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SUMMARY

In this paper, we formulate and quantitatively examine the effect of dissipation on topological sys-

tems. We use a specific model of Kitaev quantum wire with an onsite Ohmic dissipation and perform

a numerically exact method to investigate the effect of dissipation on the topological features of the

system (e.g., theMajorana edgemode) at zero temperature.We find that even though the topological

phase is robust against weak dissipation as it is supposed to be, it will eventually be destroyed by suf-

ficiently strong dissipation via either a continuous quantum phase transition or a crossover depending

on the symmetry of the system. The dissipation-driven quantum criticality has also been discussed.
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INTRODUCTION

Topological quantum phases of matter are among the most notable phenomena in condensed matter

physics (Thouless, 1998). Instead of being classified by symmetries and their spontaneous breaking, topo-

logical phases of matters are identified by nonlocal topological orders that are immune to local perturba-

tions (Wen, 2004). The intrinsic stability of the topological features in the underlying systems makes them a

promising platform for quantum computation and information processing (Nayak et al., 2008). One of the

major obstacles for the realization of a practical quantum computer is that quantum systems are inevitably

coupled to their surroundings, which gives rise to dissipation and decoherence that is detrimental to the

quantum coherence (Schlosshauer, 2007). Since coupling to the environment tends to drive a quantum

system to be classical, although topological phases are quantum in nature, it is natural to expect that

sufficiently large bath-induced dissipation and decoherence will eventually destroy the topological phases

in spite of their robustness against small perturbations. The question is: How large? And does the system

experience a crossover or a phase transition during this process?

Understanding a topological system immersed in an environment is not only of fundamental interest of

topology physics itself, but also of immense practical significance in quantum simulation and information

processing and hence deserves quantitative studies rather than qualitative arguments. However, quantita-

tively examining the problem poses multiple challenges: an open quantum system coupled to an environ-

ment is, in general, a genuine interacting system even if the system Hamiltonian itself is noninteracting: the

bath will inevitably induce effective interactions between the system particles. Generalization of topolog-

ical phases to noninteracting open systems is a non-trivial problem (Bardyn et al., 2018; Budich and Diehl,

2015; Huang and Arovas, 2014; Uhlmann, 1986; Viyuela et al., 2014a,b), let alone the interacting cases

(Grusdt, 2017; Trebst et al., 2007). As a consequence, most theoretical efforts are based on various

approximations (e.g., the Born-Markovian and weak system-bath [SB] coupling approximations [Bardyn

et al., 2012; Budich et al., 2015; Diehl et al., 2011; Linzner et al., 2016]) or simplifications (e.g., treating

the bath as classical noises [Goldstein and Chamon, 2011; Hu et al., 2015; Knapp et al., 2016; Liu et al.,

2017; Pedrocchi and DiVincenzo, 2015; Rainis and Loss, 2012]).

In this paper, we investigate the fate of a topological phase in the presence of dissipation by performing a

numerically exact method, which allows us to investigate this complex interacting quantum open system

in both Markovian and non-Markovian cases ranging from weak to strong SB coupling regimes in a unified

picture. We choose our system Hamiltonian as a one-dimensional (1D) Kitaev model (Kitaev, 2001), a pro-

totypical example to illustrate nontrivial topology and edge state, whereas the environment is modeled by

sets of harmonic oscillators following Caldeira-Leggett’s seminal work (Caldeira and Leggett, 1981, 1983a,

b; Leggett et al., 1987). The key outcome of this paper is that, by increasing the dissipation strength, the

topological phase can be destroyed via either a continuous quantum phase transition or a crossover de-

pending on the symmetries of our model. The fate of Majorana fermions in the presence of dissipation

has also been investigated. In addition, using the framework of Abelian bosonization, we provide an analyt-

ical description of the interplay between pairing, dissipation, and interaction in our model.
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RESULTS

The Hamiltonian of a dissipative system contains three parts and is expressed as Htot = Hs + Hb + Hsb. Hs is

the system Hamiltonian chosen as a Kitaev wire and is given as follows:

Hs =
X
hiji

n
� J

�
cyi cj + cyj ci

�
� D

�
cyi c

y
j + cjci

�o
� m

X
i

ni; (Equation 1)

where ci (c
y
i ) are the annihilation (creation) operators of spinless fermions at site i, J (D) denotes the hopping

(pairing) amplitude between nearest neighboring sites, and m is the chemical potential. In the following, we

chooseD= J for simplicity. On each site i, a fermion additionally couples to a local bath (modeled by a set of

harmonic oscillators) via its density operator ni. The Hamiltonians describing each local bath and system-

bath coupling read as follows:

Hb =
X
i;k

P2
ik

2mk
+
1

2
mku

2
kX

2
ik ; (Equation 2)

X� � � �

Hsb =

i;k

lkffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkuk

p ni � 1

2
Xik ; (Equation 3)

where Xik (Pik) denotes the coordinate (momentum) operator of the bath harmonic oscillator with modes uk

on site i. The baths around different system sites are independent of each other but are characterized by

the same Ohmic spectral function: JðuÞ=p
P

k
l2k

2mkuk
dðu�ukÞ=pau for 0 < u < uD and J(u) = 0 otherwise. uD

is a hard frequency cutoff chosen as uD = 10J, and a is the dissipation strength.

Integrating out the bath degrees of freedom leads to a retarded interaction term in imaginary time. The

total system (system + bath) is assumed to be in thermal equilibrium at temperature T = 1/b; thus, the

partition function of the total system takes the form Z = Tre�bHtot = ZB 3 Trsrs, where ZB is the partition

function for the free bosons of the bath and rs is the reduced density matrix of the system (Hänggi and In-

gold, 2006; Hänggi et al., 2008) and takes the form given below:

rs = e
�bHs +

R b

0
dt
R b

0
dt0
P
i

�
niðtÞ � 1

2

�
Dðt � t0Þ

�
niðt0Þ � 1

2

�
: (Equation 4)

The effect of dissipation is encapsulated in the onsite retarded interaction in Equation (4) characterized by

the site-independent kernel function of the Ohmic spectrum (Winter et al., 2009) DðtÞ =

RN
0 du

JðuÞ
p

cosh

�
ub

2
� ujtj

�
sinh

�
bu

2

� . In the limit of T = 0 and t[tc = 2p=uD , DðtÞ � 1=t2. The reason for the

choice of the factor 1
2 in Equation (3) is that we wish the bath effect to be purely dynamical, such that the

equal-time component of the retarded interactions in Equation (4) contribute constants to the system

Hamiltonian

"�
ni � 1

2

�2

= 1
4

#
; thus the bath does not renormalize the Hamiltonian parameters in the sys-

tem. Experimentally, in the hybrid nanowires, the Ohmic dissipation can be realized via an electrostatic

coupling of quantum wire to metallic gates/films (Cazalilla et al., 2006), whereas in the ultracold atomic

setup, a three-dimensional Fermi sea can be considered as amicroscopic realization of such anOhmic envi-

ronment (Malatsetxebarria et al., 2013).

For the dissipationless case (a = 0), it is well known that the ground state of Hamiltonian.(1) experiences a

QPT from a topologically nontrivial phase to a trivial one at m = 2J. In the following, we will focus on the

topological non-trivial phase (e.g., m = J) and investigate its fate with increasing dissipation using a sign-

problem free Quantum Monte Carlo (QMC) simulation with worm update. Since this method applies

only to bosonic or spin systems, we first perform the Jordan-Wigner transformation(JWT) to map the Kitaev

model into a transverse Ising (TI) model: Hs = � J
P

is
x
i s

x
i + 1 �

m

2

P
is

z
i (si the Pauli matrices). This enables us

to study this model via QMC simulations with the worm algorithm (Prokof’ev et al., 1998) even in the pres-

ence of retarded interaction (see the Supplemental Information for details), which is invariant under JWT

(with ni � 1
2 replaced by 1

2 szi ). What we actually simulate is a transverse Ising (TI) model with retarded inter-

action, and we use its phase diagram to interpret that of the dissipative Kitaev model. Since both the JWT
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Figure 1. Majorana Quantum Wire in the Presence of Ohmic Dissipation

(A) Finite size scaling of the structure factor with different a; (B) correlation length normalized by the size L as a function of a; (C) phase diagram of the

dissipative Kitaev model (or the equivalent dissipative TI model); the inset shows that for small m the phase boundary satisfies the relations ac�lnm, as

predicted by the perturbation theory; (D) finite size scaling of the correlation length with different a values near the critical point mc = 2J of the dissipationless

TI model (the inset shows the correlation length as a function of 1/a at mc = 2J); (E) dissipation (a) dependence of the correlation function between the

Majorana fermions at the two ends of the chain; (F) RG flow diagram for ~Dð[ Þ and ~að[ Þwith an initial K0 = 0.501; the dashed blue line satisfies dK([)/d[ = 0 (e.g.,

condition 2p~D
2
= K2~a). m = J for (A),(B) and (E), and b = L.
and Gaussian integral are exact, these two models are exactly equivalent and thus share the same phase

diagram.

We focus on the ground state (T = 0) of the total system. In our QMC simulations, the inverse temper-

ature is scaled as b = L, corresponding to a dynamical critical exponent z = 1, which is indeed the case in

the QPT in the dissipationless TI model. The periodic boundary condition (PBC) in our simulations

corresponds to PBC/anti-PBC in the Kitaev wire depending on the odd/even parity of the particle num-

ber. Our model preserves the parity of the particle number of fermions even in the presence of dissipa-

tion, which allows us to restrict our measurement in the even parity subspace, which corresponds to

ground state of finite system.

We first fix the value of m = J and increase a. Under the JWT, the topological phase in the Kitaev model can

be mapped onto a magnetically ordered phase with spontaneous Z2 symmetry breaking; therefore, we use

the long-range correlation functions hsxi sxj i and their Fourier components SðQÞ= 1
L2

P
ije

iQði�jÞhsxi sxj i (struc-
ture factor) to identify the QPT induced by dissipation. We define m=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðQ = 0Þp

as the order parameter

of the magnetic ordering phase, which extrapolates to its ground state value m0 as L=b/N in finite

size scaling. As shown in Figure 1A, for small a, m0 is finite, whereas it vanishes in the presence of large
iScience 21, 241–248, November 22, 2019 243



dissipation. This dissipation-driven QPT can be further verified by the correlation length x, which can be

calculated from the structure factors S(Q) at Q0 = 0 and Q1 = 2p/L (Sandvik, 2010):

x =
1

Q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðQ0Þ
SðQ1Þ � 1

s
(Equation 5)

The normalized correlation length x/L as a function of a for different system sizes has been plotted in Fig-

ure 1B, where we can find a crossing point, indicating a scale-invariant quantum critical point (QCP). As

shown in Figure 1C, there are two distinct phases in the phase diagram of this model: a ferromagnetic

phase (or topological phase in the fermonic language) and a paramagnetic phase.

It is worthwhile to compare the role of dissipation with that of temperature (T), since both of them tend

to suppress quantum fluctuations. Throughout this paper, we focus on the zero temperature properties

of the total system (system + bath), where a strong SB coupling might drive the ‘‘system’’ to a mixed state

that resembles neither the ground state nor a thermal state with an effective temperature of the ‘‘system’’

Hamiltonian. For an instance, in such a 1D system, the dissipation can drive a continuous phase transi-

tion, which is forbidden at any finite temperature. Near the QCP, it is well known that the TI model is

a prototype model to illustrate quantum critical matter, whose properties are determined by the

QCPs even at a finite temperature (Coleman and Schofield, 2005; Hertz, 1976; Millis, 1993). The question

is what happens if the finite T is replaced by dissipation? (Near the QPC, we increase dissipation but fix

the temperature of the total system to be zero.) To study this problem, we focus on the QCP of the dis-

sipationless TI model at m = 2J and calculate the dependence of the spatial correlation length (x) on a in

the case of weak dissipation. As shown in the inset of Figure 1D, x is proportional to 1/a for weak dissi-

pation, similar to the temperature dependence of x in quantum critical regime at finite T (Sachdev, 1999).

Therefore, the dissipation plays a similar role as temperature near the QCP, whereas a qualitative differ-

ence is that, in 1D, the long-range magnetic order is fragile at any finite T but robust against small

dissipation.

In the a�m phase diagram, the line m = 0 is special as the total Hamiltonian Htot with m = 0 possesses extra

symmetries besides the parity symmetry (e.g., ½bS ;Htot �= 0 with bS =
Q
i

szi ). At m = 0, at each site i, Htot is

invariant under a combined transformation defined as bP i = bsx
i 5k

bP ik , where bP ik is the inversion operator

for the kth mode harmonic oscillator at site i: bP�1

ik Xik
bP ik = � Xik . It is easy to check that each bP i commutes

with Htot (½bP i;Htot � = 0), indicating infinite number of conserved quantities. Even though both bP i and bS
commute with Htot, they do not commute with each other ½bS ; bP i�s0, which indicates that all the eigenstates

are at least doubly degenerate. In Josephson junction arrays (Douçot et al., 2005; Loffe et al., 2002) and

trapped ions (Milman et al., 2007), similar degenerate states with noncommutative conserved quantities

have been proposed to be used to construct topologically stable qubits that are robust against decoher-

ence. In our model, these extra symmetries and degeneracies at m = 0 will give rise to remarkable conse-

quences, as we will show in the following.

We focuson the strongly dissipative limit andperformaperturbation analysis of the totalHamiltonianHtot. In

the case of m = J = 0, different lattice sites are decoupled and for each site, the ground states are doubly

degenerate, denoted as ‘‘dressed’’ spin states (j~[ii and j~Yii ) satisfying the relation j~[ii = bP ij~Yii . In the

strong dissipative limit fJ;mg � flk ;ukg, one can consider the ‘‘system’’ Hamiltonian Hs as perturbations

and derive an effective Hamiltonian ~H in the 2L-dimensional constraint Hilbert spaces spanned by the

f~szi g eigenbasis of the ‘‘dressed’’ spin (see the Supplemental Information for details). In the first-

order perturbation, the effective Hamiltonian can be written in terms of the Pauli operators of the

‘‘dressed’’ spin ~si as ~H =
P
i

h
� ~J~sxi ~s

x
i + 1 � ~m

2~s
z
i

i
, where the effective coupling is strongly suppressed by dissi-

pation ~J=
�
a
U

�a

J with U and a the UV and infrared frequency cutoff of the bath (see Supplemental Informa-

tion), whereas the chemical potential is not ~m = m. This perturbative result indicates that, at strongly dissipa-

tive limit, the phase boundary occurs at ac � � ln m, which agrees with our numerical results. Another

prediction is the absence of quantum phase transition at m = 0, indicating that, at this point, dissipation

cannot completely destroy the topological phase at zero temperature. This robustness is related to the spe-

cial symmetries and infinite conserved quantities even in the presence of dissipation, as we analyzed earlier.
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Up to now, our discussion was based on spin models. Even though the long-range magnetic correlations

can be considered as an indicator of the topological phase in the fermionic counterpart under JWT, they

are not directly physically observable in the Kitaev model since they involve nonlocal correlations of

string operators in terms of fermion operators. In general, a topological phase is characterized by distinct

integer values of topological invariant quantities. However, for an interacting open quantum system as in

our case, it is challenging to define or calculate such a topological invariant quantity. An alternative feature

of a topological phase is the existence of robust zero modes localized at the edges, known as Majorana

edge mode in the Kitaev model. The existence of Majorana mode is characterized by the nonvanishing

correlations between theMajorana fermions defined at two ends of the 1D lattice with open boundary con-

dition: M = �ihg1g2Li with g2i�1 = ci + cyi and g2i = iðcyi � ciÞ, the Majorana fermion operators.

Understanding the effect of the environment on Majorana fermions is crucial and of practical significance

for current experiments in solid-state devices (Churchill et al., 2013; Deng et al., 2012; Mourik et al., 2012;

Nadj Perge et al., 2014; Sun et al., 2016). A variety of theoretical methods have been employed to study

this problem under various approximations (Goldstein and Chamon, 2011; Hu et al., 2015; Knapp et al.,

2016; Liu et al., 2017; Pedrocchi and DiVincenzo, 2015; Rainis and Loss, 2012), most of which focus on

the dynamical aspect of the environment, modeled by classical noise that heat the system and destroys

the topology via a crossover. Here, we focus on the other aspect, dissipation, of environment, which is rele-

vant for the low-temperature steady-state properties. Recently, the effect of dissipation on the tunneling of

Majorana fermion has been discussed analytically (Matthews et al., 2014). Here, we calculate the quantity

hg1g2Li and use it to characterize the topological phase and Majorana edge mode in our dissipative

Kitaev model. In our QMC simulations this quantity can be expressed in terms of the spin operators

M = � ihg1g2Li = hsx1sxL
QL

i = 1s
z
i i. The QMC measurement is restricted to the even parity subspace. M as

a function of a for different system sizes is shown in Figure 1E, which reveals that M vanishes at a critical

ac, whose value agrees with the QCP identified by the correlation lengths. In summary, the fate of Majorana

edge modes in the presence of dissipation indicates that it will drive a topological nontrivial phase into a

trivial one without Majorana edge mode via a continuous QPT.

To get a better understanding of the dissipation-driven QPT, we perform the bosonization technique in

which the effective field theory of the system Hamiltonian can be expressed in terms of two bosonic fields

f(x) and q(x) (Lobos et al., 2012): Hs =
R
dx

	
v
2p

�
1
KðvxfÞ2 + KðvxqÞ2

�
+ ~Dr0sinð2qÞ



, with the Luttinger

parameter K, the sound velocity v, and a dimensionless parameter ~D characterizing the strength

of the p-wave pairing. If the average particle number is away from 1/2(ms0), we can ignore the

spatially fast oscillating terms. The effective action describing the retarded interaction induced by

dissipation can also be expressed in the bosonization language (Cazalilla et al., 2006):

Sret = � ~a
a0

R
dx

R
dtdt0 cos 2½fðx;tÞ�fðx;t0 Þ�

ðt�t0 Þ2 where the dimensionless parameter ~a is proportional to the dissipa-

tion strength. Finally, we obtain the effective action of the dissipative Kitaev model Seff =R b

0 dt

� R
dx 1

ip
_qvxf + HsðtÞ

�
+ Sret.

To study the interplay between the dissipation and p-wave pairing, we perform the standard perturbative

renormalization group (RG) procedure to analyze the RG-flow of the parameters ~a, ~D, v, and K, and their

flow equations read (see the Supplemental Information):

d~Dð[ Þ
d[

=

�
2� 1

Kð[ Þ
�
~Dð[ Þ;

d~að[ Þ
d[

= ½1� 2Kð[ Þ�~að[ Þ
dvð[ Þ
d[

= � 2pKð[ Þvð[ Þ~að[ Þ;
dKð[ Þ
d[

= 4p2~D
2ð[ Þ � 2pK2ð[ Þ~að[ Þ:

(Equation 6)

Themain results of our model can be illustrated by the flow equations Equation (6), fromwhich we can find a

phase transition point at Kc = 1/2. For K([) > Kc, ~Dð[ Þ flows to the strong coupling limit while ~að[ Þ goes to
zero. ~Dð[ Þ couples to the sin2q terms in the Hamiltonian; once it becomes relevant, the field q becomes
iScience 21, 241–248, November 22, 2019 245



pinned to one of the two degenerate energy minima of the potential: q = �p/4 or 3p/4, indicating a spon-

taneous Z2 symmetry breaking observed in our QMC simulations for small a. For K([) < Kc, the dissipation is

relevant while the effect of the pairing is suppressed in the RG sense; therefore, this phase can be under-

stood as a dissipative Luttinger liquid, which has been investigated analytically (Castro Neto et al., 1997;

Cazalilla et al., 2006; Malatsetxebarria et al., 2013) and numerically (Cai et al., 2014). The intertwined effects

between the dissipation and pairing can be found from the RG flow equations of K and v, from which we can

find that the velocity is only renormalized by dissipation, since it essentially breaks the Lorentz invariance of

the Luttinger Liquid term. Dissipation makes the plasmon velocity become slower; a similar effect has been

discussed in the Coulomb drag (Cazalilla et al., 2006; Lobos and Giamarchi, 2011). By solving the RG flow

equations, we plot the RG flow diagram as shown in Figure 1F, which shows the diverging RG flows of the

dissipation and pairing parameters in the different regions of the phase space.
DISCUSSION

Our results may be relevant with current experiments of topological superfluid and Majorana fermions in

both solid state and ultracold atomic setups. In most cases of solid state experiments, the strength of dissi-

pation is difficult to be controlled and tuned, so as an experimental realization of the dissipative Kitaev

model, we follow the implementation of a topological superfluid proposed by Nascimbene (Nascimbene,

2013) and estimate the relevant parameters in corresponding ultracold atomic setups. As proposed by

Nascimbene (2013), the 1D Kitaev model can be realized by loading 1D gas of fermionic atoms (e.g.,
161Dy) into a spin-dependent optical superlattice immersed in an environment composed of a two-dimen-

sional (2D) condensate of Feshbach molecules. In an optical lattice with wavelength l = 530 nm and the

lattice depth along x-direction Vx = 5Er (Er =
h2

2ml2
= 4:38ð2pÞ kHz is the recoil energy in this setup), by tuning

the scattering length of the fermions and the density of the 2D molecules, one can realize the Kitaev model

with parameters J � Dz0:1Er , which corresponds to an energy of kB321nK. The 2D condensate of

Feshbach molecules induces the attractive interactions between the 1D fermions; the static or mo-

mentum-dependent part of this bath-induced interaction gives rise to a p-wave pairing, whereas the

dynamical or frequency-dependent part plays a role of quantum dissipation. It has been shown that

the quantum environment composed of Bogoliubov quasiparticles in a 2D condensate can give rise to

Ohmic dissipation (Dalla Torre et al., 2010). By tuning the scattering length between the fermions and

molecules, one can realize a dissipation strength a comparable with D and J. One of the major challenges

in the experimental implementation is the finite temperature effect: to observe the dissipation-induced

phase transition, the temperature needs to be lower than 20 nK, still below the current experimental limit

of the cold fermionic systems.
Conclusion and Outlook

In summary, we have studied the effect of dissipation on topological quantum phases by considering a

specific model of Kitaev quantum wire with onsite Ohmic dissipation and found that the topological

phase in this model will eventually be destroyed via either a continuous QPT or a crossover depending

on the symmetry of the system. Some avenues for further investigations can be suggested. The first and

most important question is the generality of the above-mentioned results, whether it applies to other

topological models with different kind of dissipation. An important feature of our model is that a system

particle interacts with the bath via its density operators; this dissipation process preserves the total num-

ber (also the parity) of the particles in the system. We expect that our results hold for this type of sym-

metry-protected dissipation, whereas for other dissipation mechanisms (e.g., the particle loss) that break

these symmetries, the conclusion may be different. This point needs to be verified numerically, which re-

quires new methods and models (Yan et al., 2018). Another important ingredient still missing is a proper

definition of a topological invariant (an integer number) for these interacting open quantum systems,

which may provide more direct evidence of the topological phases and topological QPT compared

with the existence of edge modes. This topological number needs to be not only well defined but

also computable in our practical numerical simulations. A real-time dynamics of the model is also an

interesting question, which is closely related to the decoherence problem in topological quantum

computation and has been explored recently (Weisbrich et al., 2019). Last but not the least, our work

also raises an interesting question whether non-trivial topological properties could exist only in a subsys-

tem of reduced dimensionality spatially embedded in a larger non-topological system with an inhomo-

geneous Hamiltonian, and if so, how to identify this subsystem topological phases and what distin-

guishes them from the conventional topological matters.
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METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.025.
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Supplemental Material for “Dissipative Majorana quantum wires”

Transparent method

I. QMC METHOD FOR DISSIPATIVE QUANTUM SYSTEMS

We perform the QMC algorithm to study the transverse Ising model with dissipation-induced retarded interaction.
Compared to the standard worm QMC algorithm, the only difference here is the calculation of the integrals resulting
from the retardation and multiplying these positive factors into the QMC acceptance ratio during the updates of
the samplings. As a consequence, as long as the system Hamiltonian is positive definite in the QMC sampling (for
instance, the TI model in our case), the corresponding model with retarded interaction is also free from sign problem,
where the QMC is known as an unbiased numerical method giving rise to reliable results.
Dissipationless case: We first focus on the case without dissipation. The Hamiltonian Ĥ can be decomposed

as Ĥ = −T̂ + V̂ , with T̂ the off-diagonal terms and V is the diagonal ones under the basis of σ̂z eigenstates

|σ̃⟩ = |σ1σ2 · · ·σL⟩. In the interacting picture, the partition function Z = Tre−βĤ can be expanded as

Z = Tr
∞∑

n=0

ˆ β

0

dτn

ˆ τn

0

dτn−1 · · ·
ˆ τ2

0

dτ1e
−τ1V̂ T̂ e−(τ2−τ1)V̂ · · · e−(τn−τn−1)V̂ T̂ e−(β−τn)V̂

By inserting a set of complete basis, the partition function can be expressed in terms of the probability functions of

space-imaginary time configurations: Z =
∑∞

n=0

∑
|σ̃⟩1,···|σ̃⟩n

´ β
0
dτn
´ τn
0
dτn−1 · · ·

´ τ2
0
dτ1W (τ1, · · · , τn, |σ̃⟩1, · · · , |σ̃⟩n)

where |σ̃⟩m denotes the spin configurations between the imaginary time τm−1 and τm. For a given configuration:
{τ1, · · · , τn, |σ̃⟩1, · · · , |σ̃⟩n}, the corresponding probability

W (τ1, · · · , τn, |σ̃⟩1, · · · , |σ̃⟩n) = ⟨σ̃|1T̂ |σ̃⟩2e−(τ2−τ1)Eσ̃2 ⟨σ̃|2T̂ |σ̃⟩3 · · · e−(τn−τn−1)Eσ̃n ⟨σ̃n|T̂ |σ̃⟩1e−(β+τ1−τn)Eσ̃1 , (1)

where Eσ̃m = ⟨σ̃|mV̂ |σ̃⟩m is the diagonal energy for spin configuration between τm and τm−1. As long as T̂ is a
positive definite operator (as the transverse Ising model in our case), W (τ1, · · · , τn, |σ̃⟩1, · · · , |σ̃⟩n) is always positive.
As a consequence, we can perform the importance sampling to evaluate the average value of physical quantities over
a few portion instead of full configuration space .
With dissipation: We assume that the total system (system+environment), is in thermodynamic equilibrium and

its partition function can be expressed as: Z = Tr{σ̃},{aik}e
−βĤtot , where {σ̃} = {τ1, · · · , τn, |σ̃⟩1, · · · , |σ̃⟩n} represent

a imaginary time-space configuration.
As shown in the main text, integrating out the bath degrees of freedom introduces a retarded interaction in

imaginary time, which is diagonal in the σz−basis. As a consequence, it does not require a Taylor expansion, but

only contributes a factor for any given spin configuration: Sret({σ̃}) =
´ β
0
dτ
´ β
0
dτ ′
∑

i σi(τ
′)D(τ − τ ′)σi(τ) and the

partition function in the presence of retarded interaction reads

Z = ZB

∑
{σ̃}

W ({σ̃})e−Sret({σ̃}), (2)

where the weight W ({σ̃}) is the same as for the non-dissipative case in Eq.(1). Therefore, as long as the system
Hamiltonians is free from sign problem W ({σ̃}) ≥ 0, the corresponding effective action with retarded interaction is
also sign problem free (since e−Sret({σ̃}) > 0).

II. BOSONIZATION METHOD AND RENORMALIZATION GROUP ANALYSIS

b. Bosonization method Following the standard bosonization procedures, the spinless fermion operator can be
decomposed as ψ(x) = e−ikF xψL(x)+e

ikF xψR(x), where the right(left)-moving operator ψL(R)(x) can be expressed in

terms bosonic operators ϕ(x) and θ(x) as: ψR/L(x) =
Ur√
2πa

e∓iϕ(x)+iθ(x) where Ur is the Klein factor and a is the short

distance cutoff. The density operator of the fermions can be expressed as ρ(x) = − 1
π∇ϕ(x)+

1
2πα [e

2i(kF x−ϕ(x))+h.c.]
with ϕ(x) and θ(x) satisfying the relation [ϕ(x),∇θ(x′)] = iπδ(x− x′).
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Here, we provide technical details on the bosonization method applied to the quantum nanowire with Ohmic
dissipation, and give details on the derivation of the 2-loop RG flow equations. The methods used in this Supplemental
Material are standard bosonization and RG techniques that are explained in textbooks[? ? ]
We focus on the effect of the superconducting pairing Hp and dissipation terms as perturbations to the fixed-point

Eucildean action S0. We start by writing the total partition function of the system

Z =

ˆ
D [θ, ϕ] e−S0−Sp−Sret , (3)

where S0 is the Euclidean action corresponding to the fixed-point Hamiltonian H0

S0 =

ˆ L

0

dx

ˆ β

0

dτ

[
1

iπ
∂τθ∂xϕ+

v

2πK
(∂xϕ)

2
+
vK

2π
(∂xθ)

2

]
, (4)

where τ is the imaginary time, and β = 1/T is the inverse temperature. The bosonic fields obey the usual commutation
relations:

[ϕ (x) , θ (y)] = −iπ
2
sign (x− y) . (5)

The term Sp is the Euclidean action corresponding to the pairing interaction

Sp =
2v∆̃

a2

ˆ L

0

dx

ˆ β

0

dτ sin 2θ (x, τ) ,

where we have defined the dimensionless coupling ∆̃ ≡ ∆a
πv , and

Sret = − α̃
a

ˆ L

0

dx

ˆ β

0

dτdτ ′
cos 2 [ϕ (x, τ)− ϕ (x, τ)]

(τ − τ ′)
2 ,

is the action of the Ohmic dissipation. In the following, we focus on the limit L→ ∞ and T → 0.
For later convenience, we now introduce the scaled fields

ϕ→ ϕ̃ =
ϕ√
K

(6)

θ → θ̃ =
√
Kθ (7)

which preserve the commutation relation (5), and the compact notation

r = (x, vτ)

In addition, we define the vertex operators

ei2
√
Kϕ̃(r) =

(
2πa

L

)K

: ei2
√
Kϕ̃(r) :,

ei2θ̃(r)/
√
K =

(
2πa

L

)1/K

: ei2θ̃(r)/
√
K :,

where the notation : Ô : means that the operator Ô is normal-ordered. In terms of the above quantities, the Euclidean
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action now writes as

S0 =

ˆ
d2r

[
− i

π
∂y θ̃∂xϕ̃+

1

2π

(
∂xϕ̃

)2
+

1

2π

(
∂xθ̃
)2]

, (8)

Sp =
∆̃

ia2−1/K

ˆ
d2r

(
2π

L

)1/K (
: ei2θ̃(r)/

√
K : −H.c.

)
, (9)

Sret = −1

2

α̃

a1−2K

ˆ
a<|r1−r2|

d2r1d
2r2 δ (x1 − x2)

(
2π

L

)2K

×

(
: ei2

√
Kϕ̃(r1) :: e−i2

√
Kϕ̃(r2) :

(r1 − r2)
2 +H.c.

)
. (10)

We now return to Eq. (3) and expand the partition function in powers of the dimensionless couplings ∆̃ and α̃

Z = Z0 ×

1 +
1

2!

(
∆̃

ia2−1/K

)2 ˆ
a<|r1−r2|

d2r1d
2r2

(
2π

L

)2/K ⟨[
: ei2θ̃(r1)/

√
K : −H.c.

] [
: ei2θ̃(r2)/

√
K : −H.c.

]⟩
0
,

+
α̃

2a1−2K

ˆ
a<|r1−r2|

d2r1d
2r2 δ (x1 − x2)

(
2π

L

)2K

⟨
: ei2

√
Kϕ̃(r1) :: e−i2

√
Kϕ̃(r2) :

⟩
0

(r1 − r2)
2 +H.c. + . . .

 (11)

where the averages are taken with respect to the fixed-point action S0, and where we have used that
⟨
: ei2θ̃(r)/

√
K :
⟩
0
=⟨

: ei2
√
Kϕ̃(r) :

⟩
0
= 0.

We now implement the RG transformation by performing an infinitesimal change in the microscopic cutoff a, and

asking how the parameters
{
K, v, ∆̃, α̃

}
of the model should change in order to preserve the partition function Z. It

is convenient to parametrize the RG transformation with a dimensionless continuous variable ℓ, i.e., a = a (ℓ) ≡ a0e
ℓ.

In this way, the parameters of the model become functions of ℓ through their dependence on a (ℓ):
{
K, v, ∆̃, α̃

}
→{

K (ℓ) , v (ℓ) , ∆̃ (ℓ) , α̃ (ℓ)
}
. We now focus on the infinitesimal transformation a (ℓ) → a (ℓ+ dℓ) ≃ a (ℓ) [1 + dℓ], and

demand that the equation

Z (ℓ) = Z (ℓ+ dℓ) , (12)

is satisfied [? ? ]. To simplify the notation, we denote the integrals over r1 and r2 in (11) as

I (ℓ) =
1

2

(
∆̃ (ℓ)

)2
(a (ℓ))

4−2/K

ˆ
a(ℓ)<|r1−r2|

d2r1d
2r2

(
2π

L

)2/K [
: ei2θ̃(r1)/

√
K :: e−i2θ̃(r2)/

√
K : +H.c.

]
+

1

2

α̃ (ℓ)

(a (ℓ))
1−2K

ˆ
a(ℓ)<|r1−r2|

d2r1d
2r2 δ (x1 − x2)

(
2π

L

)2K
[
: ei2

√
Kϕ̃(r1) :: e−i2

√
Kϕ̃(r2) :

(r1 − r2)
2 +H.c.

]
(13)

In terms of this quantity, Eq. (12) writes

ˆ
D [θ, ϕ] e−S0(ℓ) [1 + I (ℓ) + . . . ] =

ˆ
D [θ, ϕ] e−S0(ℓ+dℓ) [1 + I (ℓ+ dℓ) + . . . ] (14)

Note that the rescaling a (ℓ) → a (ℓ+ dℓ) changes the lower integration limit in Eq. (13), and we can split the integrals
as

ˆ
a(ℓ+dℓ)<|r1−r2|

=

ˆ
a(ℓ)<|r1−r2|

−
ˆ
a(ℓ)<|r1−r2|<a(ℓ+dℓ)

. (15)
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This allows to split the 2nd-order contribution into

I (ℓ+ dℓ) = I1 (ℓ+ dℓ)− I2 (ℓ+ dℓ) ,

where I1 (ℓ+ dℓ) is identical to Eq. (13), provided we adjust the prefactors as

∆̃ (ℓ+ dℓ)

(a (ℓ+ dℓ))
2−1/K

=
∆̃ (ℓ)

(a (ℓ))
2−1/K

, (16)

α̃ (ℓ+ dℓ)

(a (ℓ+ dℓ))
1−2K

=
α̃ (ℓ)

(a (ℓ))
1−2K

, (17)

From here, the RG-flow Eqs. (8) in the main text:

d∆̃ (ℓ)

dℓ
=

(
2− 1

K (ℓ)

)
∆̃ (ℓ) , (18)

dα̃ (ℓ)

dℓ
= (1− 2K (ℓ)) α̃ (ℓ) , (19)

are obtained.
On the other hand, the term I2 (ℓ+ dℓ) is the integral evaluated near the boundary, i.e.,

I2 (ℓ+ dℓ) =
1

2

(
∆̃ (ℓ)

)2
(a (ℓ))

4−2/K

ˆ
a(ℓ)<|r1−r2|<a(ℓ+dℓ)

d2r1d
2r2

(
2π

L

)2/K [
: ei2θ̃(r1)/

√
K :: e−i2θ̃(r2)/

√
K : +H.c.

]
+

1

2

α̃ (ℓ)

(a (ℓ))
1−2K

ˆ
a(ℓ)<|r1−r2|<a(ℓ+dℓ)

d2r1d
2r2 δ (x1 − x2)

(
2π

L

)2K
[
: ei2

√
Kϕ̃(r1) :: e−i2

√
Kϕ̃(r2) :

(r1 − r2)
2 +H.c.

]
(20)

and is easy to see that this term renormalizes the fixed-point action S0 (ℓ+ dℓ), as can be seen reexponenting this
term in the expression of the partition function. We obtain

ˆ
D [θ, ϕ] e−S0(ℓ) [1 + I (ℓ) + . . . ] ≈

ˆ
D [θ, ϕ] e−S0(ℓ+dℓ) [1 + I1 (ℓ+ dℓ)− I2 (ℓ+ dℓ) + . . . ] ,

=

ˆ
D [θ, ϕ] e−S0(ℓ+dℓ)−I2(ℓ+dℓ) [1 + I1 (ℓ+ dℓ) + . . . ] .

Using the previous result I (ℓ) = I1 (ℓ+ dℓ) upon rescaling of the parameters as in Eqs. (16) and (17), note that in
order to preserve the partition function, we must impose:

S0 (ℓ) = S0 (ℓ+ dℓ) + I2 (ℓ+ dℓ) . (21)

Next, we perform an operator product expansion (OPE) in Eq. (20). To that end, it is convenient to introduce
relative and center-of-mass coordinates,

r = r1 − r2,

R =
1

2
(r1 + r2) .
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In the limit r → 0, the product of vertex operators appearing in (13) can be expanded as:

: ei2
√
Kϕ̃(R+ r

2 ) :: e−i2
√
Kϕ̃(R+ r

2 ) : =

(
L

2π

)2K
: ei2

√
Kϕ̃(R+ r

2 )e−i2
√
Kϕ̃(R+ r

2 ) :(
x2 + v2 (τ + a)

2
)K

=

(
L

2π

)2K
: ei2

√
K[ϕ̃(R+ r

2 )−ϕ̃(R− r
2 )] :(

x2 + v2 (τ + a)
2
)K

−−−→
r→0

(
L

2π

)2K :
∑∞

n=0
(i2

√
K)

n

n!

[
∂xϕ̃ (R)x+ ∂τ ϕ̃ (R) τ

]n
+ · · · :(

x2 + v2 (τ + a)
2
)K (22)

: ei2θ̃(R+ r
2 )/

√
K :: e−i2θ̃(R− r

2 )/
√
K : =

(
L

2π

)2/K
: ei2θ̃(R+ r

2 )/
√
Ke−i2θ̃(R− r

2 )/
√
K :(

x2 + v2 (τ + a)
2
)1/K

=

(
L

2π

)2/K
: ei2[θ̃(R+ r

2 )−θ̃(R− r
2 )]/

√
K :(

x2 + v2 (τ + a)
2
)1/K

=

(
L

2π

)2/K :
∑∞

n=0

(
2i√
K

)n [
∂xθ̃ (R)x+ ∂τ θ̃ (R) τ

]n
+ · · · :(

x2 + v2 (τ + a)
2
)1/K (23)

With these results, the integral (20) becomes

I2 (ℓ+ dℓ) =

(
∆̃ (ℓ)

)2
(a (ℓ))

4−2/K

ˆ
dR

ˆ
a(ℓ)<|r1−r2|<a(ℓ+dℓ)

d2r

: 1 + 1
2!

(
i 2√

K

)2 [(
∂xθ̃ (R)

)2
x2 +

(
−iv∂xϕ̃ (R)

)2
τ2
]
+ · · · :(

x2 + v2 (τ + a)
2
)1/K

+
α̃ (ℓ)

(a (ℓ))
1−2K

ˆ
dR

ˆ
a(ℓ)<|r1−r2|<a(ℓ+dℓ)

d2r
δ (x)

r2

: 1 +
(i2

√
K)

2

2!

[
∂xϕ̃ (R)x+ ∂τ ϕ̃ (R) τ

]2
+ · · · :(

x2 + v2 (τ + a)
2
)K

≈

(
∆̃ (ℓ)

)2
(a (ℓ))

4−2/K

ˆ
dR

ˆ 2π

0

dφ

ˆ a(ℓ+dℓ)

a(ℓ)

dr r

: 1 + 1
2!

(
i 2√

K

)2
r2
[
cos2 φ

(
∂xθ̃ (R)

)2
− sin2 φ

(
∂xϕ̃ (R)

)2]
+ · · · :

(r2)
1/K

+
α̃ (ℓ)

(a (ℓ))
1−2K

ˆ
dR

ˆ a(ℓ+dℓ)

a(ℓ)

d (vτ)

 : 1 +
(i2

√
K)

2

2!

[
−v2τ2

(
∂xθ̃ (R)

)2]
+ . . .

(vτ)
2+2K


= − 2π

K (ℓ)

(
∆̃ (ℓ)

)2
dℓ

ˆ
dR

{
:

[(
∂xθ̃ (R)

)2
−
(
∂xϕ̃ (R)

)2]
+ · · · :

}
+ 2K (ℓ) α̃ (ℓ) dℓ

ˆ
dR

[
:
(
∂xθ̃ (R)

)2
+ . . .

]
+ cst.,

where we have used the equation of motion for the bosonic fields

∂τ ϕ̃ (x, τ) =
[
H, ϕ̃ (x, τ)

]
= −iv∂xθ̃ (x, τ) ,

∂τ θ̃ (x, τ) =
[
H, θ̃ (x, τ)

]
= −iv∂xϕ̃ (x, τ) .

We can now return to Eq. (21), and using the expression of the original fields Eqs. (6) and (7), we can equate the

coefficients of (∂xϕ)
2
and (∂xθ)

2
appearing on both sides of (21). |We obtain respectively
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v (ℓ)

2πK (ℓ)
=

v (ℓ+ dℓ)

2πK (ℓ+ dℓ)
+

2π

K2 (ℓ)

(
∆̃ (ℓ)

)2
v (ℓ) dℓ,

v (ℓ)K (ℓ)

2π
=
v (ℓ+ dℓ)K (ℓ+ dℓ)

2π
+

(
− 2π

K (ℓ)

(
∆̃ (ℓ)

)2
v (ℓ) dℓ+ 2K (ℓ) α̃ (ℓ) v (ℓ) dℓ

)
K (ℓ) .

From here we derive the set of differential equations

d
(

v(ℓ)
K(ℓ)

)
dℓ

=
1

K (ℓ)

dv (ℓ)

dℓ
− v (ℓ)

K2 (ℓ)

dK (ℓ)

dℓ
= − (2π)

2

K2 (ℓ)
v (ℓ)

(
∆̃ (ℓ)

)2
,

d (v (ℓ)K (ℓ))

dℓ
= K (ℓ)

dv (ℓ)

dℓ
+ v (ℓ)

dK (ℓ)

dℓ
= +(2π)

2
v (ℓ)

(
∆̃ (ℓ)

)2
− 4πK2 (ℓ) v (ℓ) α̃ (ℓ) ,

and from here,

K (ℓ)
dv (ℓ)

dℓ
− v (ℓ)

dK (ℓ)

dℓ
= − (2π)

2
v (ℓ)

(
∆̃ (ℓ)

)2
,

K (ℓ)
dv (ℓ)

dℓ
+ v (ℓ)

dK (ℓ)

dℓ
= +(2π)

2
v (ℓ)

(
∆̃ (ℓ)

)2
− 4πK2 (ℓ) v (ℓ) α̃ (ℓ) .

Solving for dv(ℓ)
dℓ and dK(ℓ)

dℓ , we finally obtain

dv (ℓ)

dℓ
= −2πK (ℓ) v (ℓ) α̃ (ℓ) , (24)

dK (ℓ)

dℓ
= (2π)

2
(
∆̃ (ℓ)

)2
− 2πK2 (ℓ) α̃ (ℓ) . (25)

III. PERTURBATION THEORY IN THE STRONGLY DISSIPATIVE LIMIT

In this section, we derive the effective Hamiltonian for a two-site toy model in the strongly dissipative limit based on
the perturbation theory. The Hamiltonian of the two-site system can be expressed (in terms of the spin language) as:

H = Hs +
∑
i=1,2

∑
k

[ckσ
z
iXik +

P 2
ik

2mk
+

1

2
mkω

2
kX

2
ik] (26)

where Hs = −Jσx
1σ

x
2 − µ

2 [σ
z
1 + σz

2 ] is the system Hamiltonian. In the limit J = µ = 0, the two sites are decoupled.

For each site, the ground state are two-fold degenerate, denoted as “dressed” spin states: |↑̃⟩ = | ↑⟩ ⊗kc

k=1 |Ψ
+
k ⟩ and

|↓̃⟩ = | ↓⟩ ⊗kc

k=1 |Ψ
−
k ⟩, where | ↑ / ↓⟩ is the eigenstate of the system spin σz, |Ψ±

k ⟩ is the bosonic coherent state of the

kth-mode harmonic oscillator: |Ψ±
k ⟩ =

1

π
1
4
√
lk
exp[− (x±ξk)

2

2l2k
] with lk =

√
1

mkωk
and ξk = ck

2mkω2
k
.

In the strong dissipative limit where J, µ≪ ck, ωk, Hs can be treated as a perturbation. By performing the standard
perturbation analysis, one can derive the effective Hamiltonian in the unperturbed basis |↑̃1↑̃2⟩, |↑̃1↓̃2⟩,|↓̃1↑̃2⟩, |↓̃1↓̃2⟩:

H̃ = −J̃ σ̃x
1 σ̃

x
2 − µ̃

2
[σ̃z

1 + σ̃z
2 ] (27)

where the Pauli operators σ̃x,y,z operate in the Hilbert space spanned by the “dressed” spin basis |↑̃⟩ and |↓̃⟩, and
the diagonal matrix elements are not normalized in the first order perturbation µ̃ = µ, while the off-diagonal ones:

J̃ = J
∏
k

⟨Ψ+
1,k|Ψ

−
1,k⟩⟨Ψ

+
2,k|Ψ

−
2,k⟩ = J

∏
k

e
− 2ξ2k

l2
k = Je

−
∑

k

c2k
mkω3

k = Je−
´ J(ω)

ω2 = J
( a
Λ

)α
(28)

where J(ω) =
∑

k δ(ω − ωk)
c2k

mkωk
= αω for a < ω < Λ with Λ(a) the ultraviolet (infrared) frequency cut-off. From

Eq. (28) we can find that in the strong dissipative limit, the off diagonal coupling are strongly suppressed by
dissipation.
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