GEOMETRY AND ISOMETRIES OF THE MARCINKIEWICZ
SEQUENCE SPACE

CHRISTOPHER BOYD AND SILVIA LASSALLE

ABSTRACT. We characterise the real extreme points of the unit ball of m{,, the
complex extreme points of the unit ball of my and the real extreme and exposed
points of the unit ball of (m$)’. Using these characterisations we show that,
depending on the length of the extreme points, the multipliers of m{, are either
constant multiple of the identity or diagonal operators.

1. INTRODUCTION

Since the 1930s, the concepts of rearrangement invariant spaces in general and
Marcinkiewicz spaces in particular have played an important role in many areas
of analysis. Marcinkiewicz spaces are an intrinsic part of interpolation theory, (see
[4, 14]) and the control of their norm given to them by the fundamental function has
meant that they are a useful source of counterexamples. Recently, Marcinkiewicz
sequence space have been used by Bayart et al., [2], in the description of sets of
absolute monomial convergence and of /;-multipliers of Dirichlet series.

The goal of this paper is twofold. Firstly we want to understand the geometry of
the unit ball of the Marcinkiewicz sequence spaces mY, its dual, (m%) and bidual
my. Secondly we wish to use this geometry to determine the isometries of my.
Previously, in [5], the authors had determined the complex extreme points of the
unit ball of the (little) Marcinkiewicz space mY, where, it was observed, that this
geometry was determined by the finite dimensional subspaces my,. As we will observe
in this paper the geometry of the unit ball of my depends heavily on the asymptotic
values of ¥. We also determine the geometry of the unit ball of (m{,). It is the
geometry of this space which allows us to characterise the isometries of my.

Marcinkiewicz sequence spaces and their duals are rearrangement invariant se-
quence spaces. In order to understand their geometry it is essential to understand
precisely what is meant by decreasing rearrangement of a complex bounded se-
quence. Given a bounded sequence z = (zj)r we define the distribution of z, d,,
by d.(s) = #{j € N: |z;| > s} for s > 0. Bounded sequence = and y are said
to be equimeasuarable, z ~ y, if d, = d,. A Banach sequence space (E, | - |g)
is said to be a rearrangement invariant space if for any y € F and z a bounded
sequence such that x ~ y, then x € E and ||z||g = |ly||z. To each rearrangement
invariant sequence space (E, ||+ ||g) we associate its fundamental sequence, ¢, given

by ¢p(n) = |lexr + - + en &
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Setting z; = inf{s > 0: d,(s) < k} we obtain the decreasing rearrangement, z*,
of z. For a bounded sequence z we denote the maximal sequence of z* by

n
1
== E z7.
n-
i=1

By a symbol ¥ we understand an increasing sequence of non-negative real num-
bers, ¥ = (¥(k))52,, with ¥(0) = 0 and ¥(k) > 0 if & > 1. The Marcinkiewicz
sequence space associated to the symbol W, my, is the Banach space of all bounded
sequences (zx)y such that

Z?:l z
z|| == sup —=—+— < o0,
Il = sup s

where z* = (z}); is the decreasing rearrangement of (2;)z. We denote by mY, the
subspace of my consisting of all z such that

k
lim 2%

==l ),

To avoid the case where my, = {0} we shall assume that limy,_,., ¥(k) = oo.
We assume without loss of generality that W(1) = 1. This condition is equivalent

to the assumption that |ley|| = 1 for all k& in N. It follows from [12] that we can
also assume that (U(k)/k)x is decreasing. From this it follows that if z € mY then
limg |2x] = 0 and ||z|| < ||z||. Thus my < ¢; and the standard unit vectors

(ex)r form an unconditional basis for m{,. This condition will also be important

in our understanding of the geometry of (m$)’. If z € my we let supp(z) denote
#{J 2 # 0} -

Given a Banach space E, Bg denotes its closed unit ball. Also, A and A denote,
respectively, the open and closed complex unit disc. A point z in Bpg is said to be
a real extreme point of Bg if z is not the midpoint of any line segment which is
contained in Br. When E is a complex Banach space we shall say that z in By is
a complex extreme point of Bg if ||z + Ay|| < 1 for all A € A implies that y = 0.
The real extreme points of By are denoted by Extgr (Bg) while the complex extreme
points are denoted by Extc(Bg).

Let E be a complex Banach space. We denote by A,(Bg) the Banach algebra of
all continuous bounded functions on Bp, which are holomorphic on the interior of
Bg. A point z in Bpg is said to be a peak point for A,(Bg) if there is f in A,(Bg)
such that |f(z)| < f(z) for all z in Bg\ {z}. A point z in E is said to be an exposed
point of the unit ball of £ if there is a norm one linear function, ¢ € E’, such that
©(z) = 1 and Re(p(x)) < 1 for all x € Bg, v # z. When E = F’ is a dual space
and ¢ is in F' we shall say that z is weak*-exposed. Both, peak and exposed points
are complex extreme points, see [11, Theorem 4] and [10, Exercise 3.5].

In [5] we undertook a detailed study of the geometry of the unit ball of mY, giv-
ing a complete description of its complex extreme points. Necessary and sufficient
conditions for the existence of complex extreme points in the unit ball of my had
previously been obtained by Kaminska and Lee [12]. In the same year Choi and Han
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obtained a characterisation of the extreme points of the unit ball of the finite di-
mensional Marcinkiewicz sequence space myj,. An important class of Marcinkiewicz
sequence spaces is formed by the duals of Lorentz sequence spaces. Their geometry
and its interaction with boundaries of spaces of analytic functions has been investi-
gated by Moraes and Romero-Grados [15] and by Acosta, Aron and Moraes [1]. In
particular, the complex extreme points of the unit ball of a Lorentz sequence space
are determined in [1] while the real extreme points of the unit ball of a Lorentz
sequence space and its predual are determined by Kaminska, Lee and Lewicki in
[13]. In this paper the results in [5] are generalised in two ways. First we deter-
mine the real extreme points of the unit ball of mY, then, in the second section, we
characterise the complex extreme point of the unit ball of my.

Our final section contains a description of the geometry of the unit ball of (mY)’
the dual of mY. In particular, we are able to characterise the weak* exposed points
of the unit ball of the Lorentz spaces d(w, 1) and 7, ,, extending result of Kaminska,
Lee and Lewicki, [13, Theorem 2.6], and of Ciesielski and Lewicki, [8, Theorem 4.7],
which characterised the extreme points of d(w, 1) and 7y ,, respectively. We then use
our results to give a characterisation of the multipliers of mY,. Multiplier and more
generally centralisers play a fundamental role in extending the idea of the centre of
a unital Banach algebra to a general Banach space setting. See [3] for more details.

2. REAL EXTREME POINTS OF m),

Given a symbol ¥ and a positive integer n we let 7,, denote the set of all decreasing
n-tuples of strictly positive real numbers (z;)7_, in C* with Zle z; < W(k), for all
k<nand Y77z = ¥(n).

Lemma 2.1. Let U be a symbol, z = (z;); be a point of B,,, with strictly positive
real coefficients and k be a positive integer with Zle z; = VU(k). Lety = (y;); in
my be such that ||z £ y|| < 1, then for 1 < j <k, y; is real and 2?:1 y; = 0.
Proof. We now adapt the proof of [1, Lemma 2.7]. For each j € N, 1 < j <k, set
tj = lzj +y;| + |25 — y;| — 2|z] and T,, = 377, t;. The Triangle Inequality implies
that ¢; > 0 for each j € N and thus (7},), is an increasing sequence of positive real
numbers. We have

i 1 (< 1 1
; 25| = 3 <Z |25 + y;| + |25 — yj!) 5T < W(k) — 5Lk

j=1
Thus
1 k
5T < (k) — 2 B
]:
and therefore ¢; = 0 all 7. Hence we have
2 + 45+ 2z —yil = 2lz] = |z +yil + |2 — wil (%)

for all j in 1 < j < k. The argument of [1, Lemma 2.7] now implies that each
yj, 1 < j <k, is real. Replacing y with ry we may assume that max;<,< |y;| <
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mini <<y |2;]. As ||z £ y|| < 1 we have 25:1 z; + Z?Zl y; < U(k) = Zle z; and
thus Z§:1 y; = 0. O
Let ¥ be a symbol. It follows from [5, Theorem 2.10] that if z is a real extreme

point of the unit ball of Bm% then z has finite support. Baring this in mind, we now
present the following characterisation of the unit ball of mY,.

Theorem 2.2. Let V be a symbol and let z = (z;); in Byo such that 2* has n
nonzero coordinates. Then, z is a real extreme point of Bm% if and only if the
following conditions hold.

(a) Fither
(i) 27 = (1), or
(ii) zf < ¥(1) and, for somep > 2, z{ = 25 = --- = 25 > 27, then there exists

[, 2 <1< p such that Z] V25 =(l);
(b) If thereis k, 1 <k <mn, and z;_, > 2}, > 2,4 > 2}, then ZJ 25 = U(k);
(c) If there are k and p with k+1 < p so that1 <k <n—1 and z;_ 1>zk>z,’;+1:

Zhpo = =2y > 2y, then there exists |, k <1 < p such that Z] V25 = Y(l);

(d) ]fthere arekcmdp with k < p sothatl <k <n-—1 andzk > 2= 2 =
= 23 > 25, then there exists |, k <1 < p such that ZJ V25 =V(l);
(e) [fzn | > 2 then Y70 25 = W(n).

Proof. First suppose that there is n € N such that (a), (b), (¢), (d) and (e) hold. Let
y in mY, be such that ||z* +y|| < 1. We claim that y = 0. Our proof is by induction
on k, the nonzero coordinates of y. Firstly, if z; = W(1) then by (a) (i) it follows
immediately that y; = 0. On the other hand, if 2 < ¥(1) and for some p > 2 we
have zf = 25 = -+ = 25 > 2, then by (a) (ii) we there exists [, 2 < [ < p, with

Zé  2j = ¥(l). By Lemma 2.1 we have Zi:l Yg: = 0 for every l-tuple (q1,...,q)
in (1,...,p). As [ < p this means that y; = 0 for 1 < i < p. In particular, y; = 0.
Suppose that we have shown that y; = --- = y,_; = 0. If 2* is such that
Zp_q > 2 > 244 > %y, then by (b) we have Z] 2j = V(k). Again Lemma 2.1
implies that 2?21 y; = 0 and hence y, = 0. If we have k and p with k +1 < p so

that 1 <k <n—1and z;_ 1>z;; > 251 = Zpyo = -0 = 2, > z», then by (c) there
exists [, k <1 < p such that Z z; = ¥(l). By Lemma 2.1, we have Zj:k y; = 0.

Hence, vy + Zi:kﬂ Y, = 0 for any (I — k) — 1-tuple (q1,...,¢) in (1,...,p) and
hence as | < p, y; = 0 for k < i < p. In particular, y, = 0. If we have k and p
with Kk <psothat 1 <k <n—1and z;_ 1>zk—zz+1:---—z > zy., then

by (d) there exists [, k£ < [ < p such that Z zj = U(l). Again, by Lemma 2.1,

we obtain that Zi:l Yq, = 0 for every [-tuple (ql, ...,q) in (1,...,p) and hence, as
[ <p,y; =0 (and therefore y;, = O) for 1 <i<p.

Finally, suppose we have y; = =y, = 0. If 2% | = 27 it follows immediately
that y, = 0. On the other hand, 1f zn_1 < 2, then by (e) we have Y 7 | 25 = W(n)
and Lemma 2.1 gives that y, = 0. Thus, y is zero and z is a real extreme point of
By -
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Conversely, let us first suppose that (a) does not occur. Then, suppose that

2y = 23 > z; and that 23:1 z; < Y(l) for I = 1,2. We may choose € > 0 given

J=17%j
yo = —e and all other y; equal to 0. We get ||2* £ y|| < 1 which shows that z is not
an extreme point of the unit ball of mY,.
Next suppose that for some p € N, p > 2, 27 = 25 = -+ = 25 > z7,, with

by € = min {z§ — 23, min;_q o {\IJ(Z) — Zl z*}} and define y in my by y; = e,

22:1 z; < Y(l) for all 1 < [ < p. Then we may consider the positive number
l *

€ =minq 2z, — 2,1, Min1<1<p {\I/(l) — ijl zj}} Let y in mYy, be defined by y; = e,
y, = —e and y; = 0 otherwise. Then we get that ||z* £ y|| < 1 and thus z is not a

real extreme point of the unit ball of m{,.
If there is k, 1 < k < n with z;_, > 2} > 2,1 > 2/, and (b) does not hold, then

2521 27 < W(k). We now consider the positive number

k
e = min {2y — 2,5 = Hys 2 — Hge UE) = 2 )
j=1
Let y be such that y, = €, yr41 = —€ and all other y; equal to 0. Then we get that
|2* £ y|| <1 so again z is not a real extreme point of the unit ball of mY.
Suppose there exist k and p with Kk +1 <psothat 1 <k <n-—1and 2z _, >

25 < Y(l)

!
* * ok _ % *
2> Zpp1 = Zhye = =25 > 2y As (¢) does not hold, we have } ;2]

for k£ <[ < p. Now, we may consider

l
€ = min {z}i_l — 2, 2y — Zpy1s k%ifp {\I/(l) - z;zj*}} :
=
Let y be defined by y;, = €, y, = —€ and y; = 0 otherwise. Then we have ||z*£y|| <1
and hence z is not a real extreme point of the unit ball of mY,.
Suppose now that there are k£ and p with £ < p so that 1 < k < n — 1 with
Zh oy > 2 = 2y = =2y > 2, and (d) does not hold. Then 2221 z; < Y(l)
for each k£ <1 < p and we may take the positive number

I
€ = min {ZZ_1 — 24, 2y = Zpi1s krgligp {\P(l) — ; zj*}} :
Let y be defined by yx = €, y, = —e and y; = 0 otherwise. We have that ||z*+y| <1
and thus z is not a real extreme point of the unit ball of m{,.

Finally, suppose that z_; > z* and that (e) fails, that is Y., 2% < U(n). Let

j=1%j

yj=0for 1 <j<n-—1andy, =min {zj;_l — 20, W(n) =30, z*} then y satisfies
lz* £ y|| <1 and so z* is not and extreme point. This completes the proof. O

3. COMPLEX EXTREME POINTS OF My

We divide our classification of the complex extreme points of B,,, into two parts.
In the first one we assume that there is a bijection o of N such that 2, = |zn| for
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all n € N. In that case we say that z* is a permutation of (|z,|),. F We will deal
with the general case later. By my, we understand C" with the norm

1 k
T

We use II,, to denote the continuous linear projection of mg or m% onto m% which
sends (z;); to (z;)"

Z|| = su
21 = sup

J/j=1"
— RV * * :
Note that given z = (z;); in myg, whenever 2z > 2., there are precisely n
coordinates of z, zj,...,2;, with |z; | > 2, 1 < m < n. In this case 2z} =

min{|z;, |: 1 <m < n} and therefore z} = |z;| for some j.

Theorem 3.1. Let ¥ be a symbol and z = (z;); be a point in B,,,. Suppose that z*
is a permutation of (|z;|);. Then z is a complex extreme point of B, if and only if
it satisfies one of the following conditions.

(a) liminf <\I/(n) =i J> =0,
(b) there is n in N with (27)5_, € Ty, S 2t < U(k) and zF = 2%, for all k> n.

J=17%j

Proof. First, notice that as z* is a permutation of (|z;]);, z is a complex extreme
point of B,,, if and only if z* is a complex extreme point of B,,, .

Let us suppose that z satisfies (a). Replacing W,, in [1, Lemma 2.7] with ¥(n) we
see that z* is a complex extreme point of B,,, .

Now, let us suppose that z* has the form (b) and that we have y in my with

|z* + Ay|| < 1 for all X in A. For each [, 1 <1 <n and each X in A we have

l

l
> Iz + Ayl < Zz +Ay)s < ().
j=1

Since (2})j—; € Tn, by [5, Proposition 2. 2] it is a peak point for A, (By» ) and hence

a complex extreme point of By, . This implies that y; = 0for 1 < j <n. As z; = z;,

for all £ > n, what happens for the n-th coordinate of y should happen for the k-th

coordinate of y for any £ > n. Then, y; = 0 for j > n, and 2* is a complex extreme

point.

For the converse, let us suppose that z* is in B,,, and does not have the form (a)
r (b). As (a) does not hold, we have

(1) lim inf (\Il(n) -y zj> > 0.

j=1
If for each n in N we have Z;Lil 25 < U(n) let e = inf{W(n) — >°7 27} > 0 and
set y = €e;. Then for all X in A we have ||2* + Ay|| < 1 and therefore z* is not a
complex extreme point of B,,,. Thus we may suppose that there is a positive integer
n, and in virtue of (1) there are only finite such integers, with W(n) = > 7, z;. Let
n be the largest positive integer with Y7, z; = ¥(n). As (b) does not hold and

> i1 25 < W(r) for r > n there is k > n with 2; < z;. We assume that k is the first
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such integer. Let € = § min {z; — 25, inf;s, <\IJ(Z) - Zé ) ]>} and let y = eey. Fix
A < 1. If I < n we have

l

!
Z z* +)\y Z
j=1

If | > n we have
!

!
Zz+)\y Z
j=1

Thus [|z* + A\y|] < 1 for all |A] <1 Wthh shows that z* is not a complex extreme
point of B,,,. g

Let us now investigate the case when z* is not a permutatlon of (|z;]);. For a fixed
z, we consider the (possibly empty) sets Ny = {j € N: 2} = |z for some &k in N}
and Ny = {k € N: [z| = 2z} for some j in N}.

Lemma 3.2. Let V¥ be a symbol and z = (2;); be a point in By, .

(a) We have inf {|z;|: j € N} = inf {z;k jE N} if and only if Ny is non-empty and
inf {|z;|: j € N} =inf {z}: j € Ny }.

(b) Ifinf{|z|: j € N} <inf {z]: j € N} then z is not a complex extreme point of
B, -

Proof. We prove the if part of (a) by the contra positive. That is, if N; is empty or
inf {|z;|: j € N} <inf {z;: j € Ny} then the strict inequality

(2) inf {|z;|: j € N} <inf{z}: j € N}

must hold. Assume first that N is non-empty and that inf {|z;|: j € N} <inf {z}: j € Ni}.
In addition, suppose first that there are infinitely many n with z; > 2z ;. By

the comment above Theorem 3.1, each of these n belongs to N; and therefore

inf {z: j € N1} =inf {z: j € N}. Then (2) is satisfied.

Now suppose that there are only finitely many n with 2 > z;.,. Let ng be
the biggest positive integer such that 23 , > z% . Then 2 = inf {zj* Jj € N}. If
no & N1, we have (infinitely) many j € N with |z;| < 2 and so inf {|z;|: j € N} <
inf {z7: j € N} and (2) is satisfied.

On the other hand, if ny € Ny then inf {Z; J € Nl} = inf {Z; J € N} and we
also obtain the strict inequality (2) holds.

Finally, assume that Ny is empty. Then (z7); is a constant sequence. Otherwise,
z{ > inf {z;f: j € N} and as (27); is non-increasing there are only finitely many
terms equal to 2. Then 2 > 2z for some n, implying that Ny is non-empty. Now
we claim that inf {|z;|: j € N} < inf{z: j € N} = 2} as otherwise, (|z]); is a
constant sequence. Indeed, suppose that inf {|z;|: j € N} = inf { 2iij € N} = z7.
As, |z;| < 21 for all j, we have

inf {|z;|: j € N} < |z Szf:inf{z;:jEN}:inf{|zj|: j € N},
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and |z;| = 27 for all j. Hence, as (2}); is constant, N; = N which is a contradiction.
Then (2) holds and one side of the proof of (a) is complete.

For the converse note that since N is non-empty and {z]’-‘: J € Nl} C {zj 1 J € N},
then inf {z7: j € N} <inf{z}:j € Ni}. Asinf{|z|: j € N} = inf {z}: j € Ny}
we have inf {|z;]: j € N} =inf {27: j € N}

Now, let us prove (b). If inf{|z;|: j € N} < inf{z:j € N} then there is jo
in N with |z;,| < inf {z}:j € N}. Lettlng e = inf {z7: j € N} — |z,| and setting
y = eej, we see that (z + \y)* = z* for all |\| < 1, and therefore z is not a complex
extreme point of B,,, . 4

Remark 3.3. For z = (z;); € my such that inf{|z;|: j € N} = inf{zj: j € N}
we have that N1 and Ny are both infinite. Indeed, we have a bijection of N1 onto
Ny. Observe that as (2}); is decreasing we have that either (i) there are infinitely
many n with 2, > 2%,y or (i) there is a natural number ng with 25 = 2 = for all
n > ng. If (i) occurs then each n will belong to N1 and the corresponding k,, so that
|2k, | = 2z will belong to Ny and we have a bijection of N1 onto Ny. If (ii) occurs
we have that the sequence (|z;|); will eventually be equal to ¢ = inf{z}: j € N} and
therefore each n will belong to N1 and the corresponding k, will belong to Ny again

giving a bijection between Ny and Ns.

Theorem 3.4. Let U be a symbol and z = (z;); be a point in B,,,. Suppose that

2* is not a permutation of (|z|);. Then z is a complex extreme point of By, if and

only if inf{|z;]: j € N} = inf{z": j € N} and liminf, . <\If(n) o ) ~0.

i=1%
Proof. Let us first suppose that z satisfies inf{|z;|: j € N} = inf{2}: j € N} and

=17y
point, suppose that there is y = (y;); € my be such that ||z + Ay|| < 1 for all A
in A and let us show that y = 0. Notice that, by Lemma 3.2, N; (and therefore
N;) is non-empty and inf{|z;[: j € N} = inf{2}: j € Ny}. Fix jo € N. If jo € Ny
then, replacing W,, with ¥(n) in [1, Lemma 2.7] we see that y,;, = 0. Next suppose
that jo € N\ Ny and y;, # 0. For an appropriate choice of A with |A\| =1 we will
have ’Zjo + )‘yjo‘ = |zjo| + ’yjo| > |Z]'0" As inf{’Zij S N} = inf{zj:j € N1}7

*

by the above remark, we can find ny in Ny with |z, + Ay, | — 25 > € :== |y;,]/2.

no

also liminf,,_, (lll(n) -y 2 ) = 0. In order to show that z is a complex extreme

Since liminf,,_, <\I’(n) — Z;L 1z;"> = 0 we can choose m € N with m > ny and

W(m)— > ", 2; < ¢/2. By the above remark, we have a bijection between N; and
N, then, the fact that y, = 0 for all k£ in Ny implies that (2 + A\y); = 2} for all
J € N. Therefore we have

z;n:l,j;éno 27+ |2jo + AYjo|
Z;n 1 Z] + (‘ZJO + )‘yj0| o no)
(m) —€/2+¢€

(m) +¢€/2,

W(m)llz + Ay

v

v
EHG
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contradicting the fact that ||z + Ay|| < 1 for all A in A. Thus y = 0 and 2 is a
complex extreme point of B,,, .

For the converse, first suppose that inf{|z;|: j € N} <inf{zj: j € N}. Then, by
Lemma 3.2, z is not a complex extreme point of my. Now, suppose that inf{|z;|: j €
N} =inf{z}: j € N} and lim inf <\Il(n) — > i z]*> > 0. By Lemma 3.2, N; is non-
empty. Since z* is not a permutation of (|z;|);, we claim that the sequence (z});
cannot satisfy condition (b) of Theorem 3.1. To see this suppose that there is n in

N with (2})j_, € T, and, for all for all k& > n, ij:l z; < V(k) and 2z = 2. Then
there is at most n — 1 indices j with z7 > 2z and hence at most n — 1 indices j with
|zj| > z;. As we are assuming that inf{|z;|: j € N} = inf{z}: j € N} = 27, all

*

other z; have modulus equal to z; and thus (2}); is a permutation of (|z,|),.

Now suppose that for each n in N we have 37, 25 < ¥(n). Let ¢ = inf{W(n) —
>iy #} and set y = eey. Then for all A in A we have ||z + Ay|| <1 proving that z
is not a complex extreme point of B,,, .

On the other hand, if n is the largest positive integer with ", 27 = W(n). Then
(27)j=1 € T, and for k > n, Zle zj < V(k). We claim that there is & > n so
that z; > z;. Otherwise as inf{|z;| : j € N} = inf{z} : j € N} (2}); would be a
permutation of (z,), contrary to our assumption.

Let ¢ = 1 min {z;; — 2, infjs, <\If(l) — 3! z*)} and let y = ee,. Fix [N < 1.

2 Jj=1%j
For | < n we have

For | > n we have

l
DAy <) 2+ e< (D).
=1 j=1
Thus [|z* + Ay|| < 1 for all |A] < 1 which shows that z* is not a complex extreme
point of B,,,. As k belongs to Ny, by definition, we can find p in Ny so that
|2,| = 2. If we now set § = ee, we see that ||z + Ag|| = |[z* + Ay|| < 1forall [\ <1
and we see that z is not an extreme point of B,,, . O

Note that the existence of an extreme point z = (z;); of B,,,, such that z* is not
a permutation of (|z;|); with inf{|z;]: j € N} = inf{z}: j € N} > 0 will imply that
that my is isomorphic to /,,.. An example of such a space and extreme point can
be obtained by taking W(n) = § +>_7_, 2%., 25 =31+ %) and z9;_1 = 1/2, giving
2" = (3(1+ 3));- If my is not isomorphic to fo and z is an extreme point of By,
we claim that for all z; that do not contribute to z* we must have z; = 0. Indeed,
If there is an index j with z; # 0 such that z; does not contribute to the norm

of z then we have lim; o 2zj = ¢ > 0. Then, nc < Z?Zl z; < ¥(n) and therefore

lim,, oo # > ¢. By [12, Theorem 3.2], my is equivalent to . Now, combining

Theorem 3.1 and Theorem 3.4 we have the following.
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Theorem 3.5. Let U be a symbol and z = (z;); be a point in B,,,. Then z is a
complex extreme point of B,,, if and only if it satisfies one of the following condi-
tions.

(a) inf{]z]: j € N} = inf{z]: j € N} and liminf, <\I/(n) -5 ) =0,

Jlj

(b) there is n in N with (27)5_, € Ty, Sz < W(k) and zf = zF, for all k> n.

J=1%j

Note that the extreme points described in (a) include the extreme points of
the Lorentz sequence space, d'(w, 1), which are characterised by Acosta, Aron and
Moraes in [1, Theorem 2.8]. The extreme points described in (b) contain the points
satisfying that there is n in N with (27)7_; € T, ¥(n) = ¥(n + 1) and 2; = 0 for
all k > n. These are precisely the extreme points of the unit ball of mY, see [5,
Theorem 2.5]. Finally, the extreme points described in (b), may have z; > 0 for all
k > n which only occurs when my is a renorming of /.,. To see this note that if 1
k > n we have

Xk:z =V(n)+ (k—n)z, < V(k).

Hence, limy,_,o \I’Tk) > 2z > 0. An application of [12, Theorem 3.2] shows that my

is isomorphic to £,

4. GEOMETRY OF THE DUAL OF MARCINKIEWICZ SEQUENCE SPACES

In this section we consider the geometry of the umt ball of (m$)’ the dual of mY,.
We assume without loss of generality that ‘1/7(1”) <2 k ) for all k < n.

Theorem 4.1. Let ¥ be a symbol and v = (v;); be a point in By . Then v is a
weak* -exposed point of By if and only if there is a positive integer ng with

(a) U(ng) < ¥(ng+1) and \II;ZO) < \pgzo:ll) fng>1, or U(l) < ¥(2) if ng =1,

(b) vi = \1/(}10) for 1 < j <ng and v; =0 for j > ne.

Proof. Let v = (v;); be a weak*-exposed point of B, exposed by a norm one
element z = (2;); in mY. Since z belongs to mY, z* is a permutation of (|z]);,
we may assume without loss of generality that 27 = |z| for all j. Also, there is
a positive integer ng so that 1 = ||z|| = \Ijéo) 2701 Z; = \Ij(no) PR wf' where
0; = Arg(z;). If we consider the finite support element u such that u; = EIE:O]) for

J=1,...,n9 and zero elsewhere, we have

(3) Il = gy |30 ey | < gk S0 o] < g S o] < 1,

forall z € B, Then, |[ul| = 1 and as (z,u) = 1, by the definition of weak*-exposed
point, it follows that v = w. Therefore, v; = m for 1 < j < ng and v; =0 for
j > ng. Thus, (b) holds.

Next suppose that (a) fails. If U(ng) = ¥(ng + 1), consider s = \Ij(zo) Z?gl e,
and t = m >l e — mengﬂ. Then, with a calculation similar to (3), we see
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that s and ¢ belong to B,s). Since v* = %(s +t), v is not an extreme point and
hence not a weak*-exposed point of the unit ball of (m%,).
\I’(”O) = %=1 " Notice that by the choice of ng,

no—1
¥(no)
no

Now suppose that ng > 1 and
(2j)72, belongs to Ty,. Then, we clalm that z; = e for 1 < j < ng. Suppose

this is not the case. Then we have

ng— 1 Y(no—1)
nO no— 12 S no—1

and hence

L no—1 Y(no—1) _ ¥(no)
2]1] nol ]lz—nol_’no’

contradicting the fact that (2;)72, belongs to T,,. In particular, the only weak"-
exposing points of mY, are those of the form z; = %ﬁo)ew]’ for 1 < j < ng. Now set

me’wﬂ' for 1 < j <mg—1and u; =0 for j > ny.
= %7;0)6"91 for 1 < j <y, we see that (z,u) = 1 and so

u = (u;); such that u; =

Notice that ||ul| = 1. As z;
v cannot be weak*-exposed.
Conversely, let ng > 1 be a positive integer with ¥(ng) < U(ng + 1) an

%. Let v; = \I,(no for 1 < j < mngand v; = 0 for j > ng. Set z = (2);
such that z; = T(n =0 for j > ng Since %’30) < %

for 1 < k < nyg We see that 2 belongs to the unit ball of mq, Moreover (z,v) =

no P P(ng) 1
Z] 1Z]U.7 =To no W(ng)

Suppose that there exists u = (u;); in (mY)’ such that |lul| < 1 and (z,u) = 1.
First observe that since zjuy + zaug + -+ + 2p,Up, = 1 and w is in the unit ball of
(mY,)’, we see that each u; is real and positive, 1<j<ng.Ifu; # \I,  for some

\I!(no) W(np—1)
no < no—1

1 < j < ng then we must have uy > ug, for some 1 < k < ng. Since

we have that 22:1 z; < U(l) for 1 <1 < ny— 1 and therefore we may choose € > 0
so that Z = (21,29, .., 2k + € 2kt1 — € -, Zng, 0, . . .) belongs to the unit ball of mg,.
Since (Z,u) > 1 we have a contradiction. Hence, u; = m for any 1 < j < ny.
Finally, if uy ., # 0 for 6 € R take 2 = (Z;); such that 2; = %’ZO) for 1 < 7 < ny,

Sor1 = ewmin{\p(no+ 1) — W(ny), (f)“)} and 2, = 0 for j > ng+ 1. Then 2

belongs to the unit ball of my. As (3,u) = 1 + ¢®u,,,1 > 1 for an appropriate
choice of 6 we see that uy, ., = 0 and the result is proven.

In the case where ny = 1, a close examination of the proof given above shows that
a necessary and sufficient condition for each e; to be an extreme point of the unit
ball is that (1) < ¥(2). O

The following result extends [13, Theorem 2.6] which characterises the extreme
points of the Lorentz sequence space d(w, 1).

Corollary 4.2. Let ¥ be a symbol and v = (v;); be a point in Bgyoy. Then v is a
real extreme point of B,y if and only if there is a positive integer ng with
(a) U(ng) <1 U(ng+1) a,nd \Ij("o < ‘IIS;O Yoifng > 1, or (1) < W(2) if ng = 1,

v; =0 for j > ng.
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Proof. By Theorem 4.1, each point satisfying (a) and (b) of the statement is weak*-
exposed and, therefore, it is also an extreme point of Bngy-

For the converse, we recall that a Banach space E is weakly compactly generated if
it contains a weakly compact set K whose span is dense in E. As it is readily shown
that (m%)’ is separable it follows from [9, p.357] that (m%)" is weakly compactly
generated. Now, [16, Corollary 11| implies that Bioy is the closed unit ball is
the weak*-closed convex hull of its weak*-exposed points. A result of Milman (see
[9, Theorem 3.41]) now tells that each extreme point of the unit ball of (m$)" is
a weak*-limit of a sequence of weak*-exposed points. Therefore if we consider v
an extreme point of B(m% y then v is in the weak*-sequential closure of the set of
weak*-exposed points of B(m% y- Let (v™), be a sequence of weak*-exposed points
of B0y which converges weak® to v. Choose jo € N with v, # 0. Then we can
find € > 0 and ny € N so that [v] | > €/2 for all n > ng. By Theorem 4.1, each v"

has finite support and each nonzero coordlnate has the form 0] for some k. Since

7
there are only finitely many k with g 5 > €/2, we can find a s:fbsequence (v k)i of
(v™),, and p € N such that v™ has length p, V(p) < ¥(p+1) and ‘Ij(p) < ( , and
k| = T for all k € N. For every other index [ we have that elther |vl ’“| = ﬁ
or |v)' ’“| = O Hence either |v| = (  or || = 0.

Let g be the number of non-zero indexes which v possess. If ¢ was infinite then
||v]] would also be infinite. If ¢ is finite with ¢ > p then v™ will also have ¢ non-zero
indexes j with [v7*| equal to W for n sufficiently large which is a contradiction.
Now suppose that ¢ < p. If U(q) = ¥U(p) then the proof of the characterisation of
the weak*-exposed points of B (g, show that v cannot be an extreme point. On
the other hand if ¥(q) < ¥(p) then v has norm strictly less than 1 and so cannot

be an extreme point. Hence p = ¢ and v has length p with v = @ fory=1,...,p
andv;f:0forj>p,\I/(p)<\11(p+1)and¥<%aﬂpEN. O

Since each weak*-exposed point of By,0y is exposed and every exposed point of
Blng ) 1s extreme we also have the following corollary.

Corollary 4.3. Let ¥ be a symbol and v = (v;); be a point in By Then v is an
exposed point of Bmgy if and only if there is a positive integer ng with

(a) ¥(ng) < W(ng+ 1) and L0 < 00D 40 > 1, or W(1) < U(2) if ng = 1,

no—
(b) v;-‘:\y(n)for1<j<n0 andv —Oforj>n0

Let n be a positive integer so that (m$) has an extreme point, v, of length n.
Note that the distance from v to any extreme points of Bingy of length different to

n is at least (1n) — Thus we see that for i1,1s,...,1, in N, the connected

1
(n+1)"
component of g )(e“—l—em—i— “+ei,) in Extr (B y) 18 {)\Zlezl—i—/\wezgqL N €

’)‘Z]| = n)}
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Example 4.4. Let (w,), be a decreasing sequence of positive real numbers which
converge to 0. The Lorentz space d(w, 1) is defined by

d(w,1) = {(zn)n : iz;;wn < oo}

endowed with the norm ||z||, = > -, ziw,. The space d(w,1) is the dual of the
Marcinkiewicz sequence space d,(w, 1) whose fundamental sequence V¥ is given by
U(n) =3 ,_, wy. Since w, > 0 for all n the first condition of Theorem 4.1, ¥(ng) <

U(ng + 1), always holds. The violation of second condition of Theorem 4.1, %ﬁo)

% holding, implies that w,, = ﬁ Zzozzl wg. As (wy,), is decreasing the only
way that this can be true is that w3 = wy = --- = w,,. Hence, we see from
Theorem 4.1 that the set of weak*-exposed points of the unit ball of d(w, 1) is

{(zn)n . there is ng with wy > wy,, 25 = for 1 <k <ngand z;, =0 for k& > no} .

W(no)

We may write the set as:

1
n)n o there i > 1 with w; > w,,, and z* = )
{(z ) ere is ng with wy > wy,,, and z (o) ;ek}

Corollary 4.2 tells us that this set is also the of extreme points of the unit ball of
d(w, 1), implying [13, Theorem 2.6].

Example 4.5. Now let (w,,),, be a sequence of nonnegative real numbers (not neces-
sarily decreasing). We assume that w; # 0. Recall that in [8] the sequence Lorentz
space, V1, is defined as all sequences of complex numbers (z,),, such that

)
12010 == 27 wa < o0
n=1

The space (Y1, || - ||, ) I @ rearrangement invariant sequence space. For n € N
let

n oo w
W(n) = Zwk and Wi(n) =n Z ?k
k=1 k=n+1
The fundamental function of v, , is given by

Py () = W(n) + Wi(n).

It is shown in [8, Theorem 5.4] that if >~ | wy, diverges then 7, ,, is the dual of the
Marcinkiewicz sequence space my, where W is the symbol given by ¥(n) = ¢, , (n)
for all n.

Let us see that the conditions of Theorem 4.1 are satisfied for 7, ,,. Suppose we
have a positive ng so that W(ng) = ¥(ng + 1). This implies that

Wpo+1 = —Wi(ng + 1),
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which is impossible as (wy) is a sequence of nonnegative real numbers. If we now

\I/(TL()) \II(TLQ — ].)

suppose that = then we get that
Un Nog — 1
no—1
Z Wy = 0
k=1

which also impossible. Hence, we get that the set of weak*-exposed points of the
unit ball of v, ,, is precisely

J
(Zp)n @ 2" = Zek,nOEN )
Prr,u(no) 52

Applying Corollary 4.2 we see that the above set is also the ‘set of the unit ball of
Yiw- This provides us with an alternative proof of [8, Theorem 4.7].

Now, we describe the set of weak*-exposed (and extreme points) of the unit ball of

(m%)" when (m%,)" = ¢y, for two renormings of this space. In the first, we show that

for each natural number k it is possible to obtain a renorming of ¢; with extreme

points {e;, + -+ €;, 41 < .-+ < ix}. In the second, we show that for each
natural number £ it is possible to obtain a renorming of ¢; with extreme points
{Ngleg +---+e) iy < -+ < i, 1 <r <k}, for normalizing sclars A,
1<r<k.

Example 4.6. Let us consider our first renorming of ¢;. Fix k£ > 2 in N and define

a symbol ¥ by ¥(n) =1 for n <k, ¥(k) =2 and ¥(n) = n for n > k. Then VU is

strictly increasing for n > k — 1. We have that ) % for n < k and @ = % for

n > k. Aslim, 0 2% > 0, by [12, Theorem 3.2], we know that (m$)’ is isomorphic
to £;. In addition, Theorem 4.1 tells that the set of weak*-exposed (and extreme
points) of the unit ball of (m$)’ is

{(zn)n c2t = Ze]}.

Note that taking £ = 2 in the above example gives us ¢; isometrically.

For the second renorming we fix again & > 2 and define a symbol ¥ by W(1) =1,
U(n) =1+ 2= for 2 <n <kand ¥(n) =22 for n > k. The symbol U is strictly
increasing. For 2 < n < k we have that

W) _ 1 -1\ 1 1 1]
n  n n Ek—1 k+1 n Ek—1)"

Considering the function f: [1,00) — R* given by f(z) = =5 + 1 (1—25) we

observe that @ is strictly decreasing for n between 1 and k.
Finally, for n > k£ we have that @ = % As lim,, o0 @ > 0, applying again [12,

Theorem 3.2], we see that (m$)’ is also isomorphic to ¢;. Now applying Theorem 4.1
we have that that the set of weak*-exposed (and extreme points) of the unit ball of
(my)" is
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k—1
{(Zn)n: Z*:m(€1+"'+€r),1<7’§k}.

Finally, as we have a description of the real extreme points of a dual of a Marcinkiewicz

sequence space mY,, we are able to characterise its multipliers. Recall that given a

Banach space F, a linear operator T': E — F is said to be a multiplier of E if every
extreme point of the unit ball of £’ is an eigenvector of 7", the adjoint of T". This
means that for every extreme point e of Bg: there is a. in C so that

T'(e) = ace.
Proposition 4.7. Suppose that U is a symbol such that (m$,) has extreme points.

a) If (m%) only has an extreme points of length 1, then every multiplier of mY is
o Yy g Y v
diagonal.
b) If (mY)" has an extreme point of support at least 2, then every multiplier of mg
T T
15 a constant multiple of the identity.

Proof. Statement (a) holds since by Corollary 4.2, every unit vector e; is an extreme
point of (m%)’. To prove (b), let us suppose that (m$) has only extreme points
with n non-zero coordinates, n > 2. Consider the subspace, Vi, of (m$)’ spanned
by €1, €, ..., e, and the subspace, Va, of (mY)" spanned by ey, ¢ej,,...,€j,, so that
1,2,...,n,92,...,J, are distinct. Notice that every vector in V; can be written as
linear combination of vectors of the form Aje; + Aaes + - - + Aye, with || = ﬁ
As, by Corollary 4.2, each of these elements is an extreme point, thus for any of

them we have
T/<)\1€1 + )\262 + -+ )\nen) = ,U(>\1€1 + )\262 4+ 4+ )\nen)

for some . € C. Then we get that 7" maps V7 into V;. Similarly, 77 maps V5 into V5.
Hence we have that ey, which is contained in the intersection of V; and V5, is mapped
to a multiple of ;. With an analogous argument, we see that each e; is mapped to a
multiple of e; for j € N. Let us suppose that 7"(e;) = p;e; for some p; € C and for
each 7 € N. Fix j € N,j > 2 and consider the vector v = e;+ej+e;p1+---+€j1n_2
which is a multiple of an extreme point. Then we have

T'(v) = per + pjej + prjpaejon + -+ fljin—2€j4n—2.
Also, as T' is a multiplier, we have

T'(v) = ayv.
Therefore, we obtain that p; = a, = 1. As j > 2 was arbitrary, we conclude that
T’ and hence T is a multiple of the identity. O
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