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MONOMIAL CONVERGENCE ON ℓr

DANIEL GALICER, MARTÍN MANSILLA, SANTIAGO MURO, AND PABLO SEVILLA-PERIS

ABSTRACT. For 1 < r ≤ 2, we study the set of monomial convergence for spaces of holomorphic func-

tions over ℓr . For Hb(ℓr ), the space of entire functions of bounded type in ℓr , we prove that mon Hb (ℓr )

is exactly the Marcinkiewicz sequence space mΨr where the symbol Ψr is given by Ψr (n) := log(n +
1)1− 1

r for n ∈N0. For the space of m-homogeneous polynomials on ℓr , we prove that the set of mono-

mial convergence monP (mℓr ) contains the sequence space ℓq where q = (mr ′)′. Moreover, we show

that for any q ≤ s <∞, the Lorentz sequence space ℓq,s lies in monP (mℓr ), provided that m is large

enough. We apply our results to make an advance in the description of the set of monomial conver-

gence of H∞(Bℓr
) (the space of bounded holomorphic on the unit ball of ℓr ). As a byproduct we close

the gap on certain estimates related with the mixed unconditionality constant for spaces of polynomi-

als over classical sequence spaces.

1. INTRODUCTION AND MAIN RESULTS

A basic fact taught on every course of one complex variable is that every function that is differen-

tiable at all points of a disc centred at 0 can be represented as a power series, and vice-versa. In other

words, the derivative f ′(z) exists (i.e. f is differentiable at z) for every |z| < r if and only if there is a

sequence of coefficients (cn( f ))n ⊆C so that

(1) f (z) =
∞∑

n=0
cn( f )zn

for every |z| < r (i.e. it is analytic). In this case the coefficients can be computed either by differ-

entiation or by the Cauchy integral formula, and the convergence is absolute and uniform on each

compact subset of the disc. It also rather elementary to see that in fact this extends also to functions

on several complex variables: a function defined on a Reinhardt domain R ⊂ C
n (all needed defini-

tions in this introduction can be found in Section 2), is differentiable at every z ∈ R if and only it is

analytic (and has a power series representation as in (1)). So, differentiability and analiticity are two

equivalent ways to define holomorphy in one and several complex variables.
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The idea of developing a sort of function theory in infinitely many variables (or, to put in nowadays

terms, on infinite dimensional spaces) started at the beginning of the 20th century with the work,

among others, of Hilbert, Fréchet and Gâteaux. Here the problem becomes much more subtle. To

begin with, while a notion such as differentiability can be considered for functions on any Banach

space the idea of analiticiy, where one needs power expansions with monomials of the form zα =
z
α1
1 · · ·z

αn
n , is much more restrictive. A Schauder basis, where an idea of ‘coordinate’ makes sense, is

at least needed. This shows that the approach to holomorphy through differentiability is much more

far reaching than the one through analiticity. We say, then, that a function f : U → C (where U is

some open subset of a Banach space X ) is holomorphic if it is Fréchet differentiable at every point

of U (or, equivalently, continuous and holomorphic when restricted to any one-dimensional affine

subspace, see [Muj86, Din99]).

It is also worthy to explore the analytic approach whenever it makes sense (as, for example Banach

sequences spaces, the definition is given below). Let us succinctly explain how this works (a detailed

account on this can be found in [DGMSP19, Chapter 15]). Let f be a holomorphic function on some

Reinhardt domain R in a Banach sequence space X . For each fixed n, the restriction of f to Rn =
R∩C

n (which is a Reinhardt domain) is holomorphic and, therefore, has a monomial expansion with

coefficients (c(n)
α ( f ))α∈Nn

0
. It is easy to check that c(n)

α = c(n+1)
α for α ∈N

n
0 ⊂ N

n+1
0 . In other words, we

have a a unique family (cα( f ))
α∈N(N)

0
, such that

(2) f (z) =
∑

α∈N(N)
0

cαzα

for all n ∈N and all z ∈Rn . The coefficients can be computed, for each α= (α1, . . . ,αn ,0,0, . . .), by

(3) cα( f ) =
∂α f (0)

α!
=

1

(2πi )n

∫

{|z|=r }

f (z)

zα+1 d z,

where r > 0 such that {|z| ≤ r } ⊂R. As usual, the power series
∑

α cαzα is called the monomial expan-

sion of f .

One could expect that in the settings where these two approaches coexist they are equivalent, just

as in the finite dimensional setting. But this is not the case. When dealing with a totally different

problem, related to the convergence of Dirichlet series, Toeplitz gave in [Toe13] an example that, to

what we are concerned here, provided a holomorphic function on c0 and a point in c0 for which the

monomial expansion does not converge absolutely. This shows that there are holomorphic functions

that are not analytic (the converse, however, holds true: every analytic function is holomorphic).

Then the question arises in a natural way: for which z’s does the monomial expansion of every holo-

morphic function converge absolutely? (note that when this is the case when the series converges to

f (z)). From (2) we have that this happens for every z ∈Rn but, are there other ones? Ryan showed in

[Rya80] that the monomial expansion of every holomorphic function on ℓ1 converges at every z ∈ ℓ1.

Later Lempert in [Lem99] proved that the monomial expansion of every holomorphic function on
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ρBℓ1 (for ρ > 0) converges at every z ∈ ρBℓ1 . This is a somewhat extremal case, where the analytic

and differential approaches coincide. What happens in other spaces? or if we consider smaller fami-

lies of holomorphic functions? To tackle this questions the set of monomial convergence of a family

F (R) of holomorphic functions on R was defined in [DMP09] as

monF (R) =
{

z ∈C
N :

∑

α∈N(N)
0

∣
∣cα( f )zα

∣
∣<∞ for all f ∈F (R)

}

,

and a systematic study was started. We are mostly interested in studying the set of monomial con-

vergence of the following three families:

• Hb(ℓr ) (the space of holomorphic functions of bounded type on ℓr )

• H∞(Bℓr
) (the space of bounded holomorphic functions on the open unit ball of ℓr )

• P (mℓr ) (the space of m-homogeneous polynomials on ℓr ).

The results of Ryan and Lempert mentioned before imply mon Hb(ℓ1) = monP (mℓ1) = ℓ1 for every

m and mon H∞(Bℓ1 ) = Bℓ1 . On the other endpoint of the scale (p = ∞) [BDF+17] gives a precise

description of monP (mℓ∞) as ℓm−1
2m ,∞ and lower and upper inclusions for mon H∞(Bℓ∞) that, al-

though not optimal, are pretty tight. The study for 1 < r <∞ was started in [DMP09] and continued

in [BDS], where several interesting results in this direction for polynomials and bounded holomor-

phic functions were obtained. To our best knowledge, nothing has been done so far to describe the

set of monomial convergence of the holomorphic functions of bounded type. In this note we make

progress towards the description of these set of monomial convergence in the case 1 < r ≤ 2.

In Theorem 4.1 we provide a complete characterization of the set of monomial convergence of the

space of holomorphic functions of bounded type for 1 < r ≤ 2 as

mon Hb(ℓr ) =
{

z ∈C
N : sup

n≥1

∑n
l=1 z∗

l

log(n +1)1− 1
r

<∞
}

.

The proof is given in Section 4 and the main tool developed is a decomposition of the multi-indices

(in an even and a pure tetrahedral part), which allows us to split the monomial expansion in different

pieces, for which we are able to find proper bounds.

Regarding set of monomial convergence of bounded holomorphic functions on Bℓr
is considered,

there are a number of deep results (see [DMP09, Example 4.9 (1)(a)]) that in the case we are dealing

with here (1< r ≤ 2) imply

(4) Bℓr
∩ℓ1 (mon H∞(Bℓr

) ⊆ Bℓr
∩ℓ1+ε for every ε> 0.
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We give here some upper and lower inclusions, in the spirit of the ones obtained for H∞(Bℓ∞). We

show in Theorem 5.1 that

{

z ∈C
N : 2eCr

(

lim sup
n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r

)r

+‖z‖r
ℓr

< 1
}

⊂ mon H∞(Bℓr
)

⊂
{

z ∈Bℓr
: lim sup

n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r
≤ 1

}

,

where 0 <Cr ≤
(

∞∑

k=1

log(k +1)r−1

kr

)1/r

and depends on the interplay between ℓr and the Marcinkiewicz

sequence space mΨr (see Remark 4.4). Let us point out that this is connected with the question stated

in [BDS, Remark 5.8]. We will see in Remark 5.5 that these lower and upper inclusions recover (4).

Regarding m-homogeneous polynomials we know from [BDS, Theorem 5.1] and [DMP09, Exam-

ple 4.6] that ℓq−ε ⊂ monP (mℓr ) ⊂ ℓq,∞ for every ε > 0 (where 1 < r ≤ 2 and q := (mr ′)′). Using

elementary methods we show in Theorem 6.3 that we can even take ε = 0 (this proves a conjecture

made by Defant, Maestre and Prengel in [DMP09]). We go one step further, showing in Theorem 6.1

that

ℓq, m
logm

⊂ monP (mℓr )

for every m ≥ 5 (we also give lower inclusions for m ≤ 4). The proof is technically involved and uses

interpolation of linear operators defined on cones. All this is presented in Section 6.

Finally, as a byproduct, in Section 7 we provide correct estimates of the asymptotic growth of the

mixed-(p, q) unconditional constant (a notion by Defant, Maestre and Prengel in [DMP09, Section 5])

as n tends to infinity for every 1≤ p, q ≤∞; closing the gap of the remaining cases of [GMMb].

2. PRELIMINARIES

For every x, y ∈C
N we denote by |x| the sequence (|x1|, |x2|, . . . , |xn |, . . .). If |xi | ≤ |yi | for every i ∈N

we write |x| ≤ |y |. A Banach sequence space is a Banach space (X ,‖ · ‖X ) such that ℓ1 ⊂ X ⊂ ℓ∞

satisfying that, if x ∈ C
N and y ∈ X with |x| ≤ |y |, then x ∈ X and ‖x‖X ≤ ‖y‖X . A non-empty

open set R ⊂ X is called a Reinhardt domain if given x ∈ C
N and y ∈ R such that |x| ≤ |y | then

x ∈ R. Given a bounded sequence x its decreasing rearrangement x∗ is the sequence defined as

x∗
n = inf{sup j∈N\J |x j | : J ⊂N,card(J ) < n}. A Banach sequence space (X ,‖·‖X ) is said to be symmetric

if x∗ ∈ X whenever x ∈ X and, moreover ‖x‖X = ‖x∗‖X . A set A ⊂ X is symmetric if x ∈ A if and only if

x∗ ∈ A. For every x ∈ c0 there is some injective mapping σ : N→N such that x∗
n = |xσ(n)| for all n ∈N.

We will say that a sequence x ∈C
N is decreasing whenever |x| is decreasing.
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We are going to deal basically with three classes of Banach sequence spaces: the classical Minkowski

ℓr spaces, the Lorentz ℓp,q spaces and the Marcinkiewicz sequence spaces. Let us recall some defini-

tions. For 1 ≤ p, q ≤∞ the space ℓp,q consists of those sequences z for which (we use the convention
1
∞ = 0)

‖z‖ℓp,q :=
∥
∥
∥

(

z∗
nn

1
p −

1
q
)∞

n=1

∥
∥
∥
ℓq

<∞ .

Observe that in general this is a quasi-norm and only defines a norm for 1 ≤ q ≤ p ≤∞. For z ∈ ℓp,q

we define

‖z‖∗ℓp,q
:=

(
∞∑

n=1
n

q
p −1

(

1

n

n∑

k=1

z∗
k

)q)1/q

.

It should be noted (see [BS88, Lemma 4.5]) that for 1≤ p, q ≤∞ and z ∈ ℓp,q , it holds

‖z‖ℓp,q ≤ ‖z‖∗ℓp,q
≤ p ′‖z‖ℓp,q ,

so we can always work with the quasi-norm ‖·‖ℓp,q and treat (ℓp,q ,‖·‖ℓp,q ) as a Banach sequence space

at the expense of p ′ (the conjugate exponent of p) as a price every time we do so . Let Ψ= (Ψ(n))∞n=0

be an increasing sequence of nonnegative real numbers with Ψ(0) = 0 and Ψ(n) > 0 for every n ∈N.

These functions are usually known as symbols. The Marcinkiewicz sequence space associated to the

symbol Ψ, denoted by mΨ, is the vector space of all bounded sequences (zn)n such that

‖z‖mΨ
:= sup

n≥1

∑n
k=1 z∗

k

Ψ(n)
<∞.

An m-homogeneous polynomial in n variables is a function P of the form

P (z) =
∑

α∈Nn
0

α1+···+αn=m

cαz
α1
1 · · ·zαn

n .

Given α ∈ N
n
0 we write |α| = α1 + ·· · +αn and Λ(m,n) = {α ∈ N

n
0 : |α| = m}. We also consider the

set J (m,n) = {j = ( j1, . . . , jm) ∈N
m : 1 ≤ j1 ≤ ·· · ≤ jm ≤ n}. Each α ∈Λ(m,n) defines jα = (1, α1. . . 1,2, α2. . .

2, . . . ,n,αn. . . n) ∈J (m,n). Conversely, each j ∈ J (m,n) defines α ∈Λ(m,n) by αk = card{i : ji = k}. In

this way these two indexing sets are injective and, denoting z
α1
1 · · ·z

αn
n = zα and z j1 · · ·z jm = zj we can

write each homogeneous polynomial in two alternative ways

(5) P (z) =
∑

α∈Λ(m,n)
cαzα =

∑

1≤ j1≤···≤ jm≤n

c j1 ,..., jm z j1 · · ·z jm =
∑

j∈J (m,n)
cjzj.

We will freely change from the α to the j notation whenever it is more convenient (always assuming

that α and j are related to each other). We write

|j| = card{i ∈N
m : there exists a permutation σ of 1, . . . ,m so that iσ(k) = jk for all k} .
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Note that if j and α are associated to each other, then

(6) |j| =
m!

α1! · · ·αn !
=

m!

α!
.

We will sometimes denote this by |[α]|. We write P (m
C

n) for the space of all m-homogeneous

polynomials in n variables. Each ℓr -norm on C
n induces a different (though all equivalent) norm

‖P‖P (mℓn
r ) = sup‖z‖r ≤1 |P (z)|.

We follow the theory of holomorphic functions on arbitrary Banach spaces as presented in [Muj86,

Din99]. If X is a (finite or infinite dimensional) Banach space, a function P : X →C is a (continuous)

m-homogeneous polynomial if there exists a (unique) continuous symmetric m-linear form (de-

noted by P̌ ) on X such that P (x) = P̌ (x, . . . , x) for every x. A function f : U → C (where U is some

open subset of a Banach space X ) is holomorphic if it is Fréchet differentiable at every point of U .

If U is balanced there are Pm( f ) for m = 0,1,2, . . ., each an m-homogeneous polynomial on X , such

that f =
∑

m Pm( f ) uniformly on U . The space of all holomorphic functions on U is denoted by

H(U ). The space of bounded holomorphic functions on BX (the open unit ball of X ) with the norm

‖ f ‖ = sup‖x‖≤1 | f (x)| is denoted by H∞(BX ). The space of m-homogeneous polynomials on X is

denoted by P (m X ), and is endowed with the norm ‖P‖ = sup‖x‖≤1 |P (x)|. Every homogeneous poly-

nomial is entire (holomorphic on X ) and, then, its coefficients can be computed through (3). Let us

note that cα(P ) 6= 0 only if |α| = m and that, if j ∈J (m,n) is associated to α, then

cα(P ) =
m!

α!
P̌ (e j1 , . . . ,e jm ) .

An entire function is said to be of bounded type if it is bounded on every bounded set of X . The

space of entire functions of bounded type is denoted by Hb(X ). It is a Fréchet space with the family

of seminorms defined by pn( f ) = sup‖x‖≤n | f (x)|.

We denote by N
(N)
0 the set of eventually zero multi-indices. In other words, N(N)

0 =
⋃∞

n=1 N
n
0 × {0}.

From now on we will identify N
n
0 × {0} with N

n
0 without further notice.

3. REARRANGEMENT FAMILIES OF HOLOMORPHIC FUNCTIONS.

A very useful tool in the study of sets monomial convergence (see [BDF+17]) is that usually, a se-

quence belongs to the set of monomial convergence if and only if its decreasing rearrangement does

(see also [DGMPG08]). We isolate this property, and say in this case that F ⊂ H(R) is a rearrange-

ment family (where R is a Reinhardt domain in a Banach sequence space X ). In [BDF+17] it was

proved that H∞(Bc0 ) and P (mc0) are rearrangement families. The fact that this is also the case for

ℓr for 1 ≤ r <∞ is implicitly used in [BDS]. Our aim now is to find other rearrangement families of
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holomorphic functions (compare this with [Sch15, Chapter 7] where similar results appear).

To this purpose we introduce another concept. We say a family F ⊂ H(R) is linearly balanced if

f ◦T |R ∈F for every f ∈F and T : X → X linear with ‖T ‖ = 1 and T (R) ⊂R.

Remark 3.1. Rather straightforward arguments show that Hb(X ), Au(BX ) (all uniformly continuous

and holomorphic functions on BX ), H∞(BX ) and P (m X ) for every m ≥ 2 are linearly balanced fami-

lies.

Theorem 3.2. Let R be a symmetric Reinhardt domain of a symmetric Banach sequence space X and

F ⊂ H(R) a linearly balanced family such that monF ⊂ c0, then F is a rearrangement family.

We give a series of preliminary results needed for the proof of Theorem 3.2. Given an injective

mapping σ : N→N we define two mappings in the following way. First

Tσ : CN →C
N

x 7→ (xσ(k))k∈N .
(7)

Second, Sσ : CN →C
N is defined for x ∈C

N by

(8) (Sσx)k =







0 if k ∉σ(N)

xσ−1(k) if k ∈σ(N).

Both are clearly linear and Tσ(Sσx) = x for every x.

Remark 3.3. Let us see now how these two mappings behave with the decreasing rearrangement of

a bounded sequence x. Fixed n ∈N and J ⊂N such that card(J ) < n we have

sup
σ( j )∈N\J

|xσ( j )| = sup
j∈(N\J )∩σ(N)

|x j | ≤ sup
j∈N\J

|x j | .

Thus

(

Tσ(x)
)∗

n = inf{ sup
σ( j )∈N\J

|xσ( j )| : J ⊂N,card(J ) < n} ≤ inf{ sup
j∈N\J

|x j | : J ⊂N,card(J ) < n} = x∗
n .

That is, Tσ(x)∗ ≤ x∗. A similar argument shows that (Sσx)∗ = x∗.

The following lemma shows that the restrictions of Sσ and Tσ to symmetric Banach sequence

spaces are endomorphisms of norm 1.

Lemma 3.4. Let X be a symmetric Banach sequence space and σ : N→N an injective mapping. Then

Tσ,Sσ : X → X defined by (7) and (8) respectively are well defined, ‖Tσ‖ = 1 and Sσ is an isometry.
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Proof. Remark 3.3 together with the symmetry of the space imply that both operators are well de-

fined, that Sσ is an isometry and ‖Tσ‖≤ 1. The fact that ‖Tσ‖ = 1 follows from the equality Tσ(Sσx0) =
x0. �

Now we are able to give the proof of Theorem 3.2.

Proof of Theorem 3.2. To begin with we take z ∈ monF and see that z∗ ∈ monF . As monF ⊂ c0

there is some injective mappingσ : N→N such that z∗
k
= |zσ(k)| for every k ∈N. Observe that |Tσ(z)| =

z∗. We take f ∈ F , then f ◦Tσ also belongs to F and what we want to see first is that, if α(σ) ∈N
(N)
0

denotes the multi-index that fulfils Tσ(z)α = zα(σ), then

(9) cα( f ) = cα(σ)( f ◦Tσ)

for every α. Take, then, some α ∈N
(N)
0 and set N = max{k : αk 6= 0}. On one hand we have

( f ◦Tσ)(w) =
∑

β∈NN
0

cβ( f ◦Tσ)wβ ,

for all w ∈C
N ∩R. Define M = max{σ(k) : k = 1, . . . , N } and note that Tσ(w) ∈C

M ∩R. Thus

( f ◦Tσ)(w) = f (Tσ(w)) =
∑

γ∈NN
0

cγ( f )Tσ(w)γ =
∑

γ∈NN
0

cγ( f )wγ(σ).

The uniqueness of the Taylor coefficients gives (9). Once we have this we obtain (recall that f ◦Tσ ∈F

and z ∈monF )

∑

α∈N(N)
0

|cα( f )(z∗)α| =
∑

α∈N(N)
0

|cα( f )||(Tσ(z))α| =
∑

α∈N(N)
0

|cα(σ)( f ◦Tσ)||zα(σ)| ≤
∑

α∈N(N)
0

|cα( f ◦Tσ)zα| <∞,

which proves our claim.

For the converse, suppose z∗ ∈ monF . Again, as monF ⊂ c0, there is some injective mapping

σ : N → N such that z∗
k
= |zσ(k)| for every k ∈ N. Now it will be useful to notice |z| = Sσ(z∗). Given

f ∈F we have

∑

α∈N(N)
0

|cα( f )zα| =
∑

α∈N(N)
0

|cα( f )||(Sσ(z∗))α|.(10)

Besides,
∑

α∈NN
0

cα( f ◦Sσ)wα = f (Sσ(w)) =
∑

α∈NN
0

cα( f )Sσ(w)α =
∑

α∈NN
0

cα( f )Sσ(w)α.

Observe that for α ∈ N
(N), if there is k ∈ N \σ(N) such that αk 6= 0 then Sσ(w)α = 0, otherwise we

define α(σ−1) ∈N
(N) as the only multi-index which fulfils Sσ(w)α = wα(σ−1). By the uniqueness of the
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coefficients of the Taylor expansion for f ◦Sσ : CN →C it follows

cα( f )Sσ(z∗)α =







0 if there is k ∉σ(N) such that αk 6= 0

cα(σ−1)( f ◦Sσ)(z∗)α(σ−1) otherwise,

then
∑

α∈N(N)
0

|cα( f )zα| =
∑

α∈N(N)
0

|cα( f )||(Sσ(z∗))α|

=
∑

α∈(σ(N)∪{0})(N)

∣
∣cα(σ−1)( f ◦Sσ)(z∗)α(σ−1)

∣
∣≤

∑

α∈N(N)
0

|cα( f ◦Sσ)||(z∗)α| <∞,
(11)

as we wanted. �

Remark 3.5. Let R be a symmetric Reinhardt domain in a Banach sequence space X and consider a

family of homolorphic functions F ⊂ H(R) such that for some m ≥ 2 the space P (m X ) lies inside F .

Then, as X ⊂ ℓ∞ continuously we have P (mℓ∞) ⊂ P (m X ) ⊂ F . With this, [BDF+17, Theorem 2.1]

yields

monF ⊂ monP (mℓ∞) = ℓ 2m
m−1 ,∞ ⊂ c0.

Corollary 3.6. For every symmetric Banach sequence space X the families of holomorphic functions

Hb(X ),Au(BX ), H∞(BX ) and P (m X ) with m ≥ 2 are rearrangement families.

Proof. Each of these families satisfies the condition in Remark 3.5. Then Remark 3.1 and Theorem 3.2

give the conclusion. �

Remark 3.7. As we have already pointed out, we are mainly interested in H∞(Bℓr
), Hb(ℓr ) and

P (mℓr ). The set of monomial convergence of each one of these spaces is, by Remark 3.5 con-

tained in c0. But, as matter of fact, we can say more. By [DGMSP19, Proposition 20.3] we have

mon H∞(Bℓr
) ⊆ Bℓr

. Noting that every functional f ∈ ℓ∗r belongs to Hb(ℓr ) and using the definition

of the set of monomial convergence we have mon Hb(ℓr ) ⊆ ℓr . Finally, exactly the same argument as

in [DGMSP19, Remark 10.7] shows that monP (mℓr ) ⊆P (1ℓr ) = monℓ∗r = ℓr .

4. MONOMIAL CONVERGENCE FOR HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE ON ℓr

We can now describe the set of monomial convergence of Hb(ℓr ) for 1 < r ≤ 2. It happens to be a

Marcinkiewicz space mΨr where the symbol is given by

Ψr (n) := log(n +1)1− 1
r ,

for n ∈N0.
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Theorem 4.1. For 1 < r ≤ 2,

mon Hb(ℓr ) = mΨr :=
{

z ∈C
N : sup

n≥1

∑n
k=1 z∗

k

log(n +1)1− 1
r

<∞
}

.

We handle the upper and the lower inclusions separately in the following two sections.

4.1. The upper inclusion mon Hb (ℓr ) ⊂ mΨr
. Typically, the way to prove upper inclusions for a set

of monomial convergence goes through providing polynomials satisfying certain convenient prop-

erties. Over the last years probabilistic techniques have shown to be extremely helpful to find such

polynomials. This is, for instance, what is done in [BDF+17, Theorem 2.2], where the probabilistic

device is the well known Kahane-Salem-Zygmund inequality. Here we follow essentially the same

lines, replacing the polynomials provided by this inequality by other ones. Following techniques of

Boas and Bayart (see [Boa00], [Bay12] and also [DGMSP19, Corollary 17.6]) for every 1 ≤ r ≤ 2 there

is a constant Cr > 0 such that for all n and m ≥ 2 we can find a choice of signs (εα)α so that

(12) sup
‖z‖r <1

∣
∣
∣

∑

α∈Λ(m,n)
εα

m!

α!
zα

∣
∣
∣≤Cr (log(m)m!)1− 1

r n1− 1
r .

These polynomials are the main tool for the proof of the upper inclusion. We also need the following

result, an extension of [DMP09, Lemma 4.1] whose proof follows the same lines.

Lemma 4.2. Let R be a Reinhardt domain in a Banach sequence space X and let (F , (qn )n) be a

Fréchet space of holomorphic functions continuously included in Hb(R). Then, for each z ∈ mon(F ),

there exist C > 0 and n such that

∑

α∈N(N)
0

|cαzα| ≤C qn( f ).

for every f ∈F . In particular, if z ∈ mon Hb(X ), there exists C > 0, such that

∑

α∈Λ(m,n)
|cα(P )zα| ≤C m‖P‖P (m X ),

for every P ∈P (m X ).

We have now everything at hand to proceed with the proof of the upper inclusion.

Proof of the upper inclusion in Theorem 4.1. Fix 1 < r ≤ 2 and choose z ∈ mon Hb(ℓr ). Now fix n,m,

choose signs as in (12) and define the polynomial P (w) :=
∑

α∈Λ(m,n) εα
m!
α! wα. By Corollary 3.6 we

know that z∗ ∈ mon Hb(ℓr ). Using first the multinomial formula, then Lemma 4.2 and finally (12) we



MONOMIAL CONVERGENCE ON ℓr 11

have
(

n∑

j=1
|z∗

j |
)m

=
∑

α∈Λ(m,n)

m!

α!
|(z∗)α| =

∑

α∈Λ(m,n)

∣
∣
∣εα

m!

α!
(z∗)α

∣
∣
∣

≤C m
z∗ sup

u∈Bℓn
r

∣
∣
∣
∣
∣

∑

α∈Λ(m,n)
εα

m!

α!
uα

∣
∣
∣
∣
∣
P (mℓn

r )

≤C m
z∗,r (log(m)m!n)1− 1

r .

(13)

Taking the power 1/m and using Stirling’s formula (m! ≤
p

2πme
1

12m mme−m) yield

(14)
n∑

j=1
|z∗

j | ≤Cz∗,r

[

log(m)
1
m (2πm)

1
2m e

1
12m2

m

e
n

1
m

]1− 1
r

.

Finally, choosing m = ⌊log(n+1)⌋ gives that the term 1

log(n+1)1− 1
r

∑n
k=1 |z

∗
n | (for every n ≥ 2) is bounded

independently of n, so z ∈mΨr . �

4.2. The lower inclusion mΨr
⊂ mon Hb(ℓr ). We face now the proof of the lower inclusion in Theo-

rem 4.1. The main tool is the following result, the proof of which requires some work, that we perform

all along this section.

Theorem 4.3. Fix 1 < r ≤ 2. For every ε> 0 there is Cr = Cr (ε) > 0 such that for every m,n ∈N, every

m-homogeneous polynomial in n complex variables P and every z ∈C
n , we have

∑

j∈J (m,n)
|cj(P )z∗

j | ≤Cr (ε)m2+ 1
r ((1+ε)2e)

m
r ‖ id : mΨr → ℓr ‖m‖z‖m

mΨr
‖P‖P (mℓn

r ) .

Before we start with the proof of this result, let us see how, having it at hand, we can prove the

lower inclusion we are aiming at.

Proof of the lower inclusion in Theorem 4.1. Choose z ∈ mΨr and let us see that z ∈ mon Hb(ℓr ). By

Corollary 3.6 we may assume without loss of generality z = z∗. Given f ∈ Hb(ℓr ) (recall that we

denote Pm( f ) for the m-homogeneous part of the Taylor expansion) and Theorem 4.3 (with ε = 1)

gives

∑

α∈N(N)
0

|cα( f )zα| = sup
n∈N

∞∑

m=0

∑

j∈J (m,n)
|cj( f )zj|

≤ sup
n∈N

∞∑

m=0
Cr m2+ 1

r (4e)
m
r ‖ id‖m‖z‖m

mΨr
sup

u∈Bℓn
r

∣
∣
∣
∣
∣

∑

j∈J (m,n)
cj( f )uj

∣
∣
∣
∣
∣

=Cr

∞∑

m=0
(m(2+ 1

r ) 1
m (4e)

1
r ‖ id‖‖z‖mΨr

)m‖Pm( f )‖P (mℓr ).
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Let us see that this sum is finite. Take R > supm

(

m(2+ 1
r ) 1

m (4e)
1
r ‖ id‖‖z‖mΨr

)

, then by the homogeneity

of Pm( f )

∞∑

m=0
(m(2+ 1

r ) 1
m (4e)

1
r ‖ id‖‖z‖mΨr

)m‖Pm( f )‖P (mℓr )

=
∞∑

m=0

(

m(2+ 1
r ) 1

m (4e)
1
r ‖ id‖‖z‖mΨr

R

)m

sup
w∈R·Bℓr

|Pm( f )(w)|

≤
∞∑

m=0

(

m(2+ 1
r ) 1

m (4e)
1
r ‖ id‖‖z‖mΨr

R

)m

sup
w∈R·Bℓr

| f (w)| <∞,

where the last step is due to Cauchy’s inequality. This completes the proof. �

We start now the way to the proof of Theorem 4.3. We begin with a simple remark.

Remark 4.4. If z ∈mΨr , then

n|z∗
n | ≤

n∑

l=1

z∗
l ≤ ‖z‖mΨr

log(n +1)
1
r ′ .

That is

|z∗
n | ≤ ‖z‖mΨr

log(n +1)
1
r ′

n

for every n ∈N. This gives

n∑

j=1
|z j |r ≤

n∑

j=1
|z∗

j |
r ≤ ‖z‖r

mΨr

n∑

j=1

log( j +1)
r
r ′

j r
.

This implies ‖ id : mΨr → ℓr ‖≤
(
∑∞

j=1
log( j+1)

r
r ′

j r

)1/r
(note that this series is convergent for 1 < r ).

Our first ingredient is the following lemma, that follows with a careful analysis of the proof of

[BDS, Lemma 3.5], that relates the summability of certain coefficients of a polynomial and its uni-

form norm in ℓn
r . It has been very useful to provide a proof ‘at an elementary level’ (in the sense

that it does not require tools from the local theory of Banach space) of the asymptotic growth of the

unconditional constant of the space of m-homogeneous polynomials on ℓn
r as n goes to infinite with

suitable care on the dependence of m (in fact this has been proved for general index sets, see [BDS,

Theorem 3.2]). As a consequence the behaviour of the Bohr radii of holomorphic functions on ℓr

for 1 ≤ r ≤ 2 has been described in [BDS, Theorem 3.9]. It has recently been used also to study the

asymptotic growth of the mixed Bohr radii in [GMMa]. In some sense, for 1 ≤ r ≤ 2, it plays the role

of the Bohnenblust–Hille inequality for the case r =∞.
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Lemma 4.5. Let 1 ≤ r ≤ ∞ and P be an m-homogeneous polynomial in n variables. Then for each

i ∈J (m −1,n) with associated multi-index α(i) ∈Λ(m −1,n) we have

(15)

(
n∑

k= jm−1

|c(i,k)(P )|r
′
) 1

r ′

≤ em
((m −1)m−1

α(i)α(i)

) 1
r ‖P‖P (mℓn

r ).

Since (m−1)m−1

α(i)α(i) ≤ em−1|i| we immediately have

(16)

(
n∑

k= jm−1

|c(i,k)(P )|r
′
) 1

r ′

≤ me1+m−1
r |i|

1
r ‖P‖P (mℓn

r ).

This is in fact the statement of [BDS, Lemma 3.5.]. With it we can give the first step towards the proof

of Theorem 4.3.

Lemma 4.6. Let 1 < r ≤ 2, there is Ar > 0 such that for every m,n ∈ N, every P ∈ P (m
C

n) and every

decreasing z ∈C
n we have

∑

j∈J (m,n)
|cj(P )zj| ≤ Ar m1+ 1

r e
m
r ‖z‖2

mΨr

(
n∑

k=1

log(k +1)
2
r ′

k1+ 1
r ′

∑

i∈J (m−2,k)

|zi||i|
1
r

)

‖P‖P (mℓn
r ).

Proof. Consider P ∈P (m
C

n) as in (5) and z ∈C
n decreasing. Using first Hölder’s inequality and then

(16) we have

∑

j∈J (m,n)
|cj(P )zj| =

∑

j∈J (m−1,n)

n∑

jm= jm−1

|c(j, jm )(P )zjz jm |

≤
∑

j∈J (m−1,n)
|zj|

( n∑

jm= jm−1

|c(j, jm )(P )|r
′)

1
r ′

( n∑

jm= jm−1

|z jm |r
) 1

r

≤ e1− 1
r me

m
r ‖P‖P (mℓr )

∑

j∈J (m−1,n)
|zj||j|

1
r

( n∑

jm= jm−1

|z jm |r
) 1

r

= e1− 1
r me

m
r ‖P‖P (mℓr )

n∑

jm−1=1
|z jm−1 |

∑

i∈J (m−2, jm−1)
|zi||(i, jm−1)|

1
r

( n∑

jm= jm−1

|z jm |r
) 1

r

≤ e1− 1
r me

m
r ‖P‖P (mℓr )(m −1)

1
r

n∑

jm−1=1
|z jm−1 |

( n∑

jm= jm−1

|z jm |r
) 1

r
∑

i∈J (m−2, jm−1)
|zi||i|

1
r ,

(17)

where the last inequality is due to the fact that |(i, jm−1)| ≤ (m −1)|i| for every i ∈J (m −2, jm−1).
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We now bound the factor |z jm−1 |
(
∑n

jm= jm−1
|z jm |r

) 1
r

. For each 1 ≤ j ≤ n we use Remark 4.4 to obtain

(note that r
r ′ −1 = r −2 ≤ 0).

|z j |
( n∑

k= j

|zk |r
) 1

r ≤ ‖z‖2
mΨr

log( j +1)
1
r ′

j

( n∑

k= j

log(k +1)
r
r ′

kr

) 1
r

≤ ‖z‖2
mΨr

log( j +1)
1
r ′

j
log( j +1)

1
r ′−

1
r

( n∑

k= j

log(k +1)

kr

) 1
r

.

We deal with the last sum

n∑

k= j

log(k +1)

kr
≤

(

1+
1

j

)r n∑

k= j

log(k +1)

(k +1)r
≤ 2r

n+1∑

k= j+1

log(k)

kr
≤ 2r+2

∫n+1

j

log(x)

xr
d x

≤ 2r+2 (r −1) log( j )+1

(r −1)2 j r−1 ≤ 2r+2 2r

(r −1)2

log( j +1)

j r−1 ,

and

|z j |
( n∑

k= j

|zk |r
) 1

r ≤ 2r+2 2r

(r −1)2
‖z‖2

mΨr

log( j +1)
2
r ′

j 1+ 1
r ′

This and (17) give the conclusion �

In view of Lemma 4.6, now we need to bound
∑

i∈J (m−2,k) |zi||i|
1
r in a suitable way (depending on

k). To this purpose we switch to the α-notation of multi-indices (recall (5)), that is going to be more

convenient. Then the sum reads

(18)
∑

α∈Λ(m−2,k)

|z|α|[α]|

and the strategy is to decompose this sum into two sums: a tetrahedral and an even part and, then,

bound each one of these. This lies in the general philosophy of decomposing index sets into some

smaller subset in which a certain problem results easier and, at the same time, are the bricks in which

any general index can be recovered. This philosophy has alredy been used in [GMMa].

Let us be more precise and introduce some notation. A multi-indexα is tetrahedral if all its entries

are either 0 or 1. We consider the set of tetrahedral multi-indices

ΛT (m,n) =
{

α ∈Λ(m,n) : αi ∈ {0,1}
}

.

A multi-index is called even if all its non-zero entries are even (note that this forces the multi-index

to have even order). We consider then the set

ΛE (m,n)=
{

α ∈Λ(m,n) : αi is even for every i = 1, . . . ,n
}

.

Observe that for every α ∈ΛE (m,n) there is a unique β ∈Λ(m/2,n) such that α= 2β.
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Remark 4.7. Given α ∈Λ(M , N ) define αT (the tetrahedral part) and αE (the even part) as

(

αT

)

i =







1 if αi is odd

0 if αi is even
and

(

αE

)

i =







αi −1 if αi is odd

αi if αi is even
.

If 0 ≤ k ≤ M is the number of odd entries in α, then clearly αT ∈ΛT (k, N ) and αE ∈ΛE (M −k, N ) and

α=αT +αE . As (αE )i ≤αi for every i then αE ! ≤α!. On the other hand, αT ! = 1, then αT !αE ! ≤α!, and

|[α]| =
M !

α!
≤

M !

αT !αE !
=

M !

(M −k)!k !

k !

αT !

(M −k)!

αE !
=

(
M

k

)

|[αT ]||[αE ]| ≤ 2M |[αT ]||[αE ]|.

Our next step is to bound a sum as in (18) when we just consider even or tetrahedral indices. We

start with the latter.

Lemma 4.8. For every 1 < r ≤ 2 and M , N ∈N, and every decreasing z ∈C
N we have

∑

α∈ΛT (M ,N)
|zα||[α]|

1
r ≤ 2(1+ε)

M
r ′ ‖z‖M

mΨr
N

1
(1+ε)r ′ ,

for every ε> 0 and
∑

α∈ΛE (M ,N)
|zα||[α]|

1
r ≤ ‖z‖M

ℓr
≤ ‖ id : mΨr → ℓr‖M‖z‖M

mΨr
.

Proof. We begin with the first inequality, observing that it is obvious if N = 1. We may, then, assume

N ≥ 2. Then, given α ∈ΛT (M , N ), note that α! = 1 and |[α]| is exactly M !. Then,

∑

α∈ΛT (M ,N)
|zα||[α]|

1
r =

∑

α∈ΛT (M ,N)
|zα||[α]|

1

|[α]|
1
r ′
≤

( N∑

k=1

|zk |
)M 1

M !
1
r ′

≤ ‖z‖M
mΨr

log(N +1)
M
r ′

1

M !
1
r ′
≤ 2‖z‖M

mΨr

( log(N )M

M !

) 1
r ′ .

A simple calculus argument shows that the function f : [1,∞[→R given by f (x) = log(x)M

x1/(1+ε) is bounded

by
( (1+ε)M

e

)M , then log(N )M ≤ N 1/(1+ε)
( (1+ε)M

e

)M . On the other hand M ! ≥
(

M
e

)M
.This gives the con-

clusion.

For the proof of the second inequality let us recall first that for each α ∈ΛE (M , N ) there is a unique

β ∈Λ(M/2, N ) such that α= 2β and, moreover,

|[α]| =
M !

α1! · · ·αN !
=

( (M/2)!

β1! · · ·βN !

)2 M !

(M/2)!(M/2)!

N∏

i=1

βi !βi !

(2βi )!
≤ |[β]|2,

where last inequality holds because 2k ≤ (2k)!
k!2

≤ 22k and then

M !

(M/2)!(M/2)!

N∏

i=1

βi !βi !

(2βi )!
≤ 2M

N∏

i=1

1

2βi
= 1.
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Then (note that, since 2/r ≥ 1, the ℓ1 norm bounds the ℓ2/r norm)

∑

α∈ΛE (M ,N)
|zα||α|

1
r ≤

∑

β∈Λ(M/2,N)

|(z2)β||β|2/r =
∑

β∈Λ(M/2,N)

(

|(zr )β||β|
)2/r

≤
( ∑

β∈Λ(M/2,N)
|(zr )β||β|

)2/r
=

( N∑

l=1
|zl |r

)M/r
≤ ‖ id : mΨr → ℓr ‖M‖z‖M

mΨr
.

�

Lemma 4.9. Given 1 < r ≤ 2 there is a constant Kr ≥ 1 such that for every M , N ∈N, and every decreas-

ing z ∈C
N we have

∑

α∈Λ(M ,N)
|zα||[α]|

1
r ≤ Kr (M +1)(1+ε)

M
r ′ 2

M
r +1N

1
(1+ε)r ′ ‖ id : mΨr → ℓr‖M‖z‖M

mΨr
,

for every ε> 0.

Proof. Choose some decreasing z and use by Remark 4.7 and Lemma 4.8 to get

∑

α∈Λ(M ,N)
|zα||[α]|

1
r =

M∑

k=0

∑

αT ∈ΛT (k,N)

∑

αE∈ΛE (M−k,N)
|z(αT +αE )||[αT +αE ]|

1
r

≤ 2
M
r

M∑

k=0

(

∑

αT ∈ΛT (k,N)

|zα
T ||[αT ]|

1
r

)(

∑

αE∈ΛE (M−k,N)

|zα
E ||[αE ]|

1
r

)

≤ 2
M
r

M∑

k=0

(

(1+ε)
k
r ′ ‖z‖k

mΨr
N

1
(1+ε)r ′

)(

‖ id : mΨr → ℓr‖M−k‖z‖M−k
mΨr

)

≤ 2
M
r +1(1+ε)M‖ id : mΨr → ℓr‖M‖z‖M

mΨr
N

1
(1+ε)r ′

M∑

k=0
2k(1− 2

r ) .

For r = 2 the last sum is exactly M +1. If 1 < r < 2 the series converges to 22/r

22/r −2
. This completes the

proof �

We are finally in the position to give the proof of Theorem 4.3 from which (as we already saw) the

lower inclusion in Theorem 4.1 follows.

Proof of Theorem 4.3. Fix 1 < r ≤ 2 and n,m. Pick then P ∈ P ∈ P (m
C

n) and z ∈ C
n . Since ‖z‖mΨr

=
‖z∗‖mΨr

, we may assume z = z∗. Applying Lemma 4.9 with M = m −2 and N = k after Lemma 4.6
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yields

∑

j∈J (m,n)
|cj(P )zj|

≤ 2Ar m1+ 1
r e

m
r ‖z‖2

mΨr

(
n∑

k=1

log(k +1)
2
r ′

k1+ 1
r ′

Kr (m −1)2
(m−2)

r (1+ε)
m−2

r ′ ‖ id‖m−2k
1

(1+ε)r ′ ‖z‖m−2
mΨr

)

‖P‖P (mℓn
r )

≤ 2Ar Kr m2+ 1
r ((1+ε)2e)

m
r ‖ id‖m‖z‖m

mΨr

(
n∑

k=1

log(k +1)
2
r ′

k
1+ ε

(1+ε)r ′

)

‖P‖P (mℓn
r ) .

Since r > 1 the series
∑∞

k=1
log(k+1)

2
r ′

k
1+ ε

(1+ε)r ′
is convergent. This completes the proof. �

5. MONOMIAL CONVERGENCE FOR BOUNDED HOLOMORPHIC FUNCTIONS ON Bℓr

We change now our focus to the space H∞(Bℓr
) of bounded holomorphic functions on Bℓr

. Our

main contribution in this side is the following theorem, that provides with lower and upper inclu-

sions for the set of monomial convergence of these spaces. It recovers (see Remark 5.5 and Corol-

lary 5.6) some previously known results.

Theorem 5.1. Let 1< r ≤ 2 then,

{

z ∈C
N : 2e‖ id : mΨr → ℓr‖r

(

lim sup
n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r

)r

+‖z‖r
ℓr

< 1
}

⊂

mon H∞(Bℓr
) ⊂

{

z ∈Bℓr
: lim sup

n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r
≤ 1

}

.

The upper inclusion follows using probabilistic techniques, as in the case of mon Hb(ℓr ). The

lower inclusion, on the other hand, relies on Theorem 4.3 and requires some preliminary work that

we start with the following remark.

Remark 5.2. Given a Reinhardt domain R in a Banach sequence space X , a simple closed-graph

argument (see [DMP09, Lemma 4.1] or [DGMSP19, Remark 20.1]) shows that z ∈ mon H∞(R) if and

only if there is a constant Cz > 0 such that
∑

α∈N(N)
0

|cα( f )zα| ≤Cz‖ f ‖R

for every f ∈ H∞(R).

Lemma 5.3. Let 1 < r ≤ 2 then, 1
‖ id:mΨr →ℓr ‖(2e)1/r BmΨr

⊂ mon H∞(Bℓr
).

Proof. In order to keep thinsg readable we write K = ‖ id : mΨr → ℓr ‖(2e)1/r . We first show that if

z ∈ 1
K

BmΨr
is non-decreasing, then z ∈ mon H∞(Bℓr

). The general result follows form the fact that
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BmΨr
and mon H∞(Bℓr

) are both symmetric (Corollary 3.6). We choose now f ∈ H∞(Bℓr
) and fix

ε> 0 so that (1+ε)1/r ‖z‖mΨr
K < 1. By Theorem 4.3 we can find Cr (ε) > 0 so that

∑

α∈N(N)
0

|cα( f )zα| = sup
n∈N

∞∑

m=0

∑

j∈J (m,n)
|cj( f )zj|

≤ sup
n∈N

∞∑

m=0
Cr (ε)m2+ 1

r (1+ε)
m
r K m‖z‖m

mΨr
sup

u∈Bℓn
r

∣
∣
∣
∣
∣

∑

j∈J (m,n)
cj( f )uj

∣
∣
∣
∣
∣

≤
∞∑

m=0
Cr (ε)

(

m
1
m (2+ 1

r )(1+ε)
1
r K ‖z‖mΨr

)m
‖Pm( f )‖P (mℓr )

≤ ‖ f ‖Bℓr
Cr (ε)

∞∑

m=0

(

m
1
m (2+ 1

r )(1+ε)
1
r K ‖z‖mΨr

)m
.

The choice of ε and fact that m
1
m (2+ 1

r ) → 1 as m →∞ immediately give that the series converges and

complete the proof. �

A useful tool when dealing with mon H∞(Bc0 ) is that, if a sequence belong to such a set of mono-

mial convergence and we modify finitely many coordinates, then the resulting sequence remains in

the set of monomial convergence (see [DGMPG08, Lemma 2] or [DGMSP19, Proposition 10.14]). It

is unknown whether or not an analogous result result holds for ℓr (see the comments regarding this

problem in [Sch15, Chapter 10]). We overcome this with the following proposition, a weaker version

of this, but enough for our purposes.

Proposition 5.4. Let 1 < r < ∞ and u, z ∈ Bℓr
be such that |un | ≤ |zn | for 1 ≤ n ≤ N and |un| = |zn |

for n > N. Suppose that there exists ρ >
∑N

n=1 |zn |r so that u ∈ mon H∞((1 − ρ)1/r Bℓr
). Then z ∈

mon H∞(Bℓr
).

Proof. Let a1, . . . , aN be positive real numbers such that |zi | < ai for every 1 ≤ i ≤ N and

a :=
N∑

n=1
ar

n < ρ.

Given for f ∈ H∞(Bℓr
) and k1, . . . ,kN ∈N, we define (following the proof of [DGMPG08, Lemma 2])

fk1,...,kN
(ν) :=

1

(2πi )N

∫

|w1|=a1

· · ·
∫

|wN |=aN

f (w1, . . . , wN ,νN+1,νN+2 , . . .)

w
k1+1
1 · · ·w kN+1

N

d w1 · · ·d wN .

Note that fk1,...,kN
is well defined on the contracted ball (1−a)1/r Bℓr

and, in fact, belongs to H∞((1−
a)1/r Bℓr

) (because f ∈ H∞(Bℓr
)) and

(19) ‖ fk1,...,kN
‖(1−a)1/r ·Bℓr

≤
‖ f ‖Bℓr

a
k1
1 · · ·a

kN

N

.
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Our next step is to understand the coefficients cα( fk1,...,kN
) in relation to those of f . For each multi-

index α= (α1, . . . ,αn ,0, . . .) with αn 6= 0, an application of the Cauchy integral formula yields

(20) cα( fk1 ,...,kn
) =







c(k1 ,...,kN ,αN+1,...,αn )( f ) if α1 = ·· · =αN = 0,

0 otherwise.

We have now everything we need to proceed. Note that, since a < ρ, we have u ∈ mon H∞((1 −
ρ)1/r Bℓr

) ⊂ mon H∞((1−a)1/r Bℓr
). With Remark 5.2 and (19) we get

(21)
∑

β∈N(N)
0

|cβ( fk1,...,kN
)||uβ1

N+1 · · ·u
β2
N+2 · · · | ≤Cu‖ fk1,...,kN

‖(1−a)1/r Bℓr
≤Cu

‖ f ‖Bℓr

a
k1
1 · · ·a

kN

N

.

Now using (20) and (21) (recall that |un| = |zn | for n ≥ N +1) we have

∑

α∈N(N)
0

|cα( f )||zα| =
∑

(k1,...kN )∈NN
0

|zk1
1 · · ·zkN

N
|

∑

β∈N(N)
0

|c(k1 ,...,kN ,β)( f )||uβ1
N+1 · · ·u

β2
N+2 · · · |

=
∑

(k1,...kN )∈NN
0

|zk1
1 · · ·zkN

N
|

∑

β∈N(N)
0

|cβ( fk1,...,kN
)||uβ1

N+1 · · ·u
β2
N+2 · · · |

≤
∑

(k1,...kN )∈NN
0

|zk1
1 · · ·zkN

N
|Cu

‖ f ‖Bℓr

a
k1
1 · · ·akN

N

=Cu‖ f ‖Bℓr

N∏

n=1

∑

kn≥0

(
|zn |
an

)kn

<∞,

as we wanted. �

Let us make a last observation before we proceed with the proof of Theorem 5.1. Given a Banach

sequence space X , for every f ∈ H∞(tBX ) and t > 0 the function ft given by ft (x) = f (t x) for x ∈ BX

belongs to H∞(BX ) and cα( ft ) = t |α|cα( f ) for every α. Then, if z ∈mon H∞(BX ) we have

∑

α∈N(N)
0

|cα( f )(t z)α| =
∑

α∈N(N)
0

|cα( f )t |α|zα| =
∑

α∈N(N)
0

|cα( ft )zα| <∞.

This implies t mon H∞(BX ) ⊂ mon H∞(tBx ) for every Banach sequence space X and every t > 0.

Noting that tBX is the open unit ball of the Banach sequence space (X , t‖·‖X ), the previous inclusion

yields

t−1 mon H∞(tBX ) ⊂ mon H∞(t−1tBX ) = mon H∞(BX ).

This altogether shows

(22) mon H∞(tBX ) = t mon H∞(BX )

for every Banach sequence space X and every t > 0. We are now in conditions of proving Theo-

rem 5.1.
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Proof of Theorem 5.1. Let us start with the upper inclusion

mon H∞(Bℓr
) ⊂

{

z ∈ Bℓr
: lim sup

n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r
≤ 1

}

.

Fix z ∈ mon H∞(Bℓr
). Arguing as in the proof of the upper inclusion of Theorem 4.1, proceeding as

in (13), replacing the role of Lemma 4.2 by Remark 5.2, and as in (14) we get

n∑

j=1
|z∗

j | ≤C
1
m

z∗,r

[

log(m)
1
m (2πm)

1
2m e

1
12m2

m

e
n

1
m

]1− 1
r

.

where Cz∗,r is a positive constant that depends only on z∗ and r . Choosing m = ⌊log(n +1)⌋ we get

lim sup
n→∞

1

log(n +1)1− 1
r

n∑

k=1

|z∗
n | ≤ 1,

which gives our claim.

We now face the proof of the lower inclusion

{

z ∈C
N : 2e‖ id : mΨr → ℓr ‖r

(

lim sup
n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r

)r

+‖z‖r
ℓr

< 1
}

⊂ mon H∞(Bℓr
).

In order to keep the notation as simple as possible, let K = 2e‖ id : mΨr → ℓr‖r . Take z ∈C
N such that

K

(

lim sup
n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r

)r

+‖z‖r
ℓr

< 1,

and note that this implies z ∈Bℓr
. Denote L := lim sup

n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r
, choose ε> 0 so that

(23) K
(

(1+ε)L
)r +‖z‖r

ℓr
< 1,

and N ∈N for which

sup
n≥N

∑n
k=1 z∗

k

log(n +1)1−1/r
< (1+ε)L.

Let us observe that

(24) z∗
N <

log(N +1)1−1/r

N
(1+ε)L,

(this follows essentially as in Remark 4.4) and define u = (z∗
N , . . . , z∗

N
︸ ︷︷ ︸

N

, z∗
N+1, z∗

N+2, . . .). On the one hand,

for every n < N we have, using (24),
∑n

k=1 u∗
k

log(n +1)1−1/r
< (1+ε)L.

On the other hand, for n ≥ N ,
∑n

k=1 u∗
k

log(n +1)1−1/r
=

∑n
k=1 zn

log(n +1)1−1/r
< (1+ε)L.
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This altogether gives ‖u‖mΨr
< (1+ε)L. We choose ρ >

∑N
k=1 |zk |r such

‖ id : mΨr → ℓr‖r (2e)(L(1+ε))r +ρ < 1,

and, using (23) we get

‖u‖mΨr
< (1+ε)L <

(1−ρ)1/r

‖ id : mΨr → ℓr‖(2e)1/r
.

Lemma 5.3 and equation (22) imply u ∈ mon H∞((1−ρ)1/r Bℓr
) and, then Proposition 5.4 gives z∗ ∈

mon H∞(Bℓr
). Finally, Corollary 6.7 yields z ∈mon H∞(Bℓr

) and completes the proof. �

Remark 5.5. Theorem 5.1 implies other known results which try to characterize the set of monomial

convergence of H∞(Bℓr
). Note first that, if z ∈ ℓ1, then

lim sup
n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r
= 0.

Thus

Bℓr
∩ℓ1 ⊂

{

z ∈C
N : 2e‖ id : mΨr → ℓr‖r

(

lim sup
n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r

)r

+‖z‖r
ℓr

< 1
}

.

On the other hand, if z ∈Bℓr
is such that

lim sup
n→∞

∑n
k=1 z∗

k

log(n +1)1−1/r
≤ 1

then there is a constant c > 0 so that

z∗
n ≤ c

log(n +1)1−1/r

n
.

From this we easily get that z ∈ ℓ1+ε for every ε> 0, and we recover (4) from Theorem 5.1.

The following corollary extends [BDS, Theorem 5.5(1a) and Corollary 5.7] for 1< r ≤ 2.

Corollary 5.6. Let 1 < r ≤ 2. Then

(25)

(
1

n1/r ′ log(n +2)θ

)

n≥1

·Bℓr
⊂ mon H∞(Bℓr

)

for every θ > 0. Also, denoting K = 1
(2e‖ id:mΨr →ℓr ‖+1)1/r , we have

(26)

(
1

K n1/r ′

)

n≥1
·Bℓr

⊂ mon H∞(Bℓr
).

Proof. Let us begin by proving (25). Fix θ > 0 and choose z ∈
(

1
n1/r ′ log(n+2)θ

)

n≥1
Bℓr

. We can find

w ∈ Bℓr
so that zn = wn

n1/r ′ log(n+1)θ
for every n ∈N. Since z ∈ c0, there is an injective σ : N→N such that
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z∗
n = |zσ(n)| =

|wσ(n)|
σ(n)1/r ′ log(σ(n)+2)θ

. Using Hölder’s inequality we get

1

log(n +1)1/r ′

n∑

l=1

z∗
l =

1

log(n +1)1/r ′

n∑

l=1

|wσ(l )|
σ(l )1/r ′ log(σ(l )+2)θ

≤
1

log(n +1)1/r ′

(
n∑

l=1

|wσ(l )|r
)1/r (

n∑

l=1

1

σ(l ) log(σ(l )+2)r ′θ

)1/r ′

≤
1

log(n +1)1/r ′

(
n∑

l=1

1

σ(l ) log(σ(l )+2)r ′θ

)1/r ′

≤
1

log(n +1)1/r ′

(
n∑

l=1

1

l log(l +2)r ′θ

)1/r ′

,

where the last inequality holds because x 7→ 1
x log(x+2)r ′θ defines a decreasing function for x > 1. The

last term, 1
log(n+1)1/r ′

(
∑n

l=1
1

l log(l+2)r ′θ

)1/r ′

, goes to 0 as n →∞, and therefore

lim sup
n→∞

1

log(n +1)1/r ′

n∑

l=1
z∗

l = 0.

Indeed, suppose that θ < 1
r ′ (which me may always asume since 1

l log(l+2)r ′θ is decreasing on θ). Thus,

there is some Cr ′,θ > 0 such that

(
n∑

l=1

1

l log(l +2)r ′θ

)1/r ′

≤Cr ′,θ

(∫n

l=2

1

x log(x)r ′θ
d x

)1/r ′

=Cr ′,θ

(∫log(n)

l=log(2)

1

yr ′θ
d y

)1/r ′

≤Cr ′,θ log(n)−θ+
1
r ′ ,

Then, 1
log(n+1)1/r ′

(
∑n

l=1
1

l log(l+2)r ′θ

)1/r ′

≤Cr ′,θ log(n)−θ → 0.

On the other hand, z ∈ Bℓr
(note that |zn | ≤ |wn | for every n and w ∈ Bℓr

), then

2e‖ id : mΨr → ℓr ‖r

(

lim sup
n→∞

∑n
k=1 z∗

l

log(n +1)1−1/r

)r

+‖z‖r
ℓr

= ‖z‖r
ℓr

< 1,

and, by Theorem 5.1, z ∈mon H∞(Bℓr
).

We give now the proof of (26). Take z =
(

1
K n1/r ′ wn

)

n≥1
with w ∈ Bℓr

, and note that ‖z‖r
ℓr

< 1
K r . Pro-

ceeding as before we get

K
1

log(n +1)1/r ′

n∑

l=1
z∗

l ≤
1

log(n +1)1/r ′

(
n∑

l=1

1

l

)1/r ′

≤ 1.

Since K = (2e‖ id : mΨr → ℓr‖r +1)1/r ,

2e‖ id : mΨr → ℓr‖r

(

lim sup
n→∞

∑n
k=1 z∗

l

log(n +1)1−1/r

)r

+‖z‖r
ℓr

< (2e‖ id : mΨr → ℓr‖r +1)
1

K r
= 1.

Again Theorem 5.1 gives the conclusion. �
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6. LOWER INCLUSIONS FOR THE SET OF MONOMIAL CONVERGENCE OF P (mℓr )

We turn now our attention to the set of monomial convergence of homogeneous polynomials. We

fix 1 < r ≤ 2 and m ≥ 2 and define q = (mr ′)′ = mr
r (m−1)+1 . As we already pointed out, we know from

[BDS, Theorem 5.1] and [DMP09, Example 4.6] that

ℓq−ε ⊂ monP (mℓr ) ⊂ ℓq,∞

for every ε > 0. Our aim now is to tighten this lower bound. We find a lower inclusion that gets

narrower when m gets bigger.

Theorem 6.1. Fix 1 < r ≤ 2 and, for each m ≥ 2, define q := (mr ′)′. Then ℓq ⊂ monP (2ℓr ); ℓq,2 ⊂
monP (3ℓr ); ℓ

q, 3+
p

5
2

⊂ monP (4ℓr ) and

ℓq, m
log(m)

⊂ monP (mℓr ).

for m ≥ 5.

We start with Theorem 6.3, which proves the case m = 2 in the previous theorem and also provides

an elementary proof of the fact that ℓq is contained in monP (mℓr ). We even get a very good esti-

mate for the sums. We will show later in Remark 6.14 (see also the comments after it) that for m ≥ 3

something more can be achieved. We need first a lemma.

Lemma 6.2. Let r > 1. There exists Cr > 0 such that, for every m,

sup
{mm/r

m!

n1!

n
n1/r
1

· · ·
nk !

n
nk /r

k

: k ∈N,n1, . . . ,nk ∈N\ {0},n1 +·· ·+nk = m
}

≤Cr m
e

1
r−1 −1

2 .

Proof. We proceed by induction on m. The statement is trivially satisfied for m = 2 and we assume

it holds for m −1. Fix then k and choose n1, . . . ,nk ∈N, all non-zero, such that n1 +·· ·+nk = m. We

may assume n1 ≥ ·· · ≥ nk ≥ 1. We consider two possible cases. First, if k < e
1

r−1 Stirling formula and

the fact that n j ≤ m for every j yield

mm/r

m!

n1!

n
n1/r
1

· · ·
nk !

n
nk /r

k

≤
1

p
2πm

em

mm/r ′

k∏

j=1

√
2πn j n

n j /r ′

j
e1/(12n j )

en j

≤
(

2π
) k−1

2 e

∑k
j=1

1
12n j

(n
n1
1 · · ·nnk

k

mm

) 1
r ′

(n1 · · ·nk

m

) 1
2 ≤

(

2π
) k−1

2 e
∑k

j=1
1

12 j m
k−1

2

≤
(

2π
) e

1
r−1 −1

2 e
r

12(r−1) m
e

1
r−1 −1

2 .

On the other hand, if k ≥ e
1

r−1 we have

(27)
mm/r

m!

n1!

n
n1/r
1

· · ·
nk !

n
nk /r

k

=
( m

m −1

)m−1
r 1

m1/r ′
(m −1)(m−1)/r

(m −1)!

n1!

n
n1/r
1

· · ·
nk−1!

n
nk−1/r

k−1

nk !

n
nk /r

k

.
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If nk = 1 then n1+·· ·+nk−1 = m−1 and we may use the induction hypothesis and the fact that k ≤ m

to have

mm/r

m!

n1!

n
n1/r
1

· · ·
nk !

n
nk /r

k

≤
( m

m −1

)m−1
r 1

k1/r ′ Cr (m −1)
e

1
r−1 −1

2 ≤Cr e1/r 1

e
1

(r−1)r ′
(m −1)

e
1

r−1 −1
2 ≤Cr m

e
1

r−1 −1
2 .

Finally, if nk > 1 then

(nk −1)
nk−1

r ′ nk

n
nk /r

k

=
(nk −1

nk

) nk−1

r ′
n

1
r ′
k

≤ n
1
r ′
k

.

We may use again the induction hypothesis and the fact that nk ≤ m/k to obtain from (27)

mm/r

m!

n1!

n
n1/r
1

· · ·
nk !

n
nk /r

k

≤
( m

m −1

)m−1
r

(nk

m

)1/r ′

Cr (m −1)
e

1
r−1 −1

2 ≤
( m

m −1

)m−1
r 1

k1/r ′ Cr (m −1)
e

1
r−1 −1

2 .

From here we conclude as in the previous case. �

Theorem 6.3. For each 1 < r ≤ 2, there exists dr > 1 such that for each m and n, every P ∈P (m
C

n) and

all z ∈C
n

(28)
∑

1≤ j1≤···≤ jm≤n

|cj(P )z j1 . . . z jm | ≤ mdr ‖P‖P (mℓn
r )‖z‖m

ℓn
q

,

where q := (mr ′)′. In particular

ℓq ⊂ monP (mℓr ).

Proof. Clearly it is enough to show (28) and, by (11) (see also [DGMSP19, Lemma 10.15]), we may

assume without loss of generality z = z∗. First of all, by Hölder inequality we have

∑

1≤ j1≤···≤ jm≤n

|cj(P )z j1 . . . z jm−1 z jm | =
∑

1≤ j1≤···≤ jm−1≤n

|z j1 . . . z jm−1 |
n∑

jm= jm−1

|cj(P )z jm |

≤
∑

1≤ j1≤···≤ jm−1≤n

|z j1 . . . z jm−1 |
( n∑

jm= jm−1

|cj(P )|r
′)

1
r ′

( n∑

jm= jm−1

|zr
jm
|
) 1

r

Using Lemma 4.5 together with the fact that for every (i,k) ∈J (m −1,n) we have
( (m−1)m−1

α(i,k)α(i,k)

)

≤ e(m −

1)
( (m−2)m−2

α(i)α(i)

)

we obtain

∑

j∈J (m,n)
|cj(P )zj|

≤ e1+ 1
r (m −1)

1
r m‖P‖P (mℓn

r )

n∑

jm−1=1
|z jm−1 |

∑

i∈J (m−2, jm−1)
|zi|

( (m −2)m−2

α(i)α(i)

) 1
r
( n∑

jm= jm−1

|z jm |r
) 1

r
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For each fixed 1 ≤ k ≤ n we have, using (6) and Lemma 6.2 (we write ar = e
1

r−1 −1
2 ) and the fact that

q ≤ r

|zk |
∑

i∈J (m−2,k)

|zi|
( (m −2)m−2

α(i)α(i)

) 1
r
( n∑

j=k

|z j |r
) 1

r ≤ |zk |
∑

i∈J (m−2,k)

|zi||i|
(m −2)(m−2)/r

α(i)α(i)/r |i|

(

|zk |r−q
n∑

j=k

|z j |q
) 1

r

=Cr (m −2)ar |zk |2−
q
r

k∑

i1,...,im−2=1
|zi1 · · ·zim−2 |

( n∑

j=k

|z j |q
) 1

r =Cr (m −2)ar ‖z‖
q
r

ℓq
|zk |2−

q
r

( k∑

i=1
|zi |

)m−2

≤Cr (m −2)ar ‖z‖
q
r +m−2

ℓn
q

|zk |2−
q
r k

m−2
q ′ .

Now
n∑

k=1
|zk |2−

q
r k

m−2
q ′ = ‖z‖2− q

r

ℓn
q,2−q/r

≤ ‖z‖2− q
r

ℓn
q

because 2− q

r
≥ q for m ≥ 2. This altogether gives

∑

j∈J (m,n)
|cj(P )zj| ≤ Kr m(m −1)

1
r (m −2)ar ‖P‖P (mℓn

r )‖z‖m
ℓn

q
. �

This gives the case m = 2 in Theorem 6.1. We face now the problem of getting the result for other

m’s. The general philosophy is always to try to get a bound as that in (28), where in the right-hand-

side we have some constants that depend on r and m (but not on n, the number of variables), the

norm of the polynomial and the norm of z in some space X . This then implies X ⊂ monP (mℓr ).

What we do is to take the sum as depending on m different variables; that is, for each polynomial P

we consider

(29)
∑

1≤ j1≤···≤ jm≤n

|cj(P )z(1)
j1

. . . z(m)
jm

|

with z(1), . . . , z(m) ∈C
n and then try to get an estimate that involves the norms of the z( j ) in (possibly)

different spaces. This then gives that the smallest of these spaces is contained in the set of monomial

convergence (see Remark 6.10). We do this (giving the proof of Theorem 6.1) in two stages (that we

present in the following two subsections). First we give an estimate for the sum that involves both

ℓq,1 and ℓq,∞ norms (the precise statement is given in Proposition 6.4). Then we interpret this in-

equality as operators from ℓq,∞×·· ·×ℓq,∞×ℓq,1×ℓq,∞×·· ·×ℓq,∞ to ℓ1(J (m,n)) and use interpolation

techniques to improve the ℓq,1-norm (by weakening the ℓq,∞-norm). This is done in Theorem 6.9.

What happens here is that, since in the estimate in Proposition 6.4 some of the variables have to

be decreasing, we cannot use general multilinear interpolation, but interpolation in cones (a more

detailed explanation is given in Section 6.2).
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6.1. First bound for the sum. As we announced, our first step towards the proof of Theorem 6.1 is

to get a bound for a sum like that in (29). This becomes the main result of this section.

Proposition 6.4. Let 1 < r ≤ 2 and m ≥ 2. Define q := (mr ′)′. There exists Cm,r > 1 so that for every

n ∈N, every P ∈P (m
C

n), every z(1), . . . , z(m) ∈C
n and 1 ≤ k ≤ m −1 we have

∑

1≤ j1≤···≤ jm≤n

∣
∣cj(P )z(1)

j1
· · ·z(k)

jk
z(k+1)∗

jk+1
· · ·z(m)∗

jm

∣
∣≤Cm,r ‖z(k)‖ℓq,1

∏

i 6=k

‖z(i )‖ℓq,∞‖P‖P (mℓn
r ) .

The proof requires some work, that we prepare with a few lemmas. But before let us make a couple

of elementary comments. First of all, by definition,

(30) z∗
k ≤ ‖z‖ℓq,∞

1

k1/q

for every z ∈C
n and, then

(31)
M∑

k=N

z∗
k ≤ ‖z‖ℓq,∞

M∑

k=N

1

k1/q
.

Also, for 1 6=α< 0,

(32)
M∑

k=N

nα = Nα+
M∑

k=N+1
nα ≤ Nα+

∫M

N
xαd x = Nα+

1

α+1

(

Mα+1 −Nα+1) .

Lemma 6.5. Let n,k ≥ 1 and 1 ≤ q <∞. Then for every z(1), . . . , z(k) ∈C
n and 1 ≤ j ≤ n we have

∑

1≤ j1≤···≤ jk≤ j

|z(1)
j1

. . . z(k)
jk
| ≤ (q ′)k j

k
q ′

∏

1≤i≤k

‖z(i )‖ℓq,∞ .

Proof. We proceed by induction on k. For k = 1 the statement is a straightforward consequence of

(31) and (32). Assume that the result holds for k −1. Then

∑

1≤ j1≤···≤ jk≤ j

|z(1)
j1

· · ·z(k)
jl

| =
j∑

jk=1
|z(k)

jk
|
( ∑

1≤ j1≤···≤ jk−1≤ jk

|z(1)
j1

. . . z(k−1)
jk−1

|
)

≤ (q ′)k−1
∏

1≤i≤k−1

‖z(i )‖ℓq,∞ j
k−1
q ′

k

j∑

jk=1
|z(k)

jk
| ≤ (q ′)k j

k−1
q ′ j

1
q ′

∏

1≤i≤k

‖z(i )‖ℓq,∞ ,

which concludes the proof. �

Lemma 6.6. Let 1 < r ≤ 2, m ≥ 3 and n ∈N. Fix q := (mr ′)′ and 1 ≤ k ≤ m−2. For every z(i1), . . . , z(ik ) ∈
C

n and 1 ≤ t ≤ n we have

∑

t≤ j1≤···≤ jk≤n

|z(i1)∗
j1

. . . z
(ik )∗
jk

| j
1
r −

1
q

k
≤

( ∏

1≤l≤k

( mr ′

m − l −1
+

1

t

))

t
k+1
q ′ − 1

r ′
( ∏

1≤l≤k

‖z(il )‖ℓq,∞

)

.
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Proof. First of all let us note that a simple computation shows that s
q ′ − 1

r ′ ≤− 1
mr ′ < 0 for every 1≤ s ≤

m −1. We now proceed by induction on k. For k = 1 we use (31) and (32) to have
n∑

j=t

|z∗
j | j

1
r −

1
q ≤ ‖z‖ℓq,∞

n∑

j=t

j
2

q ′−
1
r ′−1 ≤ ‖z‖ℓq,∞

(

t
2

q ′−
1
r ′ − (

2

q ′ −
1

r ′ )−1t
2
q ′−

1
r ′+1

)

=
( r ′m

m −2
+

1

t

)

t
2
q ′−

1
r ′ ‖z‖ℓq,∞ .

Let us suppose now that the statement holds for k −1 and prove it for k.

∑

t≤ j1≤···≤ jk≤n

|z(i1)∗
j1

· · ·z(ik )∗
jk

| j
1
r −

1
q

k

=
n∑

j1=t

|z(i1)∗
j1

|
∑

j1≤ j2≤···≤ jk≤n

|z(i2)∗
j2

. . . z
(ik )∗
jk

| j
1
r −

1
q

k

≤
n∑

j1=t

|z(i1)∗
j1

|
( ∏

1≤l≤k−1

( mr ′

m − l −1
+

1

j1

))

j
k
q ′−

1
r ′

1

( ∏

2≤l≤k

‖z(il )‖ℓq,∞

)

≤
( ∏

1≤l≤k−1

( mr ′

m − l −1
+

1

t

))( ∏

2≤l≤k

‖z(il )‖ℓq,∞

) n∑

j1=t

|z(i1)∗
j1

| j
k
q ′−

1
r ′

1

≤
( ∏

1≤l≤k−1

( mr ′

m − l −1
+

1

t

))( ∏

1≤l≤k

‖z(il )‖ℓq,∞

) n∑

j1=t

j
k+1
q ′ − 1

r ′−1

1

≤
( ∏

1≤l≤k−1

( mr ′

m − l −1
+

1

t

))( ∏

1≤l≤k

‖z(il )‖ℓq,∞

)

t
k+1
q ′ − 1

r ′
(1

t
−

(k +1

q ′ −
1

r ′
)−1

)

=
( ∏

1≤l≤k−1

( mr ′

m − l −1
+

1

t

))( ∏

1≤l≤k

‖z(il )‖ℓq,∞

)

t
k+1
q ′ − 1

r ′
(1

t
+

mr ′

m −k −1

)

. �

For the following next we need the following well known Hardy-Littlewood rearrangement in-

equality (see for example [HLP52, Section 10.2, Theorem 368]).

Lemma 6.7. Let (ak )k∈N and (bk )k∈N two non-increasing sequences of non-negative real numbers.

Then, for every m ∈N and every injection σ : N→N we have

m∑

k=1

aσ(k)bk ≤
m∑

k=1

ak bk .

Lemma 6.8. Let 1 < r ≤ 2, m ≥ 3. Fix q := (mr ′)′ and 1≤ k ≤ m−2. For every z(1), . . . , z(k) ∈C
n we have

∑

1≤ j1≤···≤ jm−1≤n

|z(1)
j1

· · ·z(k)
jk

z(k+1)∗
jk+1

· · ·z(m−1)∗
jm−1

| j
1
r −

1
q

m−1 ≤ (q ′+1)m−2‖z(k)‖ℓq,1

∏

1≤i≤m−1
i 6=k

‖z(i )‖ℓq,∞ .

Proof. We begin by splitting the sum in a convenient way

∑

1≤ j1≤···≤ jm−1≤n

|z(1)
j1

· · ·z(k)
jk

z(k+1)∗
jk+1

· · ·z(m−1)∗
jm−1

| j
1
r −

1
q

m−1

=
n∑

jk=1
|z(k)

jk
|
( ∑

jk≤ jk+1≤···≤ jm−1≤n

|z(k+1)∗
jk+1

. . . z(m−1)∗
jm−1

| j
1
r −

1
q

m−1

)( ∑

1≤ j1≤···≤ jk−1≤ jk

|z(1)
j1

. . . z(k−1)
jk−1

|
)

.
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We fix jk and bound the first block using Lemma 6.6, taking into account that we have now m−k −1

z’s and that 1
jk
+ mr ′

m−l−1 ≤ q ′+1 for every 1 ≤ l ≤ m −k −1,

∑

jk≤ jk+1≤···≤ jm−1≤n

|z(k+1)∗
jk+1

. . . z(m−1)∗
jm−1

| j
1
r −

1
q

m−1

≤ j
m−k

q ′ − 1
r ′

k

( ∏

1≤l≤m−k−1

1

jk

+
mr ′

m − l −1

)( ∏

k+1≤i≤m−1

‖z(i )‖ℓq,∞

)

≤ j
m−k

q ′ − 1
r ′

k
(q ′+1)m−k−1

∏

k+1≤i≤m−1

‖z(i )‖ℓq,∞ .

With this, and bounding the second block using Lemma 6.5 we get

∑

1≤ j1≤···≤ jm−1≤n

|z(1)
j1

· · ·z(k)
jk

z(k+1)∗
jk+1

· · ·z(m−1)∗
jm−1

| j
1
r −

1
q

m−1 ≤ (q ′+1)m−2
∏

i 6=k

‖z(i )‖ℓq,∞

n∑

jk=1
|z(k)

jk
| j

k−1
q ′ +m−k

q ′ − 1
r ′

k
.

It easy to see that k−1
q ′ + m−k

q ′ − 1
r ′ = 1

q
−1. Therefore, using Lemma 6.7 we have

n∑

jk=1
|z(k)

jk
| j

1
q −1

k
≤

n∑

jk=1
|(z(k))∗jk

| j
1
q −1

k
= ‖z(k)‖ℓq,1 . �

As it was the case for the study of holomorphic functions, Lemma 4.5 (in fact (16), which is [BDS,

Lemma 3.5]) is a crucial tool for the proof of Proposition 6.4.

Proof of Proposition 6.4. We begin by using Hölder’s inequality and (16) (noting that |i| ≤ (m −1)! for

every i ∈J (m −1,n)) and (30) to have

∑

1≤ j1≤···≤ jm≤n

∣
∣cj(P )z(1)

j1
· · ·z(k)

jk
z(k+1)∗

jk+1
· · ·z(m)∗

jm

∣
∣=

∑

1≤ j1≤···≤ jm−1≤n

|z(1)
j1

. . . z(m−1)∗
jm−1

|
n∑

jm= jm−1

|cj(P )z(m)∗
jm

|

≤
∑

1≤ j1≤···≤ jm−1≤n

|z(1)
j1

. . . z(m−1)∗
jm−1

|
( n∑

jm= jm−1

cj(P )r ′)
1
r ′

( n∑

jm= jm−1

|z(m)∗
jm

|r
) 1

r

≤ (m −1)!
1
r me1+m−1

r ‖P‖P (mℓn
r )‖z(m)‖ℓq,∞

∑

1≤ j1≤···≤ jm−1≤n

|z(1)
j1

. . . z(m−1)∗
jm−1

|
( n∑

jm= jm−1

j
− r

q

m

) 1
r

.

Observe now that, for each N ∈N we have N−r /q ≤ 2r /q x−r /q for every N ≤ x < N +1. Then

n∑

jm= jm−1

j
− r

q

m ≤ 2
r
q

∫n

jm−1

x
− r

q d x ≤ 2
r
q

q

r −q
j

1− r
q

m−1 .

The proof now finishes with a straightforward application of Lemma 6.8. �
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6.2. Real interpolation on cones. What we are going to do now is to look at the inequalities for

sums like in (6) from the point of view of multilinear mappings. We fix a polynomial P ∈P (m
C

n) and

consider the mapping C
n ×·· ·×C

n → ℓ1(J (m,n)), given by

(33) (z(1), . . . , z(m)) 7→
(

cj(P )z(1)
j1

. . . z(m)
jm

)

j∈J (m,n) .

Note that, since everything here is finite dimensional, the mapping is well defined. The idea is, then,

to consider norms on the domain spaces so that the norm of this mapping is bounded by a term

involving the norm of the polynomial and some constant independent of n. Since the inequality

that we get in Proposition 6.4 requires some variables to be decreasing we have to restrict ourselves

to cones of decreasing sequences. To be more precise, if we denote ℓd
q,s := {z ∈ ℓq,s : |z| = z∗} for

1 ≤ s ≤ ∞, Proposition 6.4 tells us that there is a constant Cm,r > 1 (independent of P and n) such

that, for every 1≤ k ≤ m −1, the mapping

(34) Tk : ℓn
q,∞×·· ·×ℓn

q,∞
︸ ︷︷ ︸

k−1

×ℓn
q,1 × (ℓn

q,∞)d ×·· ·× (ℓn
q,∞)d

︸ ︷︷ ︸

m−k

→ ℓ1(J (m,n)),

given by (33) satisfies

(35) ‖Tk‖ ≤Cm,r ‖P‖P (mℓn
r ).

All these mappings have the same defining formula (which is m-linear), so it is tempting to apply

multilinear interpolation. But, since we need to restrict ourselves to the cone of non-increasing se-

quences in the last m−k variables, we are not able to directly apply the classical multilinear interpo-

lation results, but interpolation in cones.

For the general theory of interpolation we follow (and refer the reader to) [BL76]. Since (as we have

already explained) we have to consider linear operators on cones, we use the K -method of interpola-

tion for operators on the cone of non-increasing sequences, as presented in [CM96]. Then the main

result of this section, from which Theorem 6.1, follows is the following.

Theorem 6.9. Let 1< r ≤ 2 and m ≥ 3. Define q := (mr ′)′ and

s =







2 if m = 3

3+
p

5
2 if m = 4

m
log(m) if m ≥ 5

There exists a constant Cm,r ≥ 1 such that, for every P ∈P (m
C

n) the m-linear mapping

T : (ℓn
q,s )d ×·· ·× (ℓn

q,s )d

︸ ︷︷ ︸

m−1

×(ℓn
q,∞)d → ℓ1(J (m,n))

given by

(z(1), . . . , z(m)) 7→
(

cj(P )z(1)
j1

. . . z(m)
jm

)

j∈J (m,n)
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satisfies

‖T ‖ ≤Cm,r ‖P‖P (mℓn
r ) .

Remark 6.10. If we take z(1) = . . . = z(m) = z and observe that ‖z‖ℓq,∞ ≤ ‖z‖ℓq,s , Theorem 6.9 gives
∑

1≤ j1≤···≤ jm≤n

|cj(P )z∗
j1
· · ·z∗

jm
| ≤Cm,r ‖z‖m

ℓq,s
‖P‖P (mℓn

r )

for every P ∈P (m
C

n) and z ∈C
n . A standard argument shows that z∗ ∈monP (mℓr ) for every z ∈ ℓq,s

and, then, Corollary 3.6 implies ℓq,s ⊂ monP (mℓr ). This gives Theorem 6.1.

Before we proceed, let us fix some notation. Given a Banach function lattice X (in particular a

sequence space or a finite dimensional Banach space, on which we are mainly interested), we write

X d for the cone of non-increasing functions in X . If Y is any Banach space and S : X → Y is a linear

operator we can restrict it to the cone and denote

(36) ‖S : X d → Y ‖ = inf{‖S(x)‖Y : x ∈ X d , ‖x‖ < 1} .

Clearly neither is X d a vector space, nor is ‖S‖ a norm. We will later use an analogous notation for

m-linear mappings. We are now ready to state our main tool to interpolate in cones. It is a direct

corollary of [CM96, Theorem 1–(b)] (recall that we are using the notation as introduced there).

Theorem 6.11. Given a pair of quasi-Banach function lattices (X0, X1), a pair of quasi-Banach spaces

(Y0,Y1) and a linear operator S defined both X0 → Y0 and X1 → Y1 with

‖S : X d
0 −→ Y0‖ ≤ M0 and ‖S : X d

1 −→ Y1‖ ≤ M1 .

Then for every 0 < θ < 1 the operator S : (X d
0 , X d

1 )θ,a −→ (Y0,Y1)θ,a is well defined and

‖S : (X d
0 , X d

1 )θ,a −→ (Y0,Y1)θ,a‖≤ M1−θ
0 Mθ

1 .

We are going to apply this to Lorentz sequence spaces. In this case, it was proved in [Sag72] (see

also [CM96, Theorem 4]) that

(ℓd
q,p0

,ℓd
q,p1

)θ,a = (ℓq,p0 ,ℓq,p1 )d
θ,a .

On the other hand, it is known (see for example [BL76, Theorem 5.3.1]) that whenever 1
p
= 1−θ

p0
+ θ

p1

we have

(ℓq,p0 ,ℓq,p1 )θ,p = ℓq,p ,

and therefore

(37) (ℓd
q,p0

,ℓd
q,p1

)θ,p = ℓd
q,p .

Finally [BL76, Theorem 3.7.1] gives that (if p0, p1, p are related as before)

(38) (ℓ′q,p0
,ℓ′q,p1

)θ,p = (ℓq,p0 ,ℓq,p1 )′θ,p = ℓ′q,p .
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The idea now is to use Theorem 6.11 to interpolate multilinear mappings. Let us explain how we

are going to do this. Let X1, . . . , Xm be Banach function lattices (in our case they will always be finite

dimensional Lorentz spaces), Y some Banach space (ℓ1(J (m,n) for us) and some continuous m-

linear T : X1 ×·· ·×Xm → Y (for us given by (33)). Now we fix 1 ≤ j 6= k ≤ m and, for each i 6= j ,k pick

z(i ) ∈ Xi and ϕ ∈ Y ′ and consider v = (z(1), . . . , z(m),ϕ). Now we define

(39) Tv : X j → X ′
k by

(

Tv (z( j ))
)

(z(k)) =ϕ(T (z(1), . . . , z(m))).

An easy computation shows that

(40) ‖Tv‖ ≤ ‖ϕ‖‖T ‖
∏

i 6= j ,k

‖z(i )‖ .

Observe that in this procedure we may consider X d
i

for every i except for i = k, getting the same

estimate for the norm (defining the “norm” for multilinear mappings on cones with the same idea as

in (36)). We are now ready to present the main technical tool for the proof of Theorem 6.9.

Lemma 6.12. Let m ≥ 3, 1< r ≤ 2, define q := (mr ′)′ and let Cm,r be the constant from Proposition 6.4.

For each 0 < θ < 1, every P ∈P (m
C

n) and all 1 ≤ k ≤ m −2 the m-linear mapping

T k (θ) :
(

ℓn

q,( 1
1−θ )k

)d ×
(

ℓn

q, 1
θ

)d ×·· ·×
(

ℓn

q, 1
θ

)d

︸ ︷︷ ︸

k

×
(

ℓn
q,∞

)d ×·· ·×
(

ℓn
q,∞

)d

︸ ︷︷ ︸

m−k−1

→ ℓ1(J (m,n))

given by (33) satisfies

‖T k (θ)‖ ≤Cm,r ‖P‖P (mℓn
r ).

Proof. We proceed by induction on k and begin with the case k = 1. We consider the mappings (see

(34))

T1 : ℓn
q,1 × (ℓn

q,∞)d × (ℓn
q,∞)d ×·· ·× (ℓn

q,∞)d

︸ ︷︷ ︸

m−1

→ ℓ1(J (m,n))

T2 : ℓn
q,∞×ℓn

q,1 × (ℓn
q,∞)d ×·· ·× (ℓn

q,∞)d

︸ ︷︷ ︸

m−2

→ ℓ1(J (m,n)).

We fix z(3), . . . , z(m) ∈ (ℓn
∞)d and ϕ ∈

(

ℓ1(J (m,n))
)′

and writing v = (z(3), . . . , z(m),ϕ) define, following

(39), two linear operators

(T1)v :
(

ℓn
q,∞

)d →
(

ℓn
q,1

)′ and (T2)v :
(

ℓn
q,1

)d →
(

ℓn
q,∞

)′

that, by (35) and (40), satisfy (for i = 1,2)

‖(Ti )v‖ ≤Cm,r ‖P‖P (mℓn
r )‖z(3)‖ℓq,∞ · · ·‖z(m)‖ℓq,∞‖ϕ‖ℓ1(J (m,n))′ .

Now we interpolate, using Theorem 6.11 and equations (37) and (38), to have
∥
∥
∥

(

T 1(θ)
)

v :
(

ℓn

q, 1
θ

)d →
(

ℓn

q, 1
1−θ

)′
∥
∥
∥≤Cm,r ‖P‖P (mℓn

r )‖z(3)‖ℓq,∞ · · ·‖z(m)‖ℓq,∞‖ϕ‖ℓ1(J (m,n))′
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for every 0 < θ < 1. This immediately gives (just taking supremums)

∥
∥T 1(θ) : ℓn

q, 1
1−θ

×
(

ℓn

q, 1
θ

)d ×
(

ℓn
q,∞

)d ×·· ·×
(

ℓn
q,∞

)d

︸ ︷︷ ︸

m−2

→ ℓ1(J (m,n))
∥
∥≤Cm,r ‖P‖P (mℓn

r ) .

Now let us assume that, for 1≤ k ≤ m −2,

T k−1(θ) : ℓn

q,
( 1

1−θ
)k−1 × (ℓn

q, 1
θ

)d ×·· ·× (ℓn

q, 1
θ

)d

︸ ︷︷ ︸

k−1

× (ℓn
q,∞)d ×·· ·× (ℓn

q,∞)d

︸ ︷︷ ︸

m−k

→ ℓ1(J (m,n))

has norm ≤ Cm,r ‖P‖P (mℓn
r ). On the other hand consider the mapping defined by Theorem 6.4 (see

(34))

Tk+1 : ℓn
q,∞×·· ·×ℓn

q,∞
︸ ︷︷ ︸

k

×ℓn
q,1 × (ℓn

q,∞)d ×·· ·× (ℓn
q,∞)d

︸ ︷︷ ︸

m−k−1

→ ℓ1(J (m,n))

that (recall (40)) also has norm ≤Cm,r ‖P‖P (mℓn
r ). Since ‖ℓn

q, 1
θ

,→ ℓn
q,∞‖ = 1 we have (recall (36))

Tk+1 : ℓn
q,∞× (ℓn

q, 1
θ

)d ×·· ·× (ℓn

q, 1
θ

)d

︸ ︷︷ ︸

k−1

×ℓq,1 × (ℓn
q,∞)d ×·· ·× (ℓn

q,∞)d

︸ ︷︷ ︸

m−k−1

→ ℓ1(J (m,n))

has again norm bounded by Cm,r ‖P‖P (mℓn
r ). We fix ϕ ∈

(

ℓ1(J (m,n))
)′ and z(i ) ∈ (Cn)d for i 6= 1,k and,

taking v = (z(2), . . . , z(k), z(k+2), . . . , z(m),ϕ) we have, by (39) and (40)

∥
∥(T k−1(θ))v : (ℓn

q,∞)d →
(

ℓn

q,( 1
1−θ )k−1

)′∥∥

≤Cm,r ‖P‖P (mℓn
r )‖ϕ‖ℓ1(J (m,n))′‖z(2)‖ℓ

q, 1
θ

· · ·‖z(k)‖ℓ
q, 1

θ

‖z(k+2)‖ℓq,∞ · · ·‖z(m)‖ℓq,∞

and

∥
∥(Tk+1)v : (ℓn

q,1)d →
(

ℓn
q,∞

)′∥∥

≤Cm,r ‖P‖P (mℓn
r )‖ϕ‖ℓ1(J (m,n))′‖z(2)‖ℓ

q, 1
θ

· · ·‖z(k)‖ℓ
q, 1

θ

‖z(k+2)‖ℓq,∞ · · ·‖z(m)‖ℓq,∞ .

Once again, we may interpolate using Theorem 6.11, (37) and (38) to have

∥
∥(T k (θ)v : (ℓn

q, 1
θ

)d →
(

ℓn

q, 1
(1−θ)k

)′∥∥

≤Cm,r ‖P‖P (mℓn
r )‖ϕ‖ℓ1(J (m,n))′‖z(2)‖ℓ

q, 1
θ

· · ·‖z(k)‖ℓ
q, 1

θ

‖z(k+2)‖ℓq,∞ · · ·‖z(m)‖ℓq,∞

for every 0 < θ < 1. Taking supremum as before this gives

∥
∥T k (θ) : ℓn

q,
( 1

1−θ
)k × (ℓn

q, 1
θ

)d ×·· ·× (ℓn

q, 1
θ

)d

︸ ︷︷ ︸

k

× (ℓn
q,∞)d ×·· ·× (ℓn

q,∞)d

︸ ︷︷ ︸

m−k−1

→ ℓ1(J (m,n))
∥
∥≤Cm,r ‖P‖P (mℓn

r ) .

�
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Proof of Theorem 6.9. For m ≥ 5, we choose θ = log(m+ 3
2 )

m−1+log(m+ 3
2 )

. Then 1
θ ≥ m

log(m) and

(
1

1−θ

)k

=
(

1+
log(m + 3

2 )

m −1

)m−2
≥

m

logm
.

Therefore ‖ℓn

q,
( 1

1−θ
)k ,→ ℓn

q, m
log(m)

‖ = ‖ℓn

q, 1
θ

,→ ℓn
q, m

log(m)
‖ = 1. Using Lemma 6.12 with k = m −2 the result

follows. For m = 3 and m = 4 just take θ = 1
2 and θ = 3

2 −
p

5
2 in Lemma 6.12, respectively. �

We finish this section with some comments on the hypercontractivity of the inclusion of ℓq,s in

monP (mℓr ). For the ℓ∞ case it is known (see [BDF+17, Theorem 2.1]) that the inclusion ℓ 2m
m−1 ,∞

in monP (mℓ∞) is hypercontractive in the sense that there exists a constant C > 0 such for every

P ∈P (mℓ∞),
∑

j∈J (m,n)
|cj(P )zj| ≤C m‖z‖m

ℓ 2m
m−1 ,∞

‖P‖P(mℓ∞).

For 1 < r ≤ 2, although we do not know if ℓq,∞ lies in the set monP (mℓr ) it is easy to see that we

cannot expect to have a hypercontractive inequality as above.

Remark 6.13. Proceeding as in the proof of the upper inclusion in Theorem 4.1 (see (14)) with m =
⌊log(n +1)⌋ we would have that

1

‖z‖ℓq,logm
log(n +1)1− 1

r

n∑

j=1
|z∗

j |

is bounded independently of n for every z ∈ ℓq,log m . Take now z = ( j−1/q log( j )−2/log(m)) j . Then

‖z‖ℓq,log m
≤

(
∑∞

j=1
1

j log2( j )

) 1
logm . But,

1

‖z‖ℓq,log m
log(n +1)1− 1

r

n∑

j=1
|z∗

j |≫
1

log(n +1)1− 1
r

n∑

j=1

1

j 1/q log( j )
2

logm

≫
e2

c log(n +1)1− 1
r

n∑

j=1

1

j 1/q
≥

e2

c log(n +1)1− 1
r

n1/q ′
q ′.

Since q ′ = mr ′ = ⌊log(n + 1)⌋r ′, the last expression is ≫ log(n)
1
r . This shows that there exists no

constant C > 0 such that for every n and m and all P ∈P (m
C

n) we have

∑

j∈J (m,n)
|cj(P )zj| ≤C m‖z‖m

ℓq,log m
‖P‖P (mℓn

r ).

On the other hand, applying carefully the ideas developed in this section, it is possible to obtain

hypercontractive inequalities in some cases.
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Remark 6.14. Given ε > 0, there exists a constant C > 0 such that for every m ≥ 3, n ∈ N and every

P ∈P (m
C

n)
∑

j∈J (m,n)
|cj(P )zj| ≤C (1+ε)m‖P‖P (mℓn

r )‖z‖m
ℓn

q,2
.

To see this fix 1 < r ≤ 2, m ≥ 3, and take z, z(m−2), z(m−1), w ∈ C
n such that z(m−1) = z(m−1)∗ and

w = w∗. Then we have, using Lemma 4.5 (see also (15)) and Lemma 6.2,

∑

j∈J (m,n)
|cj(P )z j1 . . . z jm−3 z(m−2)

jm−2
z(m−1)

jm−1
w jm |

≤ em‖P‖P (mℓn
r )

∑

j∈J (m−1,n)
|z j1 . . . z jm−3 z(m−2)

jm−2
z(m−1)

jm−1
| ·

( (m −1)m−1

α(j)α(j)

)1/r ( n∑

jm= jm−1

w r
jm

)1/r

≤ em3C mer ′−1
‖P‖P (mℓn

r )

n∑

jm−2=1
|z(m−2)

jm−2
|
( ∑

j∈J (m−3, jm−2)
|j||zj|

) n∑

jm−1= jm−2

|z(m−1)
jm−1

|
( n∑

jm= jm−1

w r
jm

)1/r

≤C mer ′
‖w‖ℓq,∞‖P‖P (mℓn

r )

n∑

jm−2=1
|z(m−2)

jm−2
|
( jm−2∑

l=1

|zl |
)m−3 n∑

jm−1= jm−2

|z(m−1)
jm−1

| j
1
r −

1
q

m−1

≤C mer ′
‖w‖ℓq,∞‖P‖P (mℓn

r )

n∑

jm−2=1
|z(m−2)

jm−2
|
(

( jm−2)1− 1
q ‖z‖ℓq,∞

)m−3
‖z(m−1)‖ℓq,∞(r ′+1) j

2
q ′−

1
r ′

m−2

≤ (r ′+1)C mer ′
‖w‖ℓq,∞‖z‖m−3

ℓq,∞
‖z(m−2)‖ℓq,1‖z(m−1)‖ℓq,∞‖P‖P (mℓn

r ),

where in the penultimate inequality we used the bound of the identity from ℓk
1 to ℓk

q,∞ that may be

found for example in [DM06, Lemma 22]. On the other hand, we also have,

∑

j∈J (m,n)
|cj(P )z j1 . . . z jm−3 z(m−2)

jm−2
z(m−1)

jm−1
w jm |

≤ em‖P‖P (mℓn
r )

∑

j∈J (m−1,n)
|z j1 . . . z jm−3 z(m−2)

jm−2
z(m−1)

jm−1
| ·

( (m −1)m−1

α(j)α(j)

)1/r ( n∑

jm= jm−1

w r
jm

)1/r

≤ em3C mer ′−1
‖P‖P (mℓn

r )

n∑

jm−1=1
|z(m−1)

jm−1
|
( ∑

j∈J (m−3, jm−2)
|j||zj|

) jm−1∑

jm−2=1
|z(m−2)

jm−2
|
( n∑

jm= jm−1

w r
jm

)1/r

≤C mer ′
‖w‖ℓq,∞‖P‖P (mℓn

r )

n∑

jm−1=1
|z(m−1)

jm−1
|
( jm−2∑

l=1

|zl |
)m−3 jm−1∑

jm−2=1
|z(m−2)

jm−2
| j

1
r −

1
q

m−1

≤C mer ′
‖w‖ℓq,∞‖P‖P (mℓn

r )

n∑

jm−1=1
|z(m−1)

jm−1
|
(

( jm−2)1− 1
q ‖z‖ℓq,∞

)m−3
j

1− 1
q

m−1‖z(m−2)‖ℓq,∞ j
1
r −

1
q

m−1

=C mer ′
‖w‖ℓq,∞‖z‖m−3

ℓq,∞
‖z(m−2)‖ℓq,∞‖z(m−1)‖ℓq,1‖P‖P (mℓn

r ).

Thus, proceeding as in Lemma 6.12 we may construct an operator which is bounded from ℓd
q,∞ to

(

ℓq,1
)′ and also from ℓd

q,1 to
(

ℓq,∞
)′. Applying the K -interpolation method restricted to the cone of
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non-increasing sequences to this operator we can conclude that for any z = z∗,

∑

j∈J (m,n)
|cj(P )zj| ≤

√

(1+ r ′)C mer ′
‖z‖m−2

ℓq,∞
‖z‖2

ℓq,2
‖P‖P (mℓn

r ) ≤C (1+ε)m‖P‖P (mℓn
r )‖z‖m

ℓn
q

.

Therefore, by (11), we have proved our claim.

With some extra work it can proved, in a similar way, that given any s ≥ 1 and ε > 0, there exist

some m0 and some C > 0 such that for every n ∈N, all m ≥ m0 and every polynomial P ∈P (m
C

n) we

have
∑

j∈J (m,n)
|cj(P )zj| ≤C (1+ε)m‖P‖P (mℓn

r )‖z‖m
ℓn

q,s
.

7. SOME CONSEQUENCES

We now provide several consequences of the results obtained in the previous sections.

7.1. Mixed unconditionality for spaces of m-homogeneous polynomials. Let us recall that, if (Pi )i∈Λ

is a Schauder basis of P (m
C

n), for 1≤ r, s ≤∞ and n,m ∈N, the mixed unconditional basis constant

χr,s ((Pi )i∈Λ) is defined as the best constant C > 0 such that

‖
∑

i∈Λ
θi ci Pi‖P (mℓn

s ) ≤C‖
∑

i∈Λ
ci Pi‖P (mℓn

r ),

for every P =
∑

i∈Λ
ci Pi ∈P (m

C
n) and every choice of complex numbers (θi )i∈Λ of modulus one. Once

we have this, the (r, s)-mixed unconditional constant of P (m
C

n) is defined as

χr,s (P (m
C

n)) := inf{χp,q ((Pi )i∈Λ) : (Pi )i∈Λ basis for P (m
C

n)}.

This notion was introduced by Defant, Maestre and Prengel in [DMP09, Section 5].

In [GMMb] the exact asymptotic asymptotic growth of the mixed-(r, s) unconditional constant as

n tends to infinity was computed for many values of p and q ’s. To achieve this the authors proved

that

χr,s(P (m
C

n)) ∼χr,s
(

(zj)j∈J (m,n)
)

.

We complete the result given in [GMMb, Theorem 3.4] by providing the exact asymptotic asymptotic

growth for the remaining cases. In this way we have the behaviour of χp,q (P (m
C

n)) for every 1 ≤
p, q ≤∞.
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(I )

(I I ) (I I I )

1
2

2m−1
2m

m−1
2m

1
r

1
s

FIGURE 1. Graphical overview of the mixed unconditional constant described in Theorem 7.1.

Theorem 7.1. For each m ∈N we have






χr,s (P (m
C

n)) ∼ 1 for (I ) : [ 1
r
+ m−1

2m
≤ 1

s
∧ 1

r
≤ 1

2 ] or [ m−1
m

+ 1
mr

< 1
s
∧ 1

2 ≤ 1
r

],

χr,s (P (m
C

n)) ∼ nm( 1
r −

1
s +

1
2 )− 1

2 for (I I ) [ 1
r
+ m−1

2m
≥ 1

s
∧ 1

r
≤ 1

2 ],

χr,s (P (m
C

n)) ∼ n(m−1)(1− 1
s )+ 1

r −
1
s for (I I I ) : [1− 1

m
+ 1

mr
≥ 1

s
∧ 1

2 < 1
r
< 1].

Proof. The behaviour of χr,s(P (m
C

n)) in regions (I ) and (I I ) was already given in [GMMb, Theo-

rem 3.4]. We now deal with (I I I ). By Theorem 6.3 we know that ℓq ⊂ monP (mℓr ). Thus, for every

polynomial P (z) =
∑

|α|=m cαzα ∈P (m
C

n) we have

(41)
∑

|α|=m

|cαzα| ≤C m‖z‖m
ℓq
‖P‖P (mℓr ),

where q := (mr ′)′. Since

(42) ‖z‖ℓq
≤ n

1
q −

1
s ‖z‖ℓs

,

combining (41) and (42) yields

χr,s(P (m
C

n)) ≤ n
( 1

q −
1
s )m = n

(1− 1
mr ′−

1
s )m = n

m(1− 1
s )− 1

r ′ = n(m−1)(1− 1
s )+ 1

r −
1
s .(43)

�
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7.2. Mixed Bohr radius. Let K (Bℓn
p

,Bℓn
q

) be the n-dimensional (p, q)-Bohr radius for holomorphic

functions on C
n . That is, K (Bℓn

p
,Bℓn

q
) denotes the greatest number r ≥ 0 such that for every entire

function f (z) =
∑

α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality

sup
z∈r ·Bℓn

q

∑

α

|aαzα| ≤ sup
z∈Bℓn

p

| f (z)|.

The exact asymptotic growth of K (Bℓn
p

,Bℓn
q

) with n was given in [GMMa, Theorem 1.2]. More pre-

cisely, K (Bℓn
p

,Bℓn
1

) ∼ 1 for every 1 ≤ p ≤∞, and for 1≤ p, q ≤∞, with q 6= 1,

K (Bℓn
p

,Bℓn
q

) ∼







1 if (I): 2 ≤ p ≤∞ ∧ 1
2 +

1
p
≤ 1

q
,

p
log(n)

n
1
2+ 1

p − 1
q

if (II): 2 ≤ p ≤∞ ∧ 1
2 +

1
p
> 1

q
,

log(n)
1− 1

p

n
1− 1

q
if (III): 1 ≤ p ≤ 2.

As a consequence of our result we can give an alternative proof of the lower bounds for K (Bℓn
p

,Bℓn
q

)

for the case 1 ≤ p ≤ 2 (and every 1≤ q ≤∞). It should be noted that this is the most complicated part

of [GMMa, Theorem 1.2]. Let us see how.

By [DMP09, Theorem 5.1] and Lemma 5.3, there is a constant C := C (p) > 0 such that for every

polynomial P in n complex variables we have

(44)
∑

j∈J (m,n)
|cj(P )zj| ≤C m‖z‖m

(mΨp )n
‖P‖P (mℓn

p ),

where (mΨp )n is defined as the quotient space induced by the mapping

πn : mΨp →C
n

x 7→ (x1, . . . , xn).

Note that there is a constant D = D(p, q) > 0 such that ‖z‖(mΨp )n ≤ D n
1− 1

q

log(n)
1− 1

p
‖z‖ℓn

q
. Therefore, by (44)

we have
∑

j∈J (m,n)
|cj(P )zj| ≤ (C D)m

(

n
1− 1

q

log(n)1− 1
p

)m

‖z‖m
ℓn

q
‖P‖P (mℓn

p ),

This implies that χp,q (P (m
C

n))1/m ≪ n
1− 1

q

log(n)
1− 1

p
. It should be noted that here is important to have

control of the growth of the (p, q)-mixed unconditional constant also in terms of m (the homogeneity

degree), contrary to problem treated in the previous subsection. The result now follows using that

(see [GMMa, Lemma 2.2.]) for every n ∈N and 1 ≤ p, q ≤∞ we have

K (Bℓn
p

,Bℓn
q

) ∼
1

supm≥1χp,q (P (mCn))1/m
.



38 DANIEL GALICER, MARTÍN MANSILLA, SANTIAGO MURO, AND PABLO SEVILLA-PERIS

7.3. Multipliers. A sequence (an)n∈N is a multiplier for monP (mℓr ) if

(an)n∈N ·ℓr ⊂ monP (mℓr ),

where the product (an)n∈N ·ℓr is just the coordinate-wise multiplication. Let p = (p1, p2, . . . ) be the

sequence of the prime numbers. It is well-known that for r ≥ 2, the sequence 1

p
m−1
2m

is a multiplier for

monP (mℓr ) (this can be as an immediate consequence of [BDS, Theorem 5.1 (3) ]).

For 1< r < 2 in [BDS, Theorem 5.3.] prove this up to an ε, showing that for each m and every ε> 1
r

(45)
1

pσm
(

log(p)
)ε ·ℓr ⊂ monP (mℓr ),

where σm = m−1
m

(

1− 1
r

)

. As a consequence of our results, we can improve this, showing that, for

1 < r ≤ 2, even the sequence ( 1
nσm )n∈N is a multiplier for monP (mℓr ).

Theorem 7.2. For 1 < r < 2 and m ≥ 3 put σm = m−1
m

(

1− 1
r

)

. Then,

( 1

nσm

)

n ·ℓr ⊂ monP (mℓr ),

and σm is best possible.

Proof. As a consequence of Theorem 6.1 we know that ℓq,r ⊂ monP (mℓr ), thus to prove the result

it is sufficient to see that if z ∈ ℓr then,
( 1

nσm

)

n · z ∈ ℓq,r . Suppose that z ∈ ℓr is an arbitrary element

(not necessarily equal to z∗). Since r > q we know that the norm ‖·‖ℓq,r is equivalent to the following

maximal norm (see [BS88, Lemma 4.5])

‖w‖∗ℓq,r
=

(
∞∑

n=1
n

r
q −1

(

1

n

n∑

k=1
w∗

k

)r )1/r

.

Then, if w =
( zn

nσm

)

n
, by the Hardy-Littlewood rearrangement inequality (Lemma 6.7) it is easy to see

that
n∑

k=1

w∗
k ≤

n∑

k=1

z∗
k

1

kσ

for every n ∈N. Then

∥
∥
∥
∥

( zn

nσm

)

n

∥
∥
∥
∥
ℓq,r

∼
∥
∥
∥
∥

( zn

nσm

)

n

∥
∥
∥
∥

∗

ℓq,r

≤
(

∞∑

n=1
n

r
q −1

(

1

n

n∑

k=1
z∗

k

1

kσ

)r )1/r

=
∥
∥
∥
∥

(
z∗

n

nσm

)

n

∥
∥
∥
∥

∗

ℓq,r

∼
∥
∥
∥
∥

(
z∗

n

nσm

)

n

∥
∥
∥
∥
ℓq,r

=
( ∞∑

n=1

(

(
z∗

n

nσm
)∗n

1
q −

1
r

)r )1/r

= ‖z‖ℓr
<∞,

where, in the last equality, we have used the fact that σm = 1
q
− 1

r
.

To see that the exponent is optimal take, as always, q = (mr ′)′. Now, if (zn)n =
(

1
n1/r log(n+1)2/r

)

n
∈ ℓr

for every ε> 0 it is easy to check that the sequence
( zn

nσm−ε
)

n ∉ ℓq,∞ ⊃ monP (mℓr ). �
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For m = 2 we cannot show that the sequence is
( 1

nσ2

)

n is a multiplier for monP (2ℓr ) but using the

fact that ℓq ⊂ monP (2ℓr ), Theorem 6.1, it is easy to see that we have the inclusion

1

pσ2
(

log(p)
)ε ·ℓr ⊂ monP

(2ℓr

)

,

for every ε> 0 extending [BDS, Theorem 5.3.] (see also (45)). We leave the details for the reader.
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