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Abstract. We characterise the real extreme points of the unit ball of m0
Ψ, the

complex extreme points of the unit ball of mΨ and the real extreme and exposed
points of the unit ball of (m0

Ψ)′. Using these characterisations we show that,
depending on the length of the extreme points, the multipliers of m0

Ψ are either
constant multiple of the identity or diagonal operators.

1. Introduction

Since the 1930s, the concepts of rearrangement invariant spaces in general and
Marcinkiewicz spaces in particular have played an important role in many areas
of analysis. Marcinkiewicz spaces are an intrinsic part of interpolation theory, (see
[4, 14]) and the control of their norm given to them by the fundamental function has
meant that they are a useful source of counterexamples. Recently, Marcinkiewicz
sequence space have been used by Bayart et al., [2], in the description of sets of
absolute monomial convergence and of `1-multipliers of Dirichlet series.

The goal of this paper is twofold. Firstly we want to understand the geometry of
the unit ball of the Marcinkiewicz sequence spaces m0

Ψ, its dual, (m0
Ψ)′ and bidual

mΨ. Secondly we wish to use this geometry to determine the isometries of mΨ.
Previously, in [5], the authors had determined the complex extreme points of the
unit ball of the (little) Marcinkiewicz space m0

Ψ where, it was observed, that this
geometry was determined by the finite dimensional subspacesmn

Ψ. As we will observe
in this paper the geometry of the unit ball of mΨ depends heavily on the asymptotic
values of Ψ. We also determine the geometry of the unit ball of (m0

Ψ)′. It is the
geometry of this space which allows us to characterise the isometries of mΨ.

Marcinkiewicz sequence spaces and their duals are rearrangement invariant se-
quence spaces. In order to understand their geometry it is essential to understand
precisely what is meant by decreasing rearrangement of a complex bounded se-
quence. Given a bounded sequence z = (zk)k we define the distribution of z, dz,
by dz(s) = #{j ∈ N : |zj| > s} for s ≥ 0. Bounded sequence x and y are said
to be equimeasuarable, x ∼ y, if dx = dy. A Banach sequence space (E, ‖ · ‖E)
is said to be a rearrangement invariant space if for any y ∈ E and x a bounded
sequence such that x ∼ y, then x ∈ E and ‖x‖E = ‖y‖E. To each rearrangement
invariant sequence space (E, ‖·‖E) we associate its fundamental sequence, φE, given
by φE(n) = ‖e1 + · · ·+ en‖E.
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Setting z∗k = inf{s > 0: dz(s) < k} we obtain the decreasing rearrangement, z∗,
of z. For a bounded sequence z we denote the maximal sequence of z∗ by

z∗∗n :=
1

n

n∑
i=1

z∗i .

By a symbol Ψ we understand an increasing sequence of non-negative real num-
bers, Ψ = (Ψ(k))∞k=0, with Ψ(0) = 0 and Ψ(k) > 0 if k ≥ 1. The Marcinkiewicz
sequence space associated to the symbol Ψ, mΨ, is the Banach space of all bounded
sequences (zk)k such that

‖z‖ := sup
k≥1

∑k
j=1 z

∗
j

Ψ(k)
<∞,

where z∗ = (z∗k)k is the decreasing rearrangement of (zk)k. We denote by m0
Ψ the

subspace of mΨ consisting of all z such that

lim
k→∞

∑k
j=1 z

∗
j

Ψ(k)
= 0.

To avoid the case where m0
Ψ = {0} we shall assume that limk→∞Ψ(k) =∞.

We assume without loss of generality that Ψ(1) = 1. This condition is equivalent
to the assumption that ‖ek‖ = 1 for all k in N. It follows from [12] that we can
also assume that (Ψ(k)/k)k is decreasing. From this it follows that if z ∈ m0

Ψ then
limk |zk| = 0 and ‖z‖∞ ≤ ‖z‖. Thus m0

Ψ ↪→ c0 and the standard unit vectors
(ek)k form an unconditional basis for m0

Ψ. This condition will also be important
in our understanding of the geometry of (m0

Ψ)′. If z ∈ mΨ we let supp(z) denote
#{j : zj 6= 0}.

Given a Banach space E, BE denotes its closed unit ball. Also, ∆ and ∆ denote,
respectively, the open and closed complex unit disc. A point z in BE is said to be
a real extreme point of BE if z is not the midpoint of any line segment which is
contained in BE. When E is a complex Banach space we shall say that z in BE is
a complex extreme point of BE if ‖z + λy‖ ≤ 1 for all λ ∈ ∆ implies that y = 0.
The real extreme points of BE are denoted by ExtR(BE) while the complex extreme
points are denoted by ExtC(BE).

Let E be a complex Banach space. We denote by Ab(BE) the Banach algebra of
all continuous bounded functions on BE, which are holomorphic on the interior of
BE. A point z in BE is said to be a peak point for Ab(BE) if there is f in Ab(BE)
such that |f(x)| < f(z) for all x in BE \{z}. A point z in E is said to be an exposed
point of the unit ball of E if there is a norm one linear function, ϕ ∈ E ′, such that
ϕ(z) = 1 and Re(ϕ(x)) < 1 for all x ∈ BE, x 6= z. When E = F ′ is a dual space
and ϕ is in F we shall say that z is weak∗-exposed. Both, peak and exposed points
are complex extreme points, see [11, Theorem 4] and [10, Exercise 3.5].

In [5] we undertook a detailed study of the geometry of the unit ball of m0
Ψ giv-

ing a complete description of its complex extreme points. Necessary and sufficient
conditions for the existence of complex extreme points in the unit ball of m0

Ψ had
previously been obtained by Kamińska and Lee [12]. In the same year Choi and Han
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obtained a characterisation of the extreme points of the unit ball of the finite di-
mensional Marcinkiewicz sequence space mn

Ψ. An important class of Marcinkiewicz
sequence spaces is formed by the duals of Lorentz sequence spaces. Their geometry
and its interaction with boundaries of spaces of analytic functions has been investi-
gated by Moraes and Romero-Grados [15] and by Acosta, Aron and Moraes [1]. In
particular, the complex extreme points of the unit ball of a Lorentz sequence space
are determined in [1] while the real extreme points of the unit ball of a Lorentz
sequence space and its predual are determined by Kamińska, Lee and Lewicki in
[13]. In this paper the results in [5] are generalised in two ways. First we deter-
mine the real extreme points of the unit ball of m0

Ψ, then, in the second section, we
characterise the complex extreme point of the unit ball of mΨ.

Our final section contains a description of the geometry of the unit ball of (m0
Ψ)′

the dual of m0
Ψ. In particular, we are able to characterise the weak∗ exposed points

of the unit ball of the Lorentz spaces d(w, 1) and γ1,w extending result of Kamińska,
Lee and Lewicki, [13, Theorem 2.6], and of Ciesielski and Lewicki, [8, Theorem 4.7],
which characterised the extreme points of d(w, 1) and γ1,w respectively. We then use
our results to give a characterisation of the multipliers of m0

Ψ. Multiplier and more
generally centralisers play a fundamental role in extending the idea of the centre of
a unital Banach algebra to a general Banach space setting. See [3] for more details.

2. Real extreme points of m0
Ψ

Given a symbol Ψ and a positive integer n we let Tn denote the set of all decreasing
n-tuples of strictly positive real numbers (zj)

n
j=1 in Cn with

∑k
j=1 zj ≤ Ψ(k), for all

k < n and
∑n

j=1 zj = Ψ(n).

Lemma 2.1. Let Ψ be a symbol, z = (zj)j be a point of BmΨ
with strictly positive

real coefficients and k be a positive integer with
∑k

j=1 zj = Ψ(k). Let y = (yj)j in

mΨ be such that ‖z ± y‖ ≤ 1, then for 1 ≤ j ≤ k, yj is real and
∑k

j=1 yj = 0.

Proof. We now adapt the proof of [1, Lemma 2.7]. For each j ∈ N, 1 ≤ j ≤ k, set
tj = |zj + yj| + |zj − yj| − 2|zj| and Tn =

∑n
j=1 tj. The Triangle Inequality implies

that tj ≥ 0 for each j ∈ N and thus (Tn)n is an increasing sequence of positive real
numbers. We have

k∑
j=1

|zj| =
1

2

(
k∑
j=1

|zj + yj|+ |zj − yj|

)
− 1

2
Tk ≤ Ψ(k)− 1

2
Tk.

Thus

1

2
Tk ≤ Ψ(k)−

k∑
j=1

|zj| = 0

and therefore tj = 0 all j. Hence we have

|zj + yj + zj − yj| = 2|zj| = |zj + yj|+ |zj − yj| (∗)
for all j in 1 ≤ j ≤ k. The argument of [1, Lemma 2.7] now implies that each
yj, 1 ≤ j ≤ k, is real. Replacing y with ry we may assume that max1≤j≤k |yj| <
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min1≤j≤k |zj|. As ‖z ± y‖ ≤ 1 we have
∑k

j=1 zj ±
∑k

j=1 yj ≤ Ψ(k) =
∑k

j=1 zj and

thus
∑k

j=1 yj = 0. �

Let Ψ be a symbol. It follows from [5, Theorem 2.10] that if z is a real extreme
point of the unit ball of Bm0

Ψ
then z has finite support. Baring this in mind, we now

present the following characterisation of the unit ball of m0
Ψ.

Theorem 2.2. Let Ψ be a symbol and let z = (zj)j in Bm0
Ψ

such that z∗ has n
nonzero coordinates. Then, z is a real extreme point of Bm0

Ψ
if and only if the

following conditions hold.

(a) Either
(i) z∗1 = Ψ(1); or

(ii) z∗1 < Ψ(1) and, for some p > 2, z∗1 = z∗2 = · · · = z∗p > z∗p+1 then there exists

l, 2 ≤ l < p such that
∑l

j=1 z
∗
j = Ψ(l);

(b) If there is k, 1 < k < n, and z∗k−1 > z∗k > z∗k+1 > z∗k+2 then
∑k

j=1 z
∗
j = Ψ(k);

(c) If there are k and p with k+1 < p so that 1 < k < n−1 and z∗k−1 > z∗k > z∗k+1 =

z∗k+2 = · · · = z∗p > z∗p+1 then there exists l, k ≤ l < p such that
∑l

j=1 z
∗
j = Ψ(l);

(d) If there are k and p with k < p so that 1 < k < n − 1 and z∗k−1 > z∗k = z∗k+1 =

· · · = z∗p > z∗p+1 then there exists l, k ≤ l < p such that
∑l

j=1 z
∗
j = Ψ(l);

(e) If z∗n−1 > z∗n then
∑n

j=1 z
∗
j = Ψ(n).

Proof. First suppose that there is n ∈ N such that (a), (b), (c), (d) and (e) hold. Let
y in m0

Ψ be such that ‖z∗± y‖ ≤ 1. We claim that y = 0. Our proof is by induction
on k, the nonzero coordinates of y. Firstly, if z1 = Ψ(1) then by (a) (i) it follows
immediately that y1 = 0. On the other hand, if z∗1 < Ψ(1) and for some p > 2 we
have z∗1 = z∗2 = · · · = z∗p > z∗p+1 then by (a) (ii) we there exists l, 2 ≤ l < p, with∑l

j=1 z
∗
j = Ψ(l). By Lemma 2.1 we have

∑l
i=1 yqi = 0 for every l-tuple (q1, . . . , ql)

in (1, . . . , p). As l < p this means that yi = 0 for 1 ≤ i ≤ p. In particular, y1 = 0.
Suppose that we have shown that y1 = · · · = yk−1 = 0. If z∗ is such that

z∗k−1 > z∗k > z∗k+1 > z∗k+2 then by (b) we have
∑k

j=1 z
∗
j = Ψ(k). Again Lemma 2.1

implies that
∑k

j=1 yj = 0 and hence yk = 0. If we have k and p with k + 1 < p so

that 1 < k < n− 1 and z∗k−1 > z∗k > z∗k+1 = z∗k+2 = · · · = z∗p > z∗p+1 then by (c) there

exists l, k ≤ l < p such that
∑l

j=1 z
∗
j = Ψ(l). By Lemma 2.1, we have

∑l
j=k yj = 0.

Hence, yk +
∑l

i=k+1 yqi = 0 for any (l − k) − 1-tuple (q1, . . . , ql) in (1, . . . , p) and
hence as l < p, yi = 0 for k ≤ i ≤ p. In particular, yk = 0. If we have k and p
with k < p so that 1 < k < n − 1 and z∗k−1 > z∗k = z∗k+1 = · · · = z∗p > z∗p+1 then

by (d) there exists l, k ≤ l < p such that
∑l

j=1 z
∗
j = Ψ(l). Again, by Lemma 2.1,

we obtain that
∑l

i=1 yqi = 0 for every l-tuple (q1, . . . , ql) in (1, . . . , p) and hence, as
l < p, yi = 0 (and therefore yk = 0) for 1 ≤ i ≤ p.

Finally, suppose we have y1 = · · · = yn−1 = 0. If z∗n−1 = z∗n it follows immediately
that yn = 0. On the other hand, if z∗n−1 < z∗n then by (e) we have

∑n
j=1 z

∗
j = Ψ(n)

and Lemma 2.1 gives that yn = 0. Thus, y is zero and z is a real extreme point of
Bm0

Ψ
.
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Conversely, let us first suppose that (a) does not occur. Then, suppose that

z∗1 = z∗2 > z∗3 and that
∑l

j=1 z
∗
j < Ψ(l) for l = 1, 2. We may choose ε > 0 given

by ε = min
{
z∗2 − z∗3 ,minl=1,2

{
Ψ(l)−

∑l
j=1 z

∗
j

}}
and define y in m0

Ψ by y1 = ε,

y2 = −ε and all other yj equal to 0. We get ‖z∗ ± y‖ ≤ 1 which shows that z is not
an extreme point of the unit ball of m0

Ψ.
Next suppose that for some p ∈ N, p > 2, z∗1 = z∗2 = · · · = z∗p > z∗p+1 with∑l
j=1 z

∗
j < Ψ(l) for all 1 ≤ l < p. Then we may consider the positive number

ε = min
{
z∗p − z∗p+1,min1≤l<p

{
Ψ(l)−

∑l
j=1 z

∗
j

}}
. Let y in m0

Ψ be defined by y1 = ε,

yp = −ε and yj = 0 otherwise. Then we get that ‖z∗ ± y‖ ≤ 1 and thus z is not a
real extreme point of the unit ball of m0

Ψ.
If there is k, 1 < k ≤ n with z∗k−1 > z∗k > z∗k+1 > z∗k+2 and (b) does not hold, then∑k
j=1 z

∗
j < Ψ(k). We now consider the positive number

ε = min
{
z∗k−1 − z∗k, z∗k − z∗k+1, z

∗
k+1 − z∗k+2,Ψ(k)−

k∑
j=1

z∗j

}
.

Let y be such that yk = ε, yk+1 = −ε and all other yj equal to 0. Then we get that
‖z∗ ± y‖ ≤ 1 so again z is not a real extreme point of the unit ball of m0

Ψ.
Suppose there exist k and p with k + 1 < p so that 1 < k < n − 1 and z∗k−1 >

z∗k > z∗k+1 = z∗k+2 = · · · = z∗p > z∗p+1. As (c) does not hold, we have
∑l

j=1 z
∗
j < Ψ(l)

for k ≤ l < p. Now, we may consider

ε = min

{
z∗k−1 − z∗k, z∗p − z∗p+1, min

k≤l<p

{
Ψ(l)−

l∑
j=1

z∗j

}}
.

Let y be defined by yk = ε, yp = −ε and yj = 0 otherwise. Then we have ‖z∗±y‖ ≤ 1
and hence z is not a real extreme point of the unit ball of m0

Ψ.
Suppose now that there are k and p with k < p so that 1 < k < n − 1 with

z∗k−1 > z∗k = z∗k+1 = · · · = z∗p > z∗p+1 and (d) does not hold. Then
∑l

j=1 z
∗
j < Ψ(l)

for each k ≤ l < p and we may take the positive number

ε = min

{
z∗k−1 − z∗k, z∗p − z∗p+1, min

k≤l<p

{
Ψ(l)−

l∑
j=1

z∗j

}}
.

Let y be defined by yk = ε, yp = −ε and yj = 0 otherwise. We have that ‖z∗±y‖ ≤ 1
and thus z is not a real extreme point of the unit ball of m0

Ψ.
Finally, suppose that z∗n−1 > z∗n and that (e) fails, that is

∑n
j=1 z

∗
j < Ψ(n). Let

yj = 0 for 1 ≤ j ≤ n− 1 and yn = min
{
z∗n−1 − z∗n,Ψ(n)−

∑n
j=1 z

∗
j

}
then y satisfies

‖z∗ ± y‖ ≤ 1 and so z∗ is not and extreme point. This completes the proof. �

3. Complex extreme points of mΨ

We divide our classification of the complex extreme points of BmΨ
into two parts.

In the first one we assume that there is a bijection σ of N such that z∗σ(n) = |zn| for
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all n ∈ N. In that case we say that z∗ is a permutation of (|zn|)n. F We will deal
with the general case later. By mn

Ψ we understand Cn with the norm

‖z‖ = sup
k≥1

1

Ψ(k)

k∑
j=1

z∗j .

We use Πn to denote the continuous linear projection of mΨ or m0
Ψ onto mn

Ψ which
sends (zj)j to (zj)

n
j=1.

Note that given z = (zj)j in mΨ, whenever z∗n > z∗n+1 there are precisely n
coordinates of z, zj1 , . . . , zjn with |zjm| ≥ z∗n, 1 ≤ m ≤ n. In this case z∗n =
min{|zjm| : 1 ≤ m ≤ n} and therefore z∗n = |zj| for some j.

Theorem 3.1. Let Ψ be a symbol and z = (zj)j be a point in BmΨ
. Suppose that z∗

is a permutation of (|zj|)j. Then z is a complex extreme point of BmΨ
if and only if

it satisfies one of the following conditions.

(a) lim inf
(

Ψ(n)−
∑n

j=1 z
∗
j

)
= 0,

(b) there is n in N with (z∗j )
n
j=1 ∈ Tn,

∑k
j=1 z

∗
j < Ψ(k) and z∗k = z∗n, for all k > n.

Proof. First, notice that as z∗ is a permutation of (|zj|)j, z is a complex extreme
point of BmΨ

if and only if z∗ is a complex extreme point of BmΨ
.

Let us suppose that z satisfies (a). Replacing Wn in [1, Lemma 2.7] with Ψ(n) we
see that z∗ is a complex extreme point of BmΨ

.
Now, let us suppose that z∗ has the form (b) and that we have y in mΨ with
‖z∗ + λy‖ ≤ 1 for all λ in ∆. For each l, 1 ≤ l ≤ n and each λ in ∆ we have

l∑
j=1

|z∗j + λyj| ≤
l∑

j=1

(z∗ + λy)∗j ≤ Ψ(l).

Since (z∗j )
n
j=1 ∈ Tn, by [5, Proposition 2.2], it is a peak point for Au(BmnΨ

) and hence
a complex extreme point of BmnΨ

. This implies that yj = 0 for 1 ≤ j ≤ n. As z∗k = z∗n
for all k > n, what happens for the n-th coordinate of y should happen for the k-th
coordinate of y for any k > n. Then, yj = 0 for j ≥ n, and z∗ is a complex extreme
point.
For the converse, let us suppose that z∗ is in BmΨ

and does not have the form (a)
or (b). As (a) does not hold, we have

(1) lim inf
n→∞

(
Ψ(n)−

n∑
j=1

z∗j

)
> 0.

If for each n in N we have
∑n

j=1 z
∗
j < Ψ(n) let ε = inf{Ψ(n) −

∑n
j=1 z

∗
j } > 0 and

set y = εe1. Then for all λ in ∆ we have ‖z∗ + λy‖ ≤ 1 and therefore z∗ is not a
complex extreme point of BmΨ

. Thus we may suppose that there is a positive integer
n, and in virtue of (1) there are only finite such integers, with Ψ(n) =

∑n
j=1 z

∗
j . Let

n be the largest positive integer with
∑n

j=1 z
∗
j = Ψ(n). As (b) does not hold and∑r

j=1 z
∗
j < Ψ(r) for r > n there is k > n with z∗k < z∗n. We assume that k is the first
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such integer. Let ε = 1
2

min
{
z∗n − z∗k, inf l>n

(
Ψ(l)−

∑l
j=1 z

∗
j

)}
and let y = εek. Fix

|λ| ≤ 1. If l ≤ n we have

l∑
j=1

(z∗ + λy)∗j ≤
l∑

j=1

z∗j ≤ Ψ(l).

If l > n we have
l∑

j=1

(z∗ + λy)∗j ≤
l∑

j=1

z∗j + ε ≤ Ψ(l).

Thus ‖z∗ + λy‖ ≤ 1 for all |λ| ≤ 1 which shows that z∗ is not a complex extreme
point of BmΨ

. �

Let us now investigate the case when z∗ is not a permutation of (|zj|)j. For a fixed
z, we consider the (possibly empty) sets N1 = {j ∈ N : z∗j = |zk| for some k in N}
and N2 = {k ∈ N : |zk| = z∗j for some j in N}.

Lemma 3.2. Let Ψ be a symbol and z = (zj)j be a point in BmΨ
.

(a) We have inf {|zj| : j ∈ N} = inf
{
z∗j : j ∈ N

}
if and only if N1 is non-empty and

inf {|zj| : j ∈ N} = inf
{
z∗j : j ∈ N1

}
.

(b) If inf {|zj| : j ∈ N} < inf
{
z∗j : j ∈ N

}
then z is not a complex extreme point of

BmΨ
.

Proof. We prove the if part of (a) by the contra positive. That is, if N1 is empty or
inf {|zj| : j ∈ N} < inf

{
z∗j : j ∈ N1

}
then the strict inequality

(2) inf {|zj| : j ∈ N} < inf
{
z∗j : j ∈ N

}
must hold. Assume first that N1 is non-empty and that inf {|zj| : j ∈ N} < inf

{
z∗j : j ∈ N1

}
.

In addition, suppose first that there are infinitely many n with z∗n > z∗n+1. By
the comment above Theorem 3.1, each of these n belongs to N1 and therefore
inf
{
z∗j : j ∈ N1

}
= inf

{
z∗j : j ∈ N

}
. Then (2) is satisfied.

Now suppose that there are only finitely many n with z∗n > z∗n+1. Let n0 be
the biggest positive integer such that z∗n0−1 > z∗n0

. Then z∗n0
= inf

{
z∗j : j ∈ N

}
. If

n0 6∈ N1, we have (infinitely) many j ∈ N with |zj| < z∗n0
and so inf {|zj| : j ∈ N} <

inf
{
z∗j : j ∈ N

}
and (2) is satisfied.

On the other hand, if n0 ∈ N1 then inf
{
z∗j : j ∈ N1

}
= inf

{
z∗j : j ∈ N

}
and we

also obtain the strict inequality (2) holds.
Finally, assume that N1 is empty. Then (z∗j )j is a constant sequence. Otherwise,

z∗1 > inf
{
z∗j : j ∈ N

}
and as (z∗j )j is non-increasing there are only finitely many

terms equal to z∗1 . Then z∗n > z∗n+1 for some n, implying that N1 is non-empty. Now
we claim that inf {|zj| : j ∈ N} < inf

{
z∗j : j ∈ N

}
= z∗1 as otherwise, (|zj|)j is a

constant sequence. Indeed, suppose that inf {|zj| : j ∈ N} = inf
{
z∗j : j ∈ N

}
= z∗1 .

As, |zj| ≤ z∗1 for all j, we have

inf {|zj| : j ∈ N} ≤ |zj| ≤ z∗1 = inf
{
z∗j : j ∈ N

}
= inf {|zj| : j ∈ N} ,
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and |zj| = z∗1 for all j. Hence, as (z∗j )j is constant, N1 = N which is a contradiction.
Then (2) holds and one side of the proof of (a) is complete.

For the converse note that since N1 is non-empty and
{
z∗j : j ∈ N1

}
⊆
{
z∗j : j ∈ N

}
,

then inf
{
z∗j : j ∈ N

}
≤ inf

{
z∗j : j ∈ N1

}
. As inf {|zj| : j ∈ N} = inf

{
z∗j : j ∈ N1

}
we have inf {|zj| : j ∈ N} = inf

{
z∗j : j ∈ N

}
.

Now, let us prove (b). If inf {|zj| : j ∈ N} < inf
{
z∗j : j ∈ N

}
then there is j0

in N with |zj0| < inf
{
z∗j : j ∈ N

}
. Letting ε = inf

{
z∗j : j ∈ N

}
− |zj0| and setting

y = εej0 we see that (z + λy)∗ = z∗ for all |λ| ≤ 1, and therefore z is not a complex
extreme point of BmΨ

. �

Remark 3.3. For z = (zj)j ∈ mΨ such that inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N}
we have that N1 and N2 are both infinite. Indeed, we have a bijection of N1 onto
N2. Observe that as (z∗j )j is decreasing we have that either (i) there are infinitely
many n with z∗n > z∗n+1 or (ii) there is a natural number n0 with z∗j = z∗n0

for all
n ≥ n0. If (i) occurs then each n will belong to N1 and the corresponding kn so that
|zkn| = z∗n will belong to N2 and we have a bijection of N1 onto N2. If (ii) occurs
we have that the sequence (|zj|)j will eventually be equal to ` = inf{z∗j : j ∈ N} and
therefore each n will belong to N1 and the corresponding kn will belong to N2 again
giving a bijection between N1 and N2.

Theorem 3.4. Let Ψ be a symbol and z = (zj)j be a point in BmΨ
. Suppose that

z∗ is not a permutation of (|zj|)j. Then z is a complex extreme point of BmΨ
if and

only if inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N} and lim infn→∞

(
Ψ(n)−

∑n
j=1 z

∗
j

)
= 0.

Proof. Let us first suppose that z satisfies inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N} and

also lim infn→∞

(
Ψ(n)−

∑n
j=1 z

∗
j

)
= 0. In order to show that z is a complex extreme

point, suppose that there is y = (yj)j ∈ mΨ be such that ‖z + λy‖ ≤ 1 for all λ
in ∆ and let us show that y = 0. Notice that, by Lemma 3.2, N1 (and therefore
N2) is non-empty and inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N1}. Fix j0 ∈ N. If j0 ∈ N2

then, replacing Wn with Ψ(n) in [1, Lemma 2.7] we see that yj0 = 0. Next suppose
that j0 ∈ N \N2 and yj0 6= 0. For an appropriate choice of λ with |λ| = 1 we will
have |zj0 + λyj0| = |zj0 | + |yj0 | > |zj0|. As inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N1},
by the above remark, we can find n0 in N2 with |zj0 + λyj0| − z∗n0

> ε := |yj0|/2.

Since lim infn→∞

(
Ψ(n)−

∑n
j=1 z

∗
j

)
= 0 we can choose m ∈ N with m > n0 and

Ψ(m)−
∑m

j=1 z
∗
j < ε/2. By the above remark, we have a bijection between N1 and

N2 then, the fact that yk = 0 for all k in N2 implies that (z + λy)∗j = z∗j for all
j ∈ N. Therefore we have

Ψ(m)‖z + λy‖ ≥
∑m

j=1,j 6=n0
z∗j + |zj0 + λyj0|

=
∑m

j=1 z
∗
j + (|zj0 + λyj0| − z∗n0

)
> Ψ(m)− ε/2 + ε
= Ψ(m) + ε/2,
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contradicting the fact that ‖z + λy‖ ≤ 1 for all λ in ∆. Thus y = 0 and z is a
complex extreme point of BmΨ

.
For the converse, first suppose that inf{|zj| : j ∈ N} < inf{z∗j : j ∈ N}. Then, by

Lemma 3.2, z is not a complex extreme point of mΨ. Now, suppose that inf{|zj| : j ∈
N} = inf{z∗j : j ∈ N} and lim inf

(
Ψ(n)−

∑n
j=1 z

∗
j

)
> 0. By Lemma 3.2, N1 is non-

empty. Since z∗ is not a permutation of (|zj|)j, we claim that the sequence (z∗j )j
cannot satisfy condition (b) of Theorem 3.1. To see this suppose that there is n in

N with (z∗j )
n
j=1 ∈ Tn and, for all for all k > n,

∑k
j=1 z

∗
j < Ψ(k) and z∗k = z∗n. Then

there is at most n− 1 indices j with z∗j > z∗n and hence at most n− 1 indices j with
|zj| > z∗n. As we are assuming that inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N} = z∗n, all
other zj have modulus equal to z∗n and thus (z∗j )j is a permutation of (|zn|)n.

Now suppose that for each n in N we have
∑n

j=1 z
∗
j < Ψ(n). Let ε = inf{Ψ(n)−∑n

j=1 z
∗
j } and set y = εe1. Then for all λ in ∆ we have ‖z + λy‖ ≤ 1 proving that z

is not a complex extreme point of BmΨ
.

On the other hand, if n is the largest positive integer with
∑n

j=1 z
∗
j = Ψ(n). Then

(z∗j )
n
j=1 ∈ Tn and for k > n,

∑k
j=1 z

∗
j < Ψ(k). We claim that there is k > n so

that z∗k > z∗n. Otherwise as inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N} (z∗j )j would be a
permutation of (zn)n contrary to our assumption.

Let ε = 1
2

min
{
z∗n − z∗k, inf l>n

(
Ψ(l)−

∑l
j=1 z

∗
j

)}
and let y = εek. Fix |λ| ≤ 1.

For l ≤ n we have
l∑

j=1

(z∗ + λy)∗j ≤
l∑

j=1

z∗j ≤ Ψ(l).

For l > n we have
l∑

j=1

(z∗ + λy)∗j ≤
l∑

j=1

z∗j + ε ≤ Ψ(l).

Thus ‖z∗ + λy‖ ≤ 1 for all |λ| ≤ 1 which shows that z∗ is not a complex extreme
point of BmΨ

. As k belongs to N1, by definition, we can find p in N2 so that
|zp| = z∗k. If we now set ỹ = εep we see that ‖z+λỹ‖ = ‖z∗+λy‖ ≤ 1 for all |λ| ≤ 1
and we see that z is not an extreme point of BmΨ

. �

Note that the existence of an extreme point z = (zj)j of BmΨ
, such that z∗ is not

a permutation of (|zj|)j with inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N} > 0 will imply that
that mΨ is isomorphic to `∞. An example of such a space and extreme point can
be obtained by taking Ψ(n) = n

2
+
∑n

j=1
1
2j

, z2j = 1
2
(1 + 1

2j
) and z2j−1 = 1/2, giving

z∗ = (1
2
(1 + 1

j
))j. If mΨ is not isomorphic to `∞ and z is an extreme point of BmΨ

we claim that for all zj that do not contribute to z∗ we must have zj = 0. Indeed,
If there is an index j with zj 6= 0 such that zj does not contribute to the norm
of z then we have limj→∞ z

∗
j = c > 0. Then, nc ≤

∑n
j=1 z

∗
j ≤ Ψ(n) and therefore

limn→∞
Ψ(n)
n

> c. By [12, Theorem 3.2], mΨ is equivalent to `∞. Now, combining
Theorem 3.1 and Theorem 3.4 we have the following.
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Theorem 3.5. Let Ψ be a symbol and z = (zj)j be a point in BmΨ
. Then z is a

complex extreme point of BmΨ
if and only if it satisfies one of the following condi-

tions.

(a) inf{|zj| : j ∈ N} = inf{z∗j : j ∈ N} and lim infn→∞

(
Ψ(n)−

∑n
j=1 z

∗
j

)
= 0,

(b) there is n in N with (z∗j )
n
j=1 ∈ Tn,

∑k
j=1 z

∗
j < Ψ(k) and z∗k = z∗n, for all k > n.

Note that the extreme points described in (a) include the extreme points of
the Lorentz sequence space, d′(w, 1), which are characterised by Acosta, Aron and
Moraes in [1, Theorem 2.8]. The extreme points described in (b) contain the points
satisfying that there is n in N with (z∗j )

n
j=1 ∈ Tn, Ψ(n) = Ψ(n + 1) and z∗k = 0 for

all k > n. These are precisely the extreme points of the unit ball of m0
Ψ, see [5,

Theorem 2.5]. Finally, the extreme points described in (b), may have z∗k > 0 for all
k > n which only occurs when mΨ is a renorming of `∞. To see this note that if l
k > n we have

k∑
j=1

z∗j = Ψ(n) + (k − n)z∗n ≤ Ψ(k).

Hence, limk→∞
Ψ(k)
k
≥ z∗n > 0. An application of [12, Theorem 3.2] shows that mΨ

is isomorphic to `∞.

4. Geometry of the dual of Marcinkiewicz sequence spaces

In this section we consider the geometry of the unit ball of (m0
Ψ)′ the dual of m0

Ψ.

We assume without loss of generality that Ψ(n)
n
≤ Ψ(k)

k
for all k ≤ n.

Theorem 4.1. Let Ψ be a symbol and v = (vj)j be a point in B(m0
Ψ)′. Then v is a

weak∗-exposed point of B(m0
Ψ)′ if and only if there is a positive integer n0 with

(a) Ψ(n0) < Ψ(n0 + 1) and Ψ(n0)
n0

< Ψ(n0−1)
n0−1

f n0 > 1, or Ψ(1) < Ψ(2) if n0 = 1,

(b) v∗j = 1
Ψ(n0)

for 1 ≤ j ≤ n0 and v∗j = 0 for j > n0.

Proof. Let v = (vj)j be a weak∗-exposed point of B(m0
Ψ)′ exposed by a norm one

element z = (zj)j in m0
Ψ. Since z belongs to m0

Ψ, z∗ is a permutation of (|zj|)j,
we may assume without loss of generality that z∗j = |zj| for all j. Also, there is

a positive integer n0 so that 1 = ‖z‖ = 1
Ψ(n0)

∑n0

j=1 z
∗
j = 1

Ψ(n0)

∑n0

j=1 zje
−iθj where

θj = Arg(zj). If we consider the finite support element u such that uj = e−iθj

Ψ(n0)
for

j = 1, . . . , n0 and zero elsewhere, we have

(3) |〈x, u〉| = 1
Ψ(n0)

∣∣∣∑n0

j=1 e
−iθjxj

∣∣∣ ≤ 1
Ψ(n0)

∑n0

j=1 |xj| ≤
1

Ψ(n0)

∑n0

j=1 |x∗j | ≤ 1,

for all x ∈ Bm0
Ψ

. Then, ‖u‖ = 1 and as 〈z, u〉 = 1, by the definition of weak∗-exposed

point, it follows that v = u. Therefore, v∗j = 1
Ψ(n0)

for 1 ≤ j ≤ n0 and v∗j = 0 for

j > n0. Thus, (b) holds.
Next suppose that (a) fails. If Ψ(n0) = Ψ(n0 + 1), consider s = 1

Ψ(n0)

∑n0+1
j=1 ej,

and t = 1
Ψ(n0)

∑n0

j=1 ej −
1

Ψ(n0)
en0+1. Then, with a calculation similar to (3), we see
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that s and t belong to B(m0
Ψ)′ . Since v∗ = 1

2
(s + t), v is not an extreme point and

hence not a weak∗-exposed point of the unit ball of (m0
Ψ)′.

Now suppose that n0 > 1 and Ψ(n0)
n0

= Ψ(n0−1)
n0−1

. Notice that by the choice of n0,

(zj)
n0
j=1 belongs to Tn0 . Then, we claim that zj = Ψ(n0)

n0
eiθj for 1 ≤ j ≤ n0. Suppose

this is not the case. Then we have

z∗n0
< 1

n0−1

∑n0−1
j=1 z∗j ≤

Ψ(n0−1)
n0−1

and hence
1
n0

∑n0

j=1 z
∗
j <

1
n0−1

∑n0−1
j=1 z∗j ≤

Ψ(n0−1)
n0−1

= Ψ(n0)
n0

,

contradicting the fact that (zj)
n0
j=1 belongs to Tn0 . In particular, the only weak∗-

exposing points of m0
Ψ are those of the form zj = Ψ(n0)

n0
eiθj for 1 ≤ j ≤ n0. Now set

u = (uj)j such that uj = 1
Ψ(n0−1)

e−iθj for 1 ≤ j ≤ n0 − 1 and uj = 0 for j ≥ n0.

Notice that ‖u‖ = 1. As zj = Ψ(n0)
n0

eiθj for 1 ≤ j ≤ n0, we see that 〈z, u〉 = 1 and so
v cannot be weak∗-exposed.

Conversely, let n0 > 1 be a positive integer with Ψ(n0) < Ψ(n0 + 1) and Ψ(n0)
n0

<
Ψ(n0−1)
n0−1

. Let vj = 1
Ψ(n0)

for 1 ≤ j ≤ n0 and vj = 0 for j > n0. Set z = (zj)j

such that zj = Ψ(n0)
n0

for 1 ≤ j ≤ n0 and zj = 0 for j > n0. Since Ψ(n0)
n0
≤ Ψ(k)

k

for 1 ≤ k ≤ n0 we see that z belongs to the unit ball of m0
Ψ. Moreover 〈z, v〉 =∑n0

j=1 zjvj = n0
Ψ(n0)
n0

1
Ψ(n0)

= 1.

Suppose that there exists u = (uj)j in (m0
Ψ)′ such that ‖u‖ ≤ 1 and 〈z, u〉 = 1.

First observe that since z1u1 + z2u2 + · · · + zn0un0 = 1 and u is in the unit ball of
(m0

Ψ)′, we see that each uj is real and positive, 1 ≤ j ≤ n0 . If uj 6= 1
Ψ(n0)

for some

1 ≤ j ≤ n0 then we must have uk > uk+1 for some 1 ≤ k < n0. Since Ψ(n0)
n0

< Ψ(n0−1)
n0−1

we have that
∑l

j=1 zj < Ψ(l) for 1 ≤ l < n0 − 1 and therefore we may choose ε > 0

so that z̃ = (z1, z2, . . . , zk + ε, zk+1− ε, . . . , zn0 , 0, . . .) belongs to the unit ball of m0
Ψ.

Since 〈z̃, u〉 > 1 we have a contradiction. Hence, uj = 1
Ψ(n0)

for any 1 ≤ j ≤ n0.

Finally, if u∗n0+1 6= 0 for θ ∈ R take ẑ = (ẑj)j such that ẑj = Ψ(n0)
n0

for 1 ≤ j ≤ n0,

ẑn0+1 = eiθ min
{

Ψ(n0 + 1)−Ψ(n0), Ψ(n0)
n0

}
and ẑj = 0 for j > n0 + 1. Then ẑ

belongs to the unit ball of m0
Ψ. As 〈ẑ, u〉 = 1 + eiθun0+1 > 1 for an appropriate

choice of θ we see that u∗n0+1 = 0 and the result is proven.
In the case where n0 = 1, a close examination of the proof given above shows that

a necessary and sufficient condition for each ej to be an extreme point of the unit
ball is that Ψ(1) < Ψ(2). �

The following result extends [13, Theorem 2.6] which characterises the extreme
points of the Lorentz sequence space d(w, 1).

Corollary 4.2. Let Ψ be a symbol and v = (vj)j be a point in B(m0
Ψ)′. Then v is a

real extreme point of B(m0
Ψ)′ if and only if there is a positive integer n0 with

(a) Ψ(n0) < Ψ(n0 + 1) and Ψ(n0)
n0

< Ψ(n0−1)
n0−1

if n0 > 1, or Ψ(1) < Ψ(2) if n0 = 1,

(b) v∗j = 1
Ψ(n0)

for 1 ≤ j ≤ n0 and v∗j = 0 for j > n0.
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Proof. By Theorem 4.1, each point satisfying (a) and (b) of the statement is weak∗-
exposed and, therefore, it is also an extreme point of B(m0

Ψ)′ .
For the converse, we recall that a Banach space E is weakly compactly generated if

it contains a weakly compact set K whose span is dense in E. As it is readily shown
that (m0

Ψ)′ is separable it follows from [9, p.357] that (m0
Ψ)′ is weakly compactly

generated. Now, [16, Corollary 11] implies that B(m0
Ψ)′ is the closed unit ball is

the weak∗-closed convex hull of its weak∗-exposed points. A result of Milman (see
[9, Theorem 3.41]) now tells that each extreme point of the unit ball of (m0

Ψ)′ is
a weak∗-limit of a sequence of weak∗-exposed points. Therefore if we consider v
an extreme point of B(m0

Ψ)′ then v is in the weak∗-sequential closure of the set of

weak∗-exposed points of B(m0
Ψ)′ . Let (vn)n be a sequence of weak∗-exposed points

of B(m0
Ψ)′ which converges weak∗ to v. Choose j0 ∈ N with vj0 6= 0. Then we can

find ε > 0 and n0 ∈ N so that |vnj0| > ε/2 for all n > n0. By Theorem 4.1, each vn

has finite support and each nonzero coordinate has the form 1
Ψ(k)

for some k. Since

there are only finitely many k with 1
Ψ(k)

> ε/2, we can find a subsequence (vnk)k of

(vn)n and p ∈ N such that vnk has length p, Ψ(p) < Ψ(p+ 1) and Ψ(p)
p

< Ψ(p−1)
p−1

, and

|vnkj0 | =
1

Ψ(p)
for all k ∈ N. For every other index l we have that either |vnkl | = 1

Ψ(p)

or |vnkl | = 0. Hence either |vl| = 1
Ψ(p)

or |vl| = 0.

Let q be the number of non-zero indexes which v possess. If q was infinite then
‖v‖ would also be infinite. If q is finite with q > p then vnk will also have q non-zero
indexes j with |vnkj | equal to 1

Ψ(p)
for n sufficiently large which is a contradiction.

Now suppose that q < p. If Ψ(q) = Ψ(p) then the proof of the characterisation of
the weak∗-exposed points of B(m0

Ψ)′ show that v cannot be an extreme point. On

the other hand if Ψ(q) < Ψ(p) then v has norm strictly less than 1 and so cannot
be an extreme point. Hence p = q and v has length p with v∗j = 1

Ψ(p)
for j = 1, . . . , p

and v∗j = 0 forj > p, Ψ(p) < Ψ(p+ 1) and Ψ(p)
p

< Ψ(p−1)
p−1

all p ∈ N. �

Since each weak∗-exposed point of B(m0
Ψ)′ is exposed and every exposed point of

B(m0
Ψ)′ is extreme we also have the following corollary.

Corollary 4.3. Let Ψ be a symbol and v = (vj)j be a point in B(m0
Ψ)′. Then v is an

exposed point of B(m0
Ψ)′ if and only if there is a positive integer n0 with

(a) Ψ(n0) < Ψ(n0 + 1) and Ψ(n0)
n0

< Ψ(n0−1)
n0−1

if n0 > 1, or Ψ(1) < Ψ(2) if n0 = 1,

(b) v∗j = 1
Ψ(n0)

for 1 ≤ j ≤ n0 and v∗j = 0 for j > n0.

Let n be a positive integer so that (m0
Ψ)′ has an extreme point, v, of length n.

Note that the distance from v to any extreme points of B(m0
Ψ)′ of length different to

n is at least 1
Ψ(n)
− 1

Ψ(n+1)
. Thus we see that for i1, i2, . . . , in in N, the connected

component of 1
Ψ(n)

(ei1 +ei2 +· · ·+ein) in ExtR(B(m0
Ψ)′) is {λi1ei1 +λi2ei2 +· · ·+λinein :

|λij | = 1
Ψ(n)
}.
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Example 4.4. Let (wn)n be a decreasing sequence of positive real numbers which
converge to 0. The Lorentz space d(w, 1) is defined by

d(w, 1) =
{

(zn)n :
∞∑
n=1

z∗nwn <∞
}

endowed with the norm ‖z‖w =
∑∞

n=1 z
∗
nwn. The space d(w, 1) is the dual of the

Marcinkiewicz sequence space d∗(w, 1) whose fundamental sequence Ψ is given by
Ψ(n) =

∑n
k=1wk. Since wn > 0 for all n the first condition of Theorem 4.1, Ψ(n0) <

Ψ(n0 + 1), always holds. The violation of second condition of Theorem 4.1, Ψ(n0)
n0

=
Ψ(n0−1)
n0−1

holding, implies that wn0 = 1
n0−1

∑n0−1
k=1 wk. As (wn)n is decreasing the only

way that this can be true is that w1 = w2 = · · · = wn0 . Hence, we see from
Theorem 4.1 that the set of weak∗-exposed points of the unit ball of d(w, 1) is{

(zn)n : there is n0 with w1 > wn0 , z
∗
k =

1

Ψ(n0)
for 1 ≤ k ≤ n0 and z∗k = 0 for k > n0

}
.

We may write the set as:{
(zn)n : there is n0 > 1 with w1 > wn0 , and z∗ =

1

Ψ(n0)

n0∑
k=1

ek

}
.

Corollary 4.2 tells us that this set is also the of extreme points of the unit ball of
d(w, 1), implying [13, Theorem 2.6].

Example 4.5. Now let (wn)n be a sequence of nonnegative real numbers (not neces-
sarily decreasing). We assume that w1 6= 0. Recall that in [8] the sequence Lorentz
space, γ1,w, is defined as all sequences of complex numbers (zn)n such that

‖z‖γ1,w :=
∞∑
n=1

z∗∗n wn <∞.

The space (γ1,w, ‖ · ‖γ1,w) is a rearrangement invariant sequence space. For n ∈ N
let

W (n) =
n∑
k=1

wk and W1(n) = n

∞∑
k=n+1

wk
k
.

The fundamental function of γ1,w is given by

φγ1,w(n) = W (n) +W1(n).

It is shown in [8, Theorem 5.4] that if
∑∞

k=1wk diverges then γ1,w is the dual of the
Marcinkiewicz sequence space m0

Ψ where Ψ is the symbol given by Ψ(n) = φγ1,w(n)
for all n.

Let us see that the conditions of Theorem 4.1 are satisfied for γ1,w. Suppose we
have a positive n0 so that Ψ(n0) = Ψ(n0 + 1). This implies that

wn0+1 = −W1(n0 + 1),
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which is impossible as (wk)k is a sequence of nonnegative real numbers. If we now

suppose that
Ψ(n0)

n0

=
Ψ(n0 − 1)

n0 − 1
then we get that

n0−1∑
k=1

wk = 0

which also impossible. Hence, we get that the set of weak∗-exposed points of the
unit ball of γ1,w is precisely{

(zn)n : z∗ =
1

φγ1,w(n0)

n0∑
k=1

ek, n0 ∈ N

}
.

Applying Corollary 4.2 we see that the above set is also the ‘set of the unit ball of
γ1,w. This provides us with an alternative proof of [8, Theorem 4.7].

Now, we describe the set of weak∗-exposed (and extreme points) of the unit ball of
(m0

Ψ)′ when (m0
Ψ)′ = `1, for two renormings of this space. In the first, we show that

for each natural number k it is possible to obtain a renorming of `1 with extreme
points {ei1 + · · · + eik : i1 < · · · < ik}. In the second, we show that for each
natural number k it is possible to obtain a renorming of `1 with extreme points
{λr,k(ei1 + · · · + eir) : i1 < · · · < ir, 1 ≤ r ≤ k, }, for normalizing sclars λr,k,
1 ≤ r ≤ k.

Example 4.6. Let us consider our first renorming of `1. Fix k > 2 in N and define
a symbol Ψ by Ψ(n) = 1 for n < k, Ψ(k) = 2 and Ψ(n) = 2

k
n for n > k. Then Ψ is

strictly increasing for n ≥ k − 1. We have that Ψ(n)
n

= 1
n

for n < k and Ψ(n)
n

= 2
k

for

n ≥ k. As limn→∞
Ψ(n)
n

> 0, by [12, Theorem 3.2], we know that (m0
Ψ)′ is isomorphic

to `1. In addition, Theorem 4.1 tells that the set of weak∗-exposed (and extreme
points) of the unit ball of (m0

Ψ)′ is{
(zn)n : z∗ =

k−1∑
j=1

ej

}
.

Note that taking k = 2 in the above example gives us `1 isometrically.
For the second renorming we fix again k > 2 and define a symbol Ψ by Ψ(1) = 1,

Ψ(n) = 1 + n−1
k−1

for 2 ≤ n ≤ k and Ψ(n) = 2n
k

for n > k. The symbol Ψ is strictly
increasing. For 2 ≤ n ≤ k we have that

Ψ(n)

n
=

1

n
+

(
n− 1

n

)
1

k − 1
=

1

k + 1
+

1

n

(
1− 1

k − 1

)
.

Considering the function f : [1,∞) → R+ given by f(x) = 1
k+1

+ 1
x

(
1− 1

k−1

)
we

observe that ψ(n)
n

is strictly decreasing for n between 1 and k.

Finally, for n > k we have that Ψ(n)
n

= 2
k
. As limn→∞

Ψ(n)
n

> 0, applying again [12,
Theorem 3.2], we see that (m0

Ψ)′ is also isomorphic to `1. Now applying Theorem 4.1
we have that that the set of weak∗-exposed (and extreme points) of the unit ball of
(m0

Ψ)′ is
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{
(zn)n : z∗ =

k − 1

k + r − 2
(e1 + · · ·+ er) , 1 < r ≤ k

}
.

Finally, as we have a description of the real extreme points of a dual of a Marcinkiewicz
sequence space m0

Ψ, we are able to characterise its multipliers. Recall that given a
Banach space E, a linear operator T : E → E is said to be a multiplier of E if every
extreme point of the unit ball of E ′ is an eigenvector of T ′, the adjoint of T . This
means that for every extreme point e of BE′ there is ae in C so that

T ′(e) = aee.

Proposition 4.7. Suppose that Ψ is a symbol such that (m0
Ψ)′ has extreme points.

(a) If (m0
Ψ)′ only has an extreme points of length 1, then every multiplier of m0

Ψ is
diagonal.

(b) If (m0
Ψ)′ has an extreme point of support at least 2, then every multiplier of m0

Ψ

is a constant multiple of the identity.

Proof. Statement (a) holds since by Corollary 4.2, every unit vector ej is an extreme
point of (m0

Ψ)′. To prove (b), let us suppose that (m0
Ψ)′ has only extreme points

with n non-zero coordinates, n ≥ 2. Consider the subspace, V1, of (m0
Ψ)′ spanned

by e1, e2, . . . , en and the subspace, V2, of (m0
Ψ)′ spanned by e1, ej2 , . . . , ejn , so that

1, 2, . . . , n, j2, . . . , jn are distinct. Notice that every vector in V1 can be written as
linear combination of vectors of the form λ1e1 + λ2e2 + · · ·+ λnen with |λj| = 1

Ψ(n)
.

As, by Corollary 4.2, each of these elements is an extreme point, thus for any of
them we have

T ′(λ1e1 + λ2e2 + · · ·+ λnen) = µ(λ1e1 + λ2e2 + · · ·+ λnen)

for some µ ∈ C. Then we get that T ′ maps V1 into V1. Similarly, T ′ maps V2 into V2.
Hence we have that e1, which is contained in the intersection of V1 and V2, is mapped
to a multiple of e1. With an analogous argument, we see that each ej is mapped to a
multiple of ej for j ∈ N. Let us suppose that T ′(ej) = µjej for some µj ∈ C and for
each j ∈ N. Fix j ∈ N, j ≥ 2 and consider the vector v = e1 +ej+ej+1 + · · ·+ej+n−2

which is a multiple of an extreme point. Then we have

T ′(v) = µ1e1 + µjej + µj+1ej+1 + · · ·+ µj+n−2ej+n−2.

Also, as T is a multiplier, we have

T ′(v) = avv.

Therefore, we obtain that µj = av = µ1. As j ≥ 2 was arbitrary, we conclude that
T ′ and hence T is a multiple of the identity. �
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