA21 Cat Parasitisms

OA19 Nematode Molecular Tools,

OA18 Leishmania

Resistance I

in the Punjab province of Pakistan. First, we examined the dihydrofolate reductase locus in 38 P. vivax isolates to look for evidence of positive selection pressure in human patients. The S58R (AGA)/S117N (AAC) double mutation was most common, being detected in 10/38 isolates. Single mutation S117N (AAC), I173L (CTT) and S58R (AGA) SNPs were detected in 8/38, 2/38 and 1/38 isolates, respectively. The F57L/I (TTA/ATA) and T61M (ATG) SNPs were not detected in any isolates examined. Although both soft and hard selective sweeps have occurred with striking differences between isolates, there was a predominance of hard sweeps. A single resistance haplotype was present at high frequency in 9/14 isolates, providing a strong evidence for single emergence of resistance by the single mutation, characteristics of hard selective sweeps. In contrast, 5/14 isolates carried multiple resistance haplotypes at high frequencies, providing an evidence of the emergence of resistance by recurrent mutations, characteristics of soft selective sweeps. Our phylogenetic relationship analysis suggests that S58R (AGA)/S117N (AAC) and S117N (AAC) mutations arose multiple times from a single origin and spread to multiple different cities in the Punjab province through gene flow. Interestingly, the I173L (CTT) mutation was present on a single haplotype, suggesting that it arises rarely and has not spread between cities. Our work shows the need for responsible use of existing and new antimicrobial drugs and their combinations, control the movement of infected patients and mosquito control strategies.

PSO1.78 Transcriptomic Analysis of ABC-Transporters (P-GP, MRP and HAF) in Haemonchus Contortus Isolates With Different Susceptibility to IVM

Laura Maté¹, Mariana Ballent¹, Candela Cantón¹, Laura Ceballos¹, **Prof. Adrián Lifschitz**¹, Prof. Carlos Lanusse¹, Paula Domínguez¹, Prof. Luis Alvarez¹, Pedro Lirón¹ ¹Laboratorio de Farmacología, Centro de Investigación Veterinaria Tandil (CIVETAN) UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil, Argentina

Inadequate and intensive use of anthelmintic compounds has led to the emergence of high

levels of parasite resistance in nematodes of sheep. Changes in drug target sites and the up-regulation of detoxification systems seem to be implicated in this phenomenon. Several studies have shown that ATP-binding-cassette (ABC) transporters such as P-glycoprotein (P-gp) play an important role in multidrug resistance in many organisms, including several nematode species. The goals of the current work were: 1) to compare the gene expression of several cellular transporters in both a susceptible (S-IVM) and a highly ivermectin (IVM)-resistant Haemonchus contortus isolate (HR-IVM); 2) to assess the effect of IVM on ABC transporters expression patterns in the HR-IVM isolate under in vivo conditions. To this end, the transcriptional levels of ABC transporters in adult HR-IVM H. contortus recovered from IVM-treated lambs (2 mg/kg) at 12 and 24 hours post-treatment, were compared to those obtained from the S-IVM and HR-IVM specimens collected from untreated lambs. The phylogenetic tree with the transporter sequences of the reference nematode Caenorabditis elegans and H. contortus allowed us to found the putative orthologous genes P-gp 1, 2, 3, 9.1, 10, 11, 13, 16 and 17; MRP 3, 4, 7 and 8; and Haf 2, 3, 4, 6 and 9. Next generation sequencing analysis showed that both H. contortus isolates express 6 of the 9 P-gps, 3 of the 5 multidrug resistant proteins (MRPs) and 4 of the 5 Half (HAF) transporter genes. Some of these ABC transporter genes are differentially expressed in the S and HR isolates. IVM treatment induced slight changes in the mRNA levels of MRP-4 and P-gp transporters, but the biological significance of the observed changes may not be enough to explain the high level of IVM resistance displayed by the isolate under study in the current trial.

PS01.79 Sheep, Strongyles and Sequencing: Investigating Ivermectin Resistance in UK Field Populations

Miss Jennifer McIntyre¹, Dr. Roz Laing¹, Ms. Kirsty Maitland¹, Mr. James McGoldrick¹, Dr. Stephen Doyle³, Dr. James Cotton³, Ms. Nancy Holroyd³, Prof. Eric Morgan⁴, Dr. Hannah Vineer⁵, Miss Katie Bull⁶, Dr. David Bartley², Mrs. Alison Morrison², Miss Kim Hamer¹, Prof. Neil Sargison⁷, Prof. Eileen Devaney¹