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Characterization of nonsignaling correlations from mutual information
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We present a characterization of the set of nonsignaling correlations in terms of a two-dimensional represen-
tation that involves the maximal value of a Bell functional and the mutual information between the parties. In
particular, we apply this representation to the bipartite Bell scenario with two measurements and two outcomes.
In terms of these physically meaningful quantities and through numerical optimization methods and some
analytical results, we investigate the frontier between the different subsets of the nonsignaling correlations,
focusing on the quantum and postquantum ones. Our analysis exhibits that there is a trade-off between the
amount of classical correlations existing between the parties and the magnitude of the violation of a given Bell
inequality. Notably, the Tsirelson bound appears as a singular point of this trade-off without resorting to quantum
mechanics.
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I. INTRODUCTION

When a set of spatially separated systems is considered,
the complete characterization from physical principles of the
set of quantum correlations that can exist between is still an
open problem. The simplest attempt to do so corresponds to
the no-signalling principle [1,2], which is well known to give
place to a set of correlations for which those achievable within
the quantum mechanics formalism are just a subset. There
are more sophisticated physical principles trying to define the
frontier between quantum correlations and correlations that
cannot be obtained from quantum mechanics. These proposals
include the principle of information causality [3], nontrivial
communication complexity [4], no advantage for nonlocal
computation [5], macroscopic locality [6], and local orthog-
onality [7] to name a few. Some of them are able to provide
a good approximation to the set of quantum correlations or
can even describe it exactly in some particular scenarios,
but a general physical principle defining the quantum set in
the general case is yet unknown and one of the main open
problems in this research field.

In this work, we present an alternative approach to the
problem of characterizing quantum correlations using a two-
dimensional representation of the nonsignaling set. We focus
on the bipartite scenario where two spatially separated parties
have access to two dichotomic measurement choices each.
This representation makes use of two real functionals acting
on the set of correlations: the CHSH functional, which is
a well-known quantity, directly related to the geometry of
the nonsignaling set; and the mutual information between
the parties, which is a faithful measure of the strength of

the correlations that exist between them. We characterize
the boundaries of the different sets of correlations and show
the natural appearance of the Tsirelson bound as a singular
point in this representation. Interestingly, this singular point
emerges without assuming the quantum mechanics formalism.

The paper is organized as follows. In Sec. II we define the
scenario we will be using throughout this work, discuss some
previous results, and provide some relevant definitions. Sec-
tion III contains our main results and is divided in three parts.
In Sec. III A we discuss the particular case of symmetrical
behaviors which are relevant for our approach. In Sec. III B
we give some insights about how quantum correlations are
distributed on our two-dimensional representation and in
Sec. III C we show an interesting fact which suggests that the
Tsirelson bound could be obtained in a device-independent
manner. Finally, in Sec. IV we summarize our results.

II. SCENARIO AND DEFINITIONS

A. Nonsignaling set

We will focus on the standard device-independent Bell
scenario (2,2,2): two parties, Alice and Bob, each of which
has access to a device with two inputs (measurement choices)
and outputs. We note by x ∈ {0, 1} and y ∈ {0, 1} the mea-
surement choices of Alice and Bob, respectively; and a and
b their possible outcomes, which take values {−1, 1}. This
kind of scenario is completely described once the 16 con-
ditional probabilities p(ab|xy) are given, which are usually
referred as behaviors [8]. Each behavior can be represented
by a vector with real components p = {p(ab|xy)} that satisfies

2469-9926/2021/103(6)/062216(9) 062216-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8213-8270
https://orcid.org/0000-0003-1987-1183
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.062216&domain=pdf&date_stamp=2021-06-17
https://doi.org/10.1103/PhysRevA.103.062216


IGNACIO PERITO et al. PHYSICAL REVIEW A 103, 062216 (2021)

the normalization condition
∑

ab p(ab|xy) = 1 and the posi-
tivity constraints p(ab|xy) � 0. Thus, leaving an amount of
12 independent parameters.

Additional constraints can be imposed based on physical
considerations. The first one defines NS , the nonsignaling
set, with behaviors whose marginal probabilities are locally
well defined [1,2]:

p(a|x) =
∑

b

p(ab|xy) ∀x,

p(b|y) =
∑

a

p(ab|xy) ∀y. (1)

These conditions guarantee that instantaneous communication
between the parties is forbidden, which is required to preserve
the causality principle. The NS set in the (2,2,2) scenario
is then an eight-dimensional polytope embedded in R16. In
this case, instead of specifying a behavior in terms of the 16
components, a particularly simple parametrization of NS is
given in terms of eight correlators{〈Ax〉, 〈By〉, 〈AxBy〉}:

〈Ax〉 ≡
∑

a

a p(a|x), 〈By〉 ≡
∑

b

b p(b|y),

〈AxBy〉 ≡
∑

ab

ab p(ab|xy), (2)

from which any behavior can be obtained as [9]

p(ab|xy) = 1
4 (1 + a〈Ax〉 + b〈By〉 + ab〈AxBy〉), (3)

and using (1) we can also obtain the marginals in terms of the
correlators. It is easy to check that all the mean values defined
above are real numbers lying in [−1, 1]. Therefore, the NS
set can also be described as the intersection of the hypercube
[−1, 1]8 ⊂ R8 and the 16 semispaces defined by the positivity
conditions.

Let us introduce two interesting subsets of NS that will
be useful for our analysis. The first one is the well-known
correlation space C [1,10], defined by the set of behaviors with
〈Ax〉 = 〈By〉 = 0 for all x and y. This set describes devices that
work as perfectly unbiased coins with no dependence on the
inputs. Notice also that in this case the positivity conditions
are automatically satisfied, so the correlation space is a four-
dimensional subset of NS in one-to-one correspondence with
all the points in the hypercube [−1, 1]4. The other subset of
NS is the set SYM of symmetric behaviors, corresponding to
those elements of NS that are invariant under exchange of the
devices. Formally, it is obtained by imposing three additional
constraints to the correlators that parametrize the nonsignaling
polytope: 〈Ax〉 = 〈By〉 for x = y and 〈A0B1〉 = 〈A1B0〉 which
makes SYM a five-dimensional polytope.

Another subset of particular physical interest is the set L of
local behaviors, which contains all the behaviors admitting a
local model

p(ab|xy) =
∫

�

dλ p(a|x, λ) p(b|y, λ), (4)

where λ are arbitrary variables taking values in some set �

shared by both devices, usually referred to as hidden vari-
ables. This set is a polytope that is strictly smaller than the
nonsignaling set, that is, L ⊂ NS . Its vertices are known as

the local deterministic behaviors (LD behavior in the follow-
ing), and correspond to those situations (16 in our scenario)
where both devices work as deterministic functions of their
inputs. The behaviors that do not belong to this set are called
nonlocal.

The last physically relevant set is Q, the quantum set. This
is the set of behaviors allowed by quantum mechanics. A
behavior belongs to Q if and only if there exist two Hilbert
spaces HA and HB of arbitrary dimensions, and a density
matrix ρ acting on HA ⊗ HB such that

p(ab|xy) = tr[ρ(Ma|x ⊗ Mb|y)], (5)

where {Ma|x} is a set of measurement operators (all Ma|x
are semi-definite-positive and

∑
a Ma|x = IA) and analogously

{Mb|y} for Bob’s measurements. Note that, by means of pu-
rification, we can assume without loss of generality that the
density matrix corresponds to a pure state and the measure-
ments are orthogonal projectors, so any element of Q can also
be written as

p(ab|xy) = 〈ψ | Ma|x ⊗ Mb|y |ψ〉 , (6)

where now |ψ〉 is a pure quantum state in HA ⊗ HB and all the
involved measurements are projective: Ma|xMa′|x = δaa′Ma|x,
and similarly for Bob’s measurements. The local and quantum
sets have the same dimension as the nonsignaling set [11] and
satisfy the following strict inclusions: L ⊂ Q ⊂ NS [9].

The distinction between the quantum behaviors and the
postquantum ones (those behaviors that are nonsignaling but
lie outside the quantum set) is clear from an operational point
of view [a behavior is quantum if and only if it can be written
as (6)]. But this distinction is not yet fully understood in
terms of a physical point of view, and in this work we will
present an informational approach to this problem. To do so,
we will make use of two functionals that map behaviors into
real numbers. Before doing so, a little digression about the
geometry of the three sets [9] will come in handy. As we
said, using the parametrization in terms of correlators, both
normalization and nonsignaling constraints are automatically
fulfilled. Therefore, the nonsignaling polytope is defined just
by specifying its 16 facets, given by the positivity constraints.
Local behaviors can also attain the bound imposed by the pos-
itivity conditions, so there are 16 facets of L that are contained
in the facets of NS . Given that L ⊂ Q ⊂ NS , the last asser-
tion must also hold for Q (which is convex but not a polytope
so not all of its boundary will be given by hyperplanes). The
inner facets of L, that is, the facets that do not correspond to
positivity constraints, establish the frontier between local and
nonlocal behaviors. Being hyperplanes, they can be described
by level surfaces of linear functionals, called Bell inequalities,
acting over the set of behaviors. For instance, the well-known
Clauser-Horne-Shimony-Holt (CHSH) functional [12]

S ≡ 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉, (7)

is such that local behaviors must satisfy −2 � S � 2, so the
two hyperplanes S = ±2 are facets of L. The quantum bound
for S can be easily obtained as −2

√
2 � S � 2

√
2 and is

known as the Tsirelson bound. In this case, L is defined by the
eight inequalities obtained by relabeling inputs on −2 � S �
2, along with the positivity constraints. In the following, we
refer to behaviors attaining Tsirelson bound as Bell behaviors.
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The quantum set Q is convex but it is not a polytope, it is
bounded by some nonflat regions and any set of inequalities
describing it must necessarily be nonlinear. A closed set of
expressions defining whether a behavior is quantum or not is
not known in the general case, but there exist useful approxi-
mations to bound the quantum set. For example, in the present
scenario, a necessary condition for a behavior to be quantum
is [8,13,14]∣∣∣∣∣

∑
x′y′

arcsin 〈Ax′By′ 〉 − 2 arcsin 〈AxBy〉
∣∣∣∣∣ � π ∀x, y, (8)

which, notably, when considering behaviors in the correlation
space becomes also a sufficient condition. That is, the set Q ∩
C is completely described by the set of four inequalities (8).
In the general case, the set satisfying (8), which we will call
Q̃ contains the quantum set Q. A better approximation to the
quantum set [15] is given by those behaviors where at least
one x (or y) such that 〈Ax〉 = ±1 (or 〈By〉 = ±1) or∣∣∣∣∣

∑
x′y′

arcsin (Fx′y′ ) − 2 arcsin (Fxy)

∣∣∣∣∣ � π (9)

for all x, y, with

Fxy ≡ 〈AxBy〉 − 〈Ax〉〈By〉√
(1 − 〈Ax〉2)(1 − 〈By〉2)

. (10)

A behavior satisfying these conditions is said to belong to
the first level of the Navascués-Pironio-Acín (NPA) hierarchy
[16], and we will refer to it as Q1. In general, then, we have
Q ⊂ Q1 ⊂ Q̃.

The algebraic bounds for S are clearly −4 � S � 4 and,
notably, can be attained by elements on NS . This kind of
behaviors are associated to devices called Popescu-Rohrlich
(PR) boxes [2], and they correspond to the situations in which
for instance: 〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉 = 1 = −〈A1B1〉. We
will refer to this kind of nonlocal behaviors as PR behaviors.
As a summary, Fig. 1 schematizes the geometric structure of
the nonsignaling polytope we discussed in the last paragraphs.

B. Functionals

Let us define the two main functionals over which our
analysis will be based. The first one was already mentioned
in a sense and is related to the CHSH functional: it is the
maximum of such quantity over all possible relabelings of
inputs and outputs.

Definition 1. Let p ∈ NS de an arbitrary nonsignaling be-
havior. The functional S : NS → R is defined as

S[p] ≡ max
xy

∣∣∣∣∣
(∑

x′y′
〈Ax′By′ 〉

)
− 2〈AxBy〉

∣∣∣∣∣. (11)

Maximizing over all CHSH functionals is important be-
cause it gives us a quantity that does not depend upon
particular relabelings of inputs and/or outputs, which have
no physical relevance. This is so because, for any nonlocal
behavior, there is always a relabeling for which the value of a
particular CHSH functional does not violate the local bound.
In other words, a behavior p ∈ NS is nonlocal if and only

FIG. 1. Pictorial representation of the nonsignaling set. Dark red
(outer) lines represent positivity constraints and orange (inner and
straight) lines represent CHSH facets. The black segments are those
portions of the positivity constraints that are also boundaries of L and
Q. The nonflat boundaries of Q are the inner and curved red lines.

if S[p] > 2. Behaviors satisfying S[p] = 2 lay at one of the
nontrivial facets of the local set and any deviation from this
value indicates how far it is from its closest nontrivial facet of
L. Notably, the amount of violation of the local bound has an
interesting interpretation as it imposes a lower bound on the
average communication needed to produce such correlations
[17].

The second functional we will consider in this work is
related to the correlations between the distribution of outputs
of the devices. The mutual information between two random
variables W and R, conditioned to a third random variable T ,
can be computed as [18]

I (W ; R|T ) = H (W |T ) + H (R|T ) − H (W R|T ), (12)

where H (�|�) is the conditional entropy. In our scenario, if
we refer X and Y to the random variables associated with the
inputs of both devices and A and B to the random variables
associated with the outputs, the mutual information between
Alice’s and Bob’s variables can be written as

I (A; B|XY ) = H (A|X ) + H (B|Y ) − H (AB|XY ). (13)

Here we used the nonsignaling conditions to simplify the first
two terms as H (A|XY ) = H (A|X ) and H (B|XY ) = H (B|Y ).
The conditional entropies appearing in (12) can be easily
computed in terms of behaviors

H (A|X ) =
∑

x

p(x)H (A|X = x)

= −
∑

ax

p(x)p(a|x) log2 p(a|x), (14)
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FIG. 2. I vs. S plot for a random sample of 5 × 106 quantum
points for two-level systems on both sides. Some relevant behaviors
are also plotted.

and similarly for H (B|Y ), and

H (AB|XY ) =
∑

xy

p(xy)H (AB|X = x,Y = y)

= −
∑
abxy

p(xy)p(ab|xy) log2 p(ab|xy). (15)

Naturally, as it is evident from the last two expressions, the
mutual information depends on the probability distributions
for the inputs. As we are interested in an intrinsic measure
of the correlations contained in a given behavior, we will
consider that both inputs are independent and uniformly dis-
tributed random variables.

Definition 2. Let p ∈ NS be an arbitrary nonsignaling be-
havior. We define the functional I : NS → R as

I[p] ≡ −1

2

∑
ax

p(a|x) log2 p(a|x)

− 1

2

∑
by

p(b|y) log2 p(b|y)

+ 1

4

∑
abxy

p(ab|xy) log2 p(ab|xy). (16)

We will measure entropy in bits, which means that we will
use base 2 logarithms through this work. This implies that the
functional I is a real number between 0 (no correlation) and
1 (maximum correlation between the parties).

Before presenting the results, it is instructive to look at a
typical I versus S plot. Figure 2 shows the values of both
functionals for a random sample of 5 × 106 quantum behav-
iors of the form (6) for two-dimensional Hilbert spaces. The
plot also highlights some relevant points: the PR behavior, the
Bell behavior, and a local deterministic behavior. In addition
to those behaviors, we plot the one that maximizes I in the
local set: 〈AxBy〉 = 1 and 〈Ax〉 = 〈By〉 = 0 for all x, y; that
is, both devices output a perfectly correlated random and
uniformly distributed bit (we will refer to this behavior, or
any of it relabelings, as the shared coin behavior or simply SC
behavior). The other highlighted behavior is what we will call
the noise, corresponding to 〈AxBy〉 = 〈Ax〉 = 〈By〉 = 0 for all
x, y [that is, p(ab|xy) = 1/4 for all a, b, x, y].

FIG. 3. Boundaries of NS in the S-I representation obtained
by means of numerical optimization. The behaviors in NS fill the
orange (inner) region on this representation.

Throughout this paper, we will work extensively with the
boundaries between the different sets in this type of plots.
These boundaries correspond to the points that maximize or
minimize I for each value of S . We will use the notation
IAmax(S ) to refer to the maximum value of mutual information
over the set A when the CHSH functional is fixed to S , and
IAmin(S ) for the minimum.

III. RESULTS

Let us call G : NS → R2 the continuous function that
maps behaviors to the S-I plane: G(p) ≡ [S (p), I (p)]. It is
well known that continuous functions map path-connected
sets into path-connected sets, so we have that the S-I rep-
resentation of NS is a path-connected set. Moreover, the NS
path-connected set is also simply connected (colloquially, it
does not have empty regions inside of its outer boundaries).
To see this, for each value of s ∈ [0, 4], we can take pmin

and pmax to be two behaviors attaining the values of INS
min (s)

and INS
max (s), respectively, and, without loss of generality, we

can assume that both behaviors attain the value of S = s for
the same linear version of the CHSH functional. Thus, all
convex combinations of those two behaviors have also the
same value of the linear CHSH functional and, given that
all other relabelled of it give smaller or equal values, the
value of the nonlinear functional S is also s for all such
convex combinations. Then, all behaviors corresponding to
convex combinations of pmin and pmax lay in the vertical line
given by S = s in the S-I representation, and, given that
the mutual information is a continuous function, the vertical
segment connecting pmin and pmax in the S-I plane is filled
by behaviors on NS . Therefore, there are no empty regions
inside of the outer boundaries of the S-I representation of
NS and to characterize the nonsignaling set, it is enough to
find those outer boundaries.

Figure 3 shows the lower and upper bounds for I [that
is, INS

max (S ) and INS
min (S )] obtained by means of numerical

optimization, for 700 values of S in [0,4] for the maximums
and 500 values of S in [2,4] for the minimums [we do not need
to minimize I in the local region because it is straightforward
to obtain analytically that ILmin(S ) ≡ 0].

The S-I representation of L, i.e., the S ∈ [0, 2] region in
Fig. 3, is pretty straightforward to analyze. For any fixed value
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of S � 2, it is easy to find a behavior that factorizes as a prod-
uct of its marginals: p(ab|xy) = p(a|x)p(b|y) giving I = 0
and hence the lower bound for the local region. The upper
bound for this region shows that the maximum correlation that
can be achieved is a monotonously increasing function of S .

The situation in the nonlocal region becomes more interest-
ing: the upper bound for I turns immediately into a decreasing
function once we leave the local set, showing that there is
a compromise between this quantity and the magnitude of
a Bell violation. As it is well known, nonlocality does not
necessarily mean stronger correlations. On the other hand,
nonlocality cannot arise from product distributions and there-
fore the lower bound for I becomes a nonzero function of S .
This lower bound is a monotously increasing function of S
over all the nonlocal region, and small values of I are less
and less achievable as we move away from the corresponding
CHSH facet of L. A more detailed analysis of this curve leads
to the most puzzling result of this work, but we will get into
that later. In this respect, let us recall that no physical model
was assumed when obtaining this plot, and the numerical
optimization was done just imposing positivity, normalization,
and nonsignaling constraints.

A. SYM behaviors

Now we will see that, notably, the representation of SYM
in the S-I plane is exactly the same as that of NS . This is a
useful result that will simplify part of our analysis, allowing
us to obtain some analytic expressions for the boundaries of
the nonsignaling set in this representation.

First, we will focus on the characterisation of L. In this
case, it is easy to check that a behavior maximizing I for S =
0 is given by p0 ∈ SYM such that

〈A0〉 = 〈B0〉 = − 1
2 , 〈A1〉 = 〈B1〉 = 1

2 , (17)

and all the other correlators equal to zero. Another extremal
point of this set, (S, I ) = (2, 1), is reached by the following
relabelling of the shared coin behavior:

〈AxBy〉 =
{−1 if x = y,
+1 otherwise, (18)

and local mean values equal to zero. We will call this behavior
p̃SC ∈ SYM. In this way, the local upper bound for I can be
obtained by evaluating all convex combinations between p0

and p̃SC . Thus, the function

Ip0→p̃SC (S ) ≡ I
(Sp̃SC + (2 − S )p0

2

)
, (19)

gives the local upper bound ILmax(S ). Figure 4 shows the agree-
ment between this curve and the numerical results previously
presented.

For the nonlocal region, let us first note that when consider-
ing behaviors on the correlation space C, mutual information
takes a particularly simple form

p ∈ C ⇒ I[p] =
∑

xy

g(〈AxBy〉), (20)

FIG. 4. Boundaries of the NS set in the S-I representation
when restricting to behaviors in the SYM set. For comparison, in
black we plot the points obtained by numerical optimization using
the full set of NS behaviors.

where we defined g : [−1, 1] → [0, 1
4 ] as

g(x) ≡ 1

2

[
1 + 1 + x

4
log2

(
1 + x

4

)
+ 1 − x

4
log2

(
1 − x

4

)]
,

which is an even function of its argument. It is clear that
the suprema of I (p) with p ∈ C is 1 and is achieved if and
only if |〈AxBy〉| = 1 for all x, y; that is, for the shared coin
behavior or the PR behavior, in agreement with the numerical
optimization presented before. The condition |〈AxBy〉| = 1 for
all x, y imposes also that S is either 2 or 4. Thus, crossing a
CHSH facet comes at a price in terms of mutual information.
As we will see later, this price is even bigger when we restrict
ourselves to quantum behaviors.

To obtain the upper bound of I in the nonlocal part, one
can consider behaviors on C. Without loss of generality, we
can stick to a particular labeling and set

S (p) = 〈A0B0〉 + 〈A0B1〉 + 〈A1B0〉 − 〈A1B1〉. (21)

Then, we want to maximize the I (p) given in Eq. (20) subject
to the linear constraint S (p) = s for some s ∈ [2, 4]. It is
simple to show that the solution is attained when three of the
correlators are equal to 1, and the remaining one is such that
the constraint S (p) = s is satisfied. That is, the behavior with

〈A0B0〉 = 〈A0B1〉 = 〈A1B0〉 = 1, 〈A1B1〉 = 3 − s, (22)

maximizes I over C. Notice that for each s ∈ [2, 4], the be-
havior (22) is not only an element of C but also of SYM,
and corresponds to a convex combination of the shared coin
behavior and the PR behavior. Then, we have that the curve

IC\L
max (S ) = I

(
(S − 2)pPR + (4 − S )pSC

2

)
, (23)

gives the maximum value of I of the behaviors in C space for
S ∈ [2, 4]. The corresponding plot is also shown in Fig. 4.
This plot shows that there is a value of S from which the
analytic curve (23) starts deviating from the numerical upper
bound. Fortunately, this ramification can also be obtained as
the mutual information of a mixture of two simple behav-
iors. In fact, if we call pLD the local deterministic behavior
with 〈Ax〉 = 〈By〉 = 〈AxBy〉 = 1 for all x, y, then the following
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function:

IpLD→pPR (S ) = I
(

(S − 2)pPR + (4 − S )pLD

2

)
, (24)

gives the upper bound for I in the nonlocal region after the
intersection with (23) (see Fig. 4). Notice that this is also the
mutual information for a set of elements in SYM.

So far, we derived the upper bound for I as a function of
S for the nonsignaling set. These bounds can be obtained by
considering only symmetrical behaviors and can be summed
up as

INS
max (S ) =

{
ILmax(S ) ifS � 2,

max
{
IpLD→pPR (S ), IC\L

max (S )
}

ifS > 2.

(25)
To show that all the boundaries of NS, in the I-S represen-

tation, can be obtained by considering only the symmetric part
of this set, we have to consider also lower bounds. For the lo-
cal part, this is straightforward because the segment I = 0 for
S ∈ [0, 2] is constructed from product behaviors, and this can
be done within the symmetry assumption. The lower bound of
the nonlocal part is nontrivial, and we do not have an analytic
expression for the full set (as we will see later, we do have
an analytic expression for a fraction of it). Thus, here we will
just mention that the numerical minimization, when subjected
to the additional constraint of symmetry, gives the same lower
bound, INS

min (S ), as for the full set (see Fig. 4). Finally, note
that the fragment of INS

min (S ) lying on the postquantum region
(that is, for S ∈ [2

√
2, 4]) can be also analytically described

by

IpBell→pPR (S ) ≡ I
((

S − 2
√

2
)
pPR + (4 − S )pBell

4 − 2
√

2

)
, (26)

that is, by all the convex combinations between the Bell be-
havior and the PR behavior.

B. Quantum set

To characterize the quantum set we will consider the sets,
Q̃ and Q1, that contain the quantum set Q. The analytic
expressions defining those two sets in this scenario, can be
used to find their boundaries in the I-S representation. First,
note that constraints (8) cannot be satisfied by any behavior
with S > 2

√
2, so Q̃ is contained in NS. Given that L ⊂ Q̃,

the boundaries in the 0 � S � 2 region are those already
obtained in the previous section. The last two observations
imply that we only need to consider the boundaries of Q̃
in the S ∈ [2, 2

√
2] region. In addition, given that Q1 ⊂ Q̃,

this is also true for the set of behaviors belonging to the
first level of the NPA hierarchy. Moreover, for S ∈ [2, 2

√
2]

we can check that all behaviors obtained through numerical
minimization of I, pass the test defining the first level of the
NPA hierarchy. Thus, the lower bound for Q1 matches what
we called INS

min (S ), if 2 � S � 2
√

2. As Q1 ⊂ Q̃ ⊂ NS this
remains true for Q̃.

As we mentioned before, for behaviors in C the set
of relations (8) are not only necessary but also sufficient
conditions to be in Q. Thus, we will show that it is
possible to find the upper bound analytically for behav-
iors in C. We want to maximize I (p) in Eq. (20), but

FIG. 5. Boundaries for the NS set and the quantum sets. Upper
bounds of I: IQ̃max(S ) in blue; IQ1

max(S ) in green; and IQ∩C
max (S ) in red.

The lower bound for these sets is the same as the one for NS, the
orange point represents the Bell behavior.

in this case, subjected to the set of nonlinear inequalities
(8). As before, we set S (p) = s [(21)] for s ∈ [2, 2

√
2].

Given that the maximum value of the CHSH is reached by
that labeling, then the constraints in (8) reduce to just one
inequality: arcsin 〈A0B0〉 + arcsin 〈A0B1〉 + arcsin 〈A1B0〉 −
arcsin 〈A1B1〉 � π . Therefore, the upper bound for I over the
set Q ∩ C is given by

IQ∩C
max (S ) = 3g[w(S )] + g[3w(S ) − S], (27)

where

w(S ) =
√

2 cos

[
π

6
+ 1

3
arctan

( S√
8 − S2

)]
. (28)

Figure 5 shows the boundaries obtained by means of numer-
ical optimization for Q1 and Q̃. Note that the strict inclusion
Q1 ⊂ Q̃ is preserved in this representation and the same holds
for Q ⊂ Q1. This is so, given that the Bell behavior is the
only quantum behavior with S = 2

√
2 and, thus, the lower

and upper bounds of this set have to intersect at this value
of S , which is not true for Q1. The figure also shows the
analytic curve (27) for the upper bound of Q ∩ C. It can be
seen that, as expected, this curve intersects the lower bound
exactly at the Bell behavior. All these boundaries show that
the relation between mutual information and the magnitude of
a Bell violation is indeed stronger for quantum behaviors than
for arbitrary nonsignaling behaviors.

To perform another test of these bounds, in Fig. 6 we show
the sampling of 5 × 106 random quantum behaviors (gray
points) of the form (6) with Hilbert spaces of dimension 2.
There it is also shown the analytic curve (27) upper bounding
the set Q ∩ C. Additionally, it is shown the sampling of 104

random points in C obtained as a mixture between the shared
coin, Bell, and PR behaviors: the orange (black) points do (do
not) pass the test of (8). There we can see more explicitly
how (27) is the proper bound for the quantum behaviors in
the correlation space.

C. Tsirelson bound

Perhaps the most puzzling result of this work is the
natural appearance of the Tsirelson bound in this represen-
tation. If we look carefully to the lower bound of the mutual
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FIG. 6. Random sample of behaviors. Gray points are 5 × 106

quantum behaviors sampled for Hilbert spaces of dimension two, it
can be seen that all of them lie below the (red) curve representing the
upper bound for the set Q ∩ C. The other points are random convex
combinations of pSC, pBell, and pPR: behaviors not passing the test for
Q̃ are shown in black (above the upper bound for Q ∩ C), while for
the rest are in orange (below the upper bound for Q ∩ C).

information in the nonlocal region INS
min (S ), we can identify,

in the neighborhood of the Bell behavior, a change in the
concavity of the curve. Let us try to find out exactly where
it happens. To avoid working with second derivatives, which
can carry a lot of numerical noise, we can take advantage of
the following trick: given an ordered set of three points in a
two-dimensional plane, �A = (xA, yA), �B = (xB, yB), and �C =
(xC, yC ); the orientation of the path �A → �B → �C is related to
the sign of the determinant of the following matrix [19]:

O =
⎡
⎣1 xA yA

1 xB yB

1 xC yC

⎤
⎦. (29)

The points are orientated clockwise if det(O) < 0 and coun-
terclockwise if det(O) > 0. Therefore, we can take the
numerical values of INS

min (S ) to evaluate the concavity of the
curve at any value of S using the determinant of the matrix in
(29).

To get a detailed inspection of the region where the con-
cavity change occurs, we obtain again (through numerical
optimization) INS

min (S ) for 5000 equispaced values of S in the
interval [2.5, 3.1] (note that the Tsirelson bound lies in this
interval, given that 2

√
2 � 2.83). For what comes next, it will

be useful to give a name to the horizontal separation between
the points in this curve δS ≡ 3.1−2.5

5000 .
Figure 7 shows, for each value of S , the determinant of O

for the corresponding point and two other points to the right of
it. To avoid excessive numerical noise, it is convenient not to
take three consecutive points because in that case O is almost
singular and computing its determinant becomes tricky from
a numerical point of view. For that reason, the determinant
computed for each value of S corresponds to the point with
that value of S , the point with S + 100δS and the point with
S + 200δS . Therefore, in this plot, we should expect to find
a region of width 200δS where the sign of det(O) does not
have a valid interpretation in terms of concavity because this
region (highlighted in green) corresponds to values of S where

FIG. 7. Determinant of O for sets of three points in the curve
INS
min (S ). The horizontal axis gives the value of S for the first point of

each set. The highlighted area shows those points where det(O) does
not allow us to decide, numerically, whether the curve is concave or
convex.

the curve is still concave but in the matrix O we are taking
into account points where the curve is already convex. From
the last observation, it follows the way in which we should
interpret where the concavity change happens, and it is in the
value of S from which the transition region ends and the plot
of det(O) as a function of S stabilizes to the new curve of
positive values.

Figure 8 shows the detail of the mentioned transition
region. The vertical green line indicated the value of the
Tsierlson bound and the orange region is a symmetrical neigh-
borhood of size 10−2 around it. We see that the end of the
transition region (and hence the value of S where the con-
cavity flips) is located in the range S = 2

√
2 ± 0.005. The

error in the last expression can be made smaller by taking an
increasing amount of points when obtaining the lower bound
for the mutual information around the Bell behavior, so this
result gives robust numerical evidence that the inflection point
is, indeed, located at the Tsirelson bound.

This change in the convexity can be interpreted as follows.
If we consider the mutual information as a shared resource,
then increasing nonlocality by having a larger value for the

FIG. 8. Determinant of O as a function of S in the neighborhood
of the concavity flip. The vertical green line gives the value of the
Tsirelson bound. The change on the concavity of INS

min (S ) occurs
inside of the orange (highlighted) region.
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FIG. 9. Values of the five relevant mean values for symmetrical
behaviors along the curve INS

max (S ) in the S ∈ [2, 4] region. For
grayscale versions, the order in which the curves emerge from S = 2,
from top to bottom, is the same as in the legend. The vertical line is
located at S = 2

√
2.

Bell functional requires more of such a resource. However,
upon exceeding the Tsirelson bound there is a change in
behavior in which each increase of the Bell functional costs
more of that resource than the previous one. This strongly
suggests that mutual information plays an important role in
Nature’s correlations.

At the Tsirelson bound we can also find a singularity
when looking at the behaviors that give place to the curve
INS
min (S ). As we have shown, there is no loss of generality in

describing this curve by taking into account only symmetrical
behaviors, so five parameters are enough to describe any of
its points. Figure 9 shows the values of the five correlators
that correspond to the behaviors along INS

max (S ) when going
from S = 2 to S = 4. Once the Bell behavior is reached, both
local mean values stay fixed to zero and the correlators vary
lineally from the values corresponding to the Bell behavior
to those corresponding to the PR behavior, in agreement with
(26). As we can see, the parametrizations of the mean values
in terms S show discontinuous changes in their first deriva-
tives when going through the Bell behavior. It is important to
mention that, when the symmetry hypothesis is relaxed, the
optimization gives place to the same behaviors, that is, the ex-
tremal behaviors giving place to the curve of minimal mutual
information are unique (except for relabeling of inputs and

outputs) and the discontinuity at S = 2
√

2 is not an artifact of
the symmetry hypothesis.

In this section we showed robust numerical evidence that
the curve INS

min (S ) changes its concavity at S = 2
√

2 and,
furthermore, the associated curve of behaviors is not smooth
because it exhibits singularities in its first derivatives at the
Bell behavior. Those two facts are rather intriguing, given that
the curve INS

min (S ) is found without making use of quantum
mechanics at all. Therefore, this result might suggest that
the Tsirelson bound can be obtained in a device-independent
manner.

IV. SUMMARY

In this work we presented an alternative approach to de-
scribe the set of nonsignaling correlations that is based on a
two-dimensional representation of the nonsignaling polytope,
combining a geometrical quantity (the maximum value of a
Bell functional) with an informational one (mutual informa-
tion). Bell functionals provide us with a kind of measure
of the nonlocal content of each behavior, while the mutual
information is a measure of the total correlations between
the parties. We showed that there exists a trade-off between
mutual information and the magnitude of the maximum Bell
violation once the nonlocal region is reached, and this trade-
off is more restrictive for quantum behaviors. Our analysis
also suggests that the Tsirelson bound can be obtained from
a device-independent argument, as we showed that in this
scenario it appears as an inflection point in the curve for the
lower bound of the mutual information. An interesting ques-
tion that we leave for future analysis is whether this approach
of finding quantum bounds from the study of informational
related quantities can provide further insights in more general
Bell scenarios. Note that this generalization has, in principle,
two difficulties of a different nature: on one side, there is
a practical difficulty when trying to increase the number of
inputs or outputs of the scenario (because the sampling needs
to be done in higher dimensions). On the other hand, a more
fundamental problem appears if one wants to increase the
number of parties because the mutual information between
three or more variables is not trivial to define, so the functional
used to quantify correlations should be chosen carefully.
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