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Abstract Null tetrads are shown to be a valuable tool in
teleparallel theories of modified gravity. We use them to
prove that Kerr geometry remains a solution for a wide family
of f(T) theories of gravity.

1 Introduction

Many models of modified gravity have been proposed in
order to tackle the shortcomings of General Relativity (GR).
Deformations of the Einstein theory at small or large scales,
i.e. ultraviolet or infrared gravity, could provide a better han-
dling of singularities and the cosmic acceleration. In partic-
ular, a proper deformation of GR in the ultraviolet regime
could play the role of describing the transition between GR
and quantum gravity. This frontier could be better understood
by resorting to a teleparallel formulation of gravity. As a mat-
ter of fact, although with a different purpose in mind, it was
Einstein himself who proposed in the 30’s the reformula-
tion of GR in a teleparallel framework, by taking the field
of orthonormal frames or fetrads as the dynamical variable
instead of the metric tensor [1—4]. Certainly, teleparallelism
is part of a bigger picture. Gravity can be described by means
of a connection having both curvature (like GR, through the
Levi-Civita torsionless connection) and torsion (like telepar-
allelism, through the Weitzenbock curvatureless connection)
leading to Einstein—Cartan theory [5-7].

In this article we will focus on the so-called f(T") gravity,
a theory of modified gravity based on a spacetime possessing
absolute parallelism [8-20]. The first results of this alterna-
tive theory of gravity were very encouraging. It has been
shown that the teleparallelism a la Born—Infeld cures the pri-
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mordial singularity of flat Friedman—Lemaitre—Robertson—
Walker (FLRW) universes, providing a natural inflationary
early stage without invoking a new field [8,9]. An extension
of f(T) gravity [21] changed the conical singularity of a 3D
cosmic string into a geodesically complete smooth curved
spacetime [22]. Like other theories of modified gravity, f(T)
theories display additional degrees of freedom; in this case
they come from the loss of local Lorentz invariance and their
physical nature is not well understood yet [17,18,23-25].

A remarkable feature of f(7) theories is that the dynam-
ics of tetrads is described by second order equations, which
is not usual in the context of modified gravity. This prop-
erty is guaranteed by the teleparallel Lagrangian, which is
a function of the square of the first derivatives of the tetrad
field (differing from GR, whose Lagrangian contains second
derivatives of the metric). The teleparallel Lagrangian is built
in a Weitzenbdck spacetime, i.e., a spacetime endowed with
a curvatureless connection proportional to first derivatives of
the tetrad. The central piece of a teleparallel Lagrangian is
the Weitzenbock torsion. The simplest teleparallel theory is
the teleparallel equivalent of GR (TEGR), which is just Ein-
stein’s gravity in the language of tetrads. f(7) theories are
defined by deformations of the TEGR Lagrangian.

A main point to consider in modified gravity is the possi-
bility of smoothing black hole singularities. The search for
solutions of spacetimes displaying spherical or axial sym-
metry is not trivial in f(7") gravity. In fact, usually one uses
the symmetry for choosing coordinates such that the metric
looks simple. Even so, there are many tetrads for a given met-
ric. Since f(T) theories are not invariant under local Lorentz
transformations, the knowledge of the metric symmetry gives
no idea of the ansatz for the tetrad field. In this article we
will study vacuum axially symmetric rotating solutions of
f(T) gravity. We are going to prove that Kerr geometry [26]
remains a solution for f(7") gravity. We will employ null
tetrads as a useful tool for straightforwardly getting the result.
We remark that different aspects of rotating black holes have
been discussed in the context of TEGR [27-31]. Among the
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papers about Kerr spacetime in modified gravity, we can men-
tion those referred to f(R) gravity [32-35]. Other rotating
geometries, like the Godel universe [36], have also been stud-
ied in TEGR [37,38], as well as in f (R) theories of gravity
in both metric and Palatini approaches [39—41]. Recently, the
rotating cosmology was also explored in f(T') gravity [42].

The paper is organized as follows. In Sect. 2 we introduce
teleparallel gravity. In Sect. 3 we explain the equivalence
between TEGR and GR, and the loss of local Lorentz invari-
ance in f(T) theories. We also analyze the survival of some
TEGR solutions in f(7T') theories. In Sect. 4 we show that
teleparallelism can be formulated in terms of null tetrads; we
exploit this fact to search for surviving solutions. In Sect. 5
we show that Kerr geometry is one of this kind of solutions.
In Sect. 6 we present the conclusions.

2 Teleparallel gravity

Teleparallelism is a name for theories of gravity where the
dynamical variable is not the metric but the tetrad or vierbein.
The tetrad field {e,(x)} is a set of four orthonormal vectors
at each point p of the manifold M that constitutes a basis of
the tangent space T), M. The dual co-frame {e“(x)} is a basis
of the co-tangent space 7, M. They can be decomposed in a
coordinate basis as

e! = eZ dx* and e, = e 9, (D
where ¢}, and e!! are the respective components which fulfill
a M __ qa a v __ gV

e,¢, =38, and e, e, =§,. (2)

Greek indices, u,v,... = 0,1, 2,3, indicate spacetime
coordinates. Latin indices, a, b, ... = 0,1, 2, 3, are asso-
ciated with the tangent space; we will call them Lorentzian
indices.

The orthonormality condition is the link between the tetrad
and the metric

Nab = 8uv eéj e‘é, 3)

where 71,5, = diag(1l, —1, —1, —1). Equation (2) is used for
inverting this relation and getting the metric from the tetrad,

g = nahez e‘ls or g‘w = nabel‘; eZ’ “4)
then it is
V—g = detley] = e. 5)

Noticeably, the metric—tetrad relation is invariant under local
Lorentz transformations of the tetrad. In other words, there
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are many tetrad fields for the same metric field. This also
means that a dynamical theory for the tetrad will determine
the dynamic of the metric.

Teleparallelism is a dynamical theory for the tetrad whose
Lagrangian is built from the torsion tensor 7%, associated
with the Weitzenb6ck connection [43]

w
[0, =el dvey = —ef dvel, 6)
T“vp =l (aveg —d,eh). @)

Weitzenbdck connection i'V‘ ’;V is curvatureless. Therefore,
teleparallelism encodes gravity in the torsion instead of the
Riemann tensor. The Weitzenbock connection has the nice
property that parallel-transported vectors keep constant their

w
projections on the vectors e,; in fact, we have V ,V# =

ey dy(ef V*). In particular, v vey = 0, which means that
the Weitzenbock connection is metric. Since the curvature
vanishes and the tetrad is parallel-transported, one concludes
that the tetrad field is a global frame.

In the teleparallel equivalent of GR, the tetrad is governed
by the action [44—46]

1
SteGr[€q] = o /d4x e S,M T, ®)

where k = 87 G and Sp’w is defined as

1 A
nwy UV v VL noov AV o
25,1 = (T, T+ TVE) +T," s) — T, k.

. LV
contorsion K* o

©))

The contorsion K"}, equals the difference between Weitzen-
bock and Levi-Civita connections.

Analogously to f(R) gravity [47,48], where the GR
Lagrangian is changed to an arbitrary function f of the
scalar curvature R, f(T) theories constitute a teleparallel
version of modified gravity obtained by deforming the TEGR
Lagrangian in terms of an arbitrary function of the Weitzen-
bock invariant T = S, v Tp,w [8,9]. Its action reads

Sleq] = € /d4x e f(T). (10
2K

For minimally coupled matter, the dynamical equations of
f(T) gravity are

d4e M du(e ek S, FI(T)) + 4et T S," f(T)
—e! f(T) = 2ke:T,", (11)

where 7,7 is the energy-momentum tensor. As seen, the
dynamical equations are second order, which is a distinc-
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tive feature regarding other theories of modified gravity.
TEGR dynamics corresponds to the particular case f(T) =
T, f(T)=1.

3 Comparing TEGR and f(T') gravity

The equivalence between GR and TEGR emanates from
the following property: Einstein—Hilbert Lagrangian differs
from TEGR Lagrangian in a four-divergence. In fact, by com-
puting the Levi-Civita scalar curvature R for the metric (4)
one gets the result

—e¢ Rlegl = e T — 29,(eT","). (12)

Therefore TEGR and Einstein—Hilbert actions are equivalent.
This also means that GR and TEGR harbor the same number
of degrees of freedom. Even though the tetrad field contains
16 components (six more than the metric field), TEGR is
invariant under local Lorentz transformations of the tetrad.
This gauge freedom cancels out the excess of degrees of free-
dom. At the level of the TEGR Lagrangian, a local Lorentz
transformation is a local change to another orthonormal basis,

es = A% (X) eq, e = AZ/(X) e, (13)

that adds a four-divergence to the TEGR Lagrangian e T'.
This behavior is evident in Eq. (12) because e R is invariant
under local Lorentz transformations.

Instead f(T') gravity, like other theories of modified grav-
ity, possesses extra degrees of freedom. In fact, except for
the case f(T) = T (i.e., TEGR) the dynamical equations
(11) are sensitive to local Lorentz transformations of the
tetrad. This implies that the dynamical equations not only
contain information about the evolution of the metric but also
about some extra degrees of freedom exclusively associated
with the tetrad that are not present in the undeformed theory
[17,18,23-25]. At the level of the f(7") Lagrangian, under a
local Lorentz transformation the Lagrangian changes as

e f(T) — e f(T + four-divergence). 14)

In this case the four-divergence term remains encapsulated
inside the function f spoiling the local Lorentz invariance.
The loss of the local Lorentz invariance implies the exis-
tence of a preferential global reference frame defined by the
autoparallel curves of the manifold that consistently solve the
dynamical equations. That is, Eq. (11) not only determine
the metric but they also choose some other characteristics
of the tetrad field, so endowing the spacetime with an abso-
lute parallelization. The tetrads connected by local Lorentz
transformations lead to the same metric but they are differ-
ent with respect to the proper parallel framework. Due to this
essential feature of f(7) theories, when looking for solu-
tions of a given symmetry it is quite complicated to make an
ansatz for the tetrad field. Actually, the symmetry helps us

to choose suitable coordinates to write the metric in a sim-
ple way. But this does not say much about the ansatz for the
tetrad. Indeed, a very common mistake is to force ef‘t to be
diagonal in the chosen coordinates. Frequently this choice
does not work as an ansatz for solving Eq. (11); it is not con-
sistent. For instance, in Ref. [15] it was shown that a diagonal
choice for FLRW universes only works in the flat case; open
and closed universes require non-trivial tetrads for solving
the f(T) dynamical equations.

In Ref. [16] it was proved that a naive diagonal tetrad
does not properly parallelize a static spherically symmetric
geometry in f(T') gravity. Therefore, we emphasize that the
symmetries of the geometry are not enough to visualize the
absolute parallelization of the manifold, being those quite
futile in order to obtain the right answer. Certainly, in the
context of f(T') theories, the proper frame which parallelizes
the spacetime for a given symmetry of the geometry must be
independent of the function f [49].

This article is aimed to find the parallelization for axially
symmetric solutions in f(7') theories. In particular, we want
to know whether Kerr geometry survives ornotin f(7) grav-
ity. To answer the question we should find the correct ansatz
to solve the Eq. (11). This search is greatly facilitated by
invoking the following argument concerning the survival of
certain TEGR solutions [16]: if a vacuum solution of f(T')
gravity has T = 0, then it will be a solution of TEGR as
well (a cosmological constant might be necessary). In fact,
the replacement of 7 = 0 in Eq. (11) leads to

v f(0)

—1 roQ HY A P
de ouee; ) +de, T, SIY —e) 70)

ur Pp

=0, (15)

which is a TEGR vacuum equation with cosmological con-
stant 2A = f(0)/f’(0). We can avoid the cosmological
constant term by restricting the family of functions f to
those having f(0) = 0, f'(0) # 0. In other words, we
can exploit the freedom to do local Lorentz transformations
in TEGR to look for a tetrad having T = 0; if we success,
then we will state that such solution survives in f(7') grav-
ity. Notice that TEGR vacuum solutions does not compels
T to vanish; R must vanish. Thus Eq. (12) says that T is
a four-divergence. So, the former argument is based on the
sensitivity of T to local Lorentz transformations. The above
argument means that TEGR vacuum solutions having 7 = 0
(or T = constant) cannot be deformed by f(7T") gravity. We
are going to show that this is the case for Kerr geometry, what
means that f(7T') gravity is unable to smooth the singularity
of a black hole [16].

4 Null tetrad approach

The search for a tetrad having 7 = 0, if it exists, is easier
by working with a null tetrad. Any orthonormal tetrad {e“}
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defines a null tetrad {n“} = {1, n, m, m}

1— e’ +eh) 0 (¥ —el)
2 2
e+ie)y _  (e2—ied)
_ , = —cr 16
V2 " V2 (1o

This tetrad form a null basis
1'1=0, nnn=0, m-m=0, m-m=0 a7

but it is not orthonormal

Il'n=1, m-m=-1, - m=0, n-m=0. (18)

We can solve {e“} in Eq. (16) and replace in Eq. (4) to get
the metric in terms of a null tetrad

Suv = Nabnn, (19)

where 7, 1S now

01 0 O
10 0 O
1ww={00 0 -1 (20)
00 -1 0
Therefore, the metric reads
g=n®lI+Ixn—mxxm-—mm. 20

We are going to transform the tetrad {e’} of a given TEGR
vacuum solution to look for a tetrad having 7 = 0. This
procedure is equivalent to change {n“}. Since the geometry
(21) and the relations (17), (18) cannot be changed, a simple
try 1s

exp[A] <1 — 2m_r) exp[A] (1 + 2mr>
1 )y )y

Under the transformation (22), the vector sector of torsion
(the one appearing in the four-divergence) changes as

TH P —s T, P 4 (I"1° — n'n) 9, A(X). 25)

5 Kerr geometry with vanishing 7
In a proper chart, Kerr geometry [50,51] reads

5 2mr s 4mr
ds“=(1- > dt —i—Tdtdr

+4amr Sinzedtd 1_'_Zmr 42
—_— — r
> ¢ >

2
—2a sin®6 (1 +%) drdg — % d6?

2mr

— [2 sin? 0 + (1 + >a2 sin* 9] de¢?, (26)
where m is the mass of the black hole and ¥ = r>4a? cos? 6,
a being the angular momentum per unit of mass. In this
expression, coordinates x* = (¢, r, 0, ¢) are linked to the
usual Boyer-Lindquist coordinates ¥* = (7, r, 0, ¢) through
the relations

2mr

df =dr + 5 dr and

r24+a2—-2mr
a

dp =d¢ + —————dr. 27
¢ ¢+r2+a2—2mr s @7)

The geometry (26) can be written in the way (21) by using
the null tetrad

2mr . 5
exp[A] 1+T a sin“ 6

n, = — exp[—A] —exp[—A] —exp[—A] a sin” 6 , (28)
V2 0 0 r+iacost (r+iacosf)i sinf
0 0 r—iacos6 —(r —iacos@)i sin6
1 — exp[A(x)]], n— exp[—A(xX)]n. 22) where A = A(t,r, 0). Then, the Weitzenbock invariant
becomes

This change implies a local Lorentz boost along the direction
of e! with parameter y (x) = cosh[A(x)].

Since R = 0 for vacuum solutions, and we are looking
for solutions having 7 = 0, then Eq. (12) states that the
four-divergence will vanish as well

dp(eT", ) =0 (23)

Remarkably, Weitzenbock torsion (7) does not change under
global linear transformations of the basis. This implies that
even the null tetrad can be used to compute 7%, o

T“vp = nk (an;’) — 0,n%). (24)
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2 2 2 2 2
T =13 (5% —4d’cos0 (S +mr) —2r B2 4). (29)

So, there is a family of functions A(¢, r, 6) that realize the
vanishing of T,

¢ >
Me 7 6) = 5 (1 — 44d2cos?h %)Hl(n 0).
(30)

Therefore, the Kerr geometry is a solution of f(7) gravity.
In Ref. [52], an axially symmetric tetrad having null 7 was
also found by directly solving the vacuum f(7') equations.
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That Kerr tetrad not necessarily coincides with the one here
obtained due to remnant symmetries characterizing f(7)
solutions [53].

Notice that the freedom to choose the function A; can be
exploited for replacing t with 7 in Egs. (30) and (31). It should
also be pointed out that the function X is not well defined at
r = 0. In Kerr geometry, the region r = 0 is a circle where
0 plays the role of radial coordinate. The edge of the circle
(r = 0and 6 = m/2)is the Kerr ring singularity, but its inner
region is not singular. The solution in this region should be re-
elaborated according to the radial meaning of 6 coordinate.
Of course, the Schwarzschild tetrad is free from this problem
because the singularity at » = 0 is just a point. In this case,
the function A becomes

t

At r) =5

+ A1(r). 31)

6 Final comments

We have proved that the Kerr geometry survives as a solution
of f(T) gravity whenever the function f satisfies f(0) =0
and f/(0) # 0. We invoked the argument that any GR vac-
uum solution will remain a solution of f(7T) gravity if it
admits a tetrad for which the Weitzenbock invariant 7' van-
ishes. This argument was used in Ref. [16] for showing that
Schwarzschild geometry survives in f(7') theories. Here we
showed that the use of null tetrads can help to easily prove
the existence of a tetrad with vanishing 7" even if the symme-
try is not spherical but axial. We remark that 7 remains null
when passing from the null tetrad to an orthonormal tetrad
by means of the relations (16). This is because the torsion
T",, is invariant under global linear transformations of the
basis.

It should be emphasized that the simplicity of the demon-
stration given in Sect. 5 relies on a good choice of the null
tetrad. We started from the null tetrad associated with the
Kerr—Schild form of Kerr metric [50,51]

g=n,Q (o + fny) + I, + f ny) ®ny, —m,
®m, —m, ®m, = g, +2fn, ®n, (32)
(i.e., 1 = 1o + f no), where {ng} is a suitable null tetrad

for Minkowski metric g, that leaves Kerr gravity completely
encoded in the function f,

2mr

fr8) = ——

(33)

Then we applied the ansatz (22), and obtained a differential
equation for A by demanding the vanishing of the Weitzen-
bock invariant (29). This differential equation was particu-
larly simple because of a good choice of coordinates: we
used the chart employed in the Newman—Janis algorithm for

passing from a Schwarzschild solution to a Kerr solution
[54].

The obtained results show that f(T) theories are unable to
smooth black hole singularities. It would be of major interest
to know whether this conclusion can be extended to more
general geometries. On the other hand, it is well known that
this kind of singularities can be smoothed by means of a
different scheme of modified teleparallel gravity [15].
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