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ABSTRACT

Context. The evolution of the cluster abundance with redshift is known to be a powerful cosmological constraint when applied to
X-ray clusters. Recently, the evolution of the baryon mass function has been proposed as a new variant that is free of the uncertainties
present in the temperature-mass relation. A flat model with ΩM � 0.3 was shown to be preferred in the case of a standard cold dark
matter scenario.
Aims. We compared the high redshift predictions of the baryon mass in clusters with data for a more general class of spectra with
a varying shape factor Γ without any restriction to the standard cold dark matter scenario in models normalized to reproduce the local
baryon mass function.
Methods. Using various halo mass functions existing in the literature we evaluated the corresponding baryon mass functions for the
case of the non-standard power spectra mentioned previously.
Results. We found that models with ΩM � 1 and Γ � 0.12 reproduce high redshift cluster data just as well as the concordance model
does.
Conclusions. Finally, we conclude that the baryon mass function evolution alone does not efficiently discriminate between the more
general family of flat cosmological models with non-standard power spectra.
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1. Introduction

The growth of structure in the Universe is believed to be the re-
sult of gravitational collapse generated by the existence of tiny
departures from homogeneity and isotropy (presumably gener-
ated during inflation) in the primordial distribution of matter
(see e.g., Peacock 1999). The overdensity of matter in a partic-
ular comoving scale l evolves according to linear theory until it
reaches a value of δk ∼ 1, where we have used k ≡ |k| with k
the comoving wavevector that satisfies the relation |k| = 2π/l.
For later times the evolution is highly nonlinear and the forma-
tion of bound structures like galaxies and galaxy clusters takes
place. It is believed that this hierarchical process of structure
formation is still at work today. Press & Schechter (1974, here-
after PS) developed a semianalytical formulation to deal with
this regime and eventually predict the number of collapsed ob-
jects (often called virialized objects) of a given mass M (associ-
ated with the scale l) at a given redshift z, i.e. to determine the
so-called mass function. Interest in the PS approach has grown
in recent years because it appears to reproduce the results of
numerical simulations well (e.g. Efstathiou et al. 1988; White
et al. 1993; Lacey & Coley 1994) where the nonlinear regime
can be tested unambiguously inside the limits imposed by the
resolution of the simulation. Sheth & Tormen (1999) obtained
a different expression for the mass function by assuming an el-
lipsoidal collapse instead of a spherical one (as assumed in the
PS theory) and found better agreement between the model and
the numerical results. Sheth et al. (2001, hereafter SMT) present
an improved version of their 1999 work. Instead of working out
a semianalytical approach Jenkins et al. (2001, hereafter J01)

have introduced several fits to the numerical simulations using
different algorithms for the halo finder and for several kinds of
cosmologies. Further analyses have been made of these matters
such as, White (2002) and Warren et al. (2005). Of particular
interest is the evolution of the mass function with redshift that
has been shown to be sensitive primarily to the mass density
of the Universe (Blanchard & Bartlett 1998). This high sensi-
tivity allows us to use the evolution of the abundance of X-ray
clusters as a powerful cosmological test (Oukbir & Blanchard
1992). Recently, the baryon mass function (i.e., the number den-
sity of comoving objects with a given baryon mass) has been
advocated by Vikhlinin et al. (2003, hereafter V2003) as an use-
ful alternative and cosmological constraints were derived in the
context of standard cold dark matter (hereafter CDM) spec-
trum. V2003 have consequently concluded that cluster data fa-
vors a concordance-like Universe. This analysis seems to con-
flict with the study made by Blanchard et al. (2000) and with the
recent XMM-Newton Ω-project (Vauclair et al. 2003), which is
somewhat surprising because Sadat et al. (2005) found that gas
fraction in distant clusters within the XMM-Newton Ω-project
was consistent with a high-density Universe and not with a con-
cordance model. These two sets of analyses therefore suggest
that the baryon mass fraction should also be consistent with
a high-density Universe. The present paper aims to clarify this
issue. Here we study the more general class of spectra with
a varying shape factor Γ, without any restriction to the stan-
dard CDM model. In Sect. 2 we briefly review the PS formal-
ism and recall the results of SMT and J01. In Sect. 3 we intro-
duce the temperature-mass (hereafter T−M) relation, and we use
the different available expressions for the baryon mass function,
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normalized to local cluster data, to compare them with the high
redshift observations provided by V2003. Finally, we discuss our
main conclusion that data on the baryon mass function of clus-
ters can also be reproduced in a critical Universe with ΩΛ � 0,
indicating that there is no discrepancy in both approaches.

2. Mass functions of galaxy clusters

2.1. The PS formalism

The PS approach is based on the assumption of an initial
Gaussian overdensity field δ(x, zi) and a spherical model for the
subsequent collapse (Partridge & Peebles 1967). Let n(M, z) be
the comoving number density of objects with mass M at a given
redshift z. Then,

n(>M, z) =
∫ +∞

M

dn(M′, z)
dM′

dM′ (1)

is the number of collapsed objects of mass greater than M at
redshift z. The mass function resulting from these priors reads as
(for a detailed discussion see e.g. Blanchard et al. 1992)

dn(M, z)
dM

=
ρ0

M
dν
dM
F (ν). (2)

In this formula, ρ0 is the comoving background density of the
Universe, ν ≡ δc/σ(M, z), where δc is the linear overdensity
evaluated at the virialization time, σ(M, z) is the rms amplitude
of the matter fluctuations at a given mass scale M, and F (ν) is
a function taken as

F (ν) =

√
2
π

exp

(
−ν

2

2

)
(3)

in the original PS work. For an Einstein-de Sitter Universe, the
value for δc is approximately 1.69. This value is normally as-
sumed because of the weak cosmological dependence of the lin-
ear overdensity at virialization (e.g. Colafrancesco & Vittorio
1994). In order to evaluateσ(M, z) one has to smooth the density
field δ(x, z) with some known window function Wk for a given k.
The expression for σ(M, z) results in

σ2(M, z) =
∫ ∞

0

dk
2π2

k2|δk(z)|2F2[Wk], (4)

where F[Wk] is the Fourier transform of Wk, and |δk(z)|2 is the
power spectrum of δ(x, z). The most popular election for Wk is
a spherical top-hat in real space such that the relation between
the mass scale M and the comoving linear scale l is given by
l3 = 6M/πρ0. From Eqs. (2) and (4), it is easy to see that all cos-
mological dependence enters through the evolution of the linear
overdensity field of matter, so by setting its value adequately one
can apply this formalism to any cosmology of interest.

2.2. Improvements to PS theory

As mentioned in the introduction, SMT have introduced an im-
proved version for the mass function of collapsed objects. Their
approach is similar to that of PS, but instead of assuming
a spherical model for virialization, they used elliptical collapse
and obtained a somewhat different expression that agrees better
with N-body numerical simulations. The SMT expression reads
as follows

dn(M, z)
dM

= c

√
2a
π

ρ0

M
dν
dM

(
1 +

1(
aν2

)p

)
exp

(
−aν2

2

)
, (5)

Table 1. Different fits for f (σ, z) provided by J01 for different cos-
mological models and various halo finders. CM and HF stands for
Cosmological Model and Halo Finder respectively. f o f (a) refers to
a friend of friend algorithm with an interparticle separation a and so(∆)
refers to a spherical overdensity algorithm with contrast density ∆ (re-
spect to the background). All means all cosmological models listed in
Table 2 of J01 paper.

# A B C CM HF ∆

1 0.307 0.61 3.82 τCDM f o f (0.2) �180
2 0.301 0.64 3.88 ΛCDM f o f (0.164) �324
3 0.301 0.64 3.82 τCDM so(180) 180
4 0.316 0.67 3.82 ΛCDM so(324) 324
5 0.315 0.61 3.80 All f o f (0.2) �180

with a = 0.707, c = 0.3222, and p = 0.3. Setting a = c =
1 and p = 0 in this formula leads to the PS formalism. More
recently, J01 have found several fits to the mass function using
the results of their N-body numerical simulations. Specifically,
they consider the quantity

f (σ, z) ≡ M
ρ0

dn
dlnσ−1

(6)

that is parametrized assuming the following functional form mo-
tivated by the ansatz given by Eqs. (2) and (5):

f (σ, z) ≡ A exp
(
− ∣∣∣lnσ−1 + B

∣∣∣C)
, (7)

with A, B, and C the fitting parameters. In particular they use
two distinct ways of object grouping, namely friend-of-friend
and spherical-overdensity halo finders, for various types of cos-
mologies (see their paper for details). In Table 1 we give the dif-
ferent values of the fitting parameters in these several situations.
An important quantity related of these halo finders is the clus-
ter density with respect to the background Universe density (or
contrast density). In general, its value depends on the cosmol-
ogy and redshift. J01 assume a constant value for the contrast
density (see ∆ in Table 1) in order to get their fits.

3. Determination of Ω0

3.1. The temperature-mass relation

An unavoidable ingredient in the determination of the mass func-
tion for galaxy clusters was until recently the use of the T−M re-
lation, i.e. the relation between the cluster total (virial) mass and
the (observed) X-ray temperature. It allows determination of the
mass function so that its evolution can then be used to constrain
the value ofΩ0 (e.g. Oukbir & Blanchard 1992, 1997). Standard
scaling laws (e.g. Kaiser 1986) allow us to write the T −M rela-
tion as follows

TX = AT M

(
ΩM
∆(ΩM, z)

178

)1/3

M2/3
15 h2/3(1 + z), (8)

where ∆(ΩM, z) is the contrast density mentioned in 2.2 and h the
present Hubble constant in units of 100 km s−1 Mpc−1. The sub-
script 15 means that masses are taken in units of 1015 M�. AT M is
a normalization factor in that case. A known uncertainty exists
in AT M because the value that results from numerical simulations
is significantly different from the one based on the hydrostatic
equation (Roussel et al. 2000). Despite this, the T − M relation
has been applied in the past to link cluster observations (∝TX)
with cluster mass. A conservative approach to this was assumed
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by Vauclair et al. (2003) when using two extreme normalizations
in their analysis of the XMM-Newton Ω-project (Lumb et al.
2004). In particular, their conclusions are roughly independent
of the AT M value. However, Blanchard & Douspis (2005) have
recently introduced a procedure to remove this uncertainty. In
the next subsection we review the recent proposal by V2003 to
avoid the T −M normalization problem applied to the constraint
of Ω0.

3.2. The baryon mass function

This method relies on the standard assumption that the baryon
fraction within the virial radius in clusters should be close to the
average value in the Universe, i.e. fb � Ωb/ΩM (White et al.
1993). Using the baryon mass at a radius of constant baryon
contrast density (e.g. Vikhlinin et al. 1999) and the fact that, to
a first order, the baryon and total mass in clusters are trivially re-
lated by Mb = M fb, one can deduce the functional form Nb(Mb)
of the baryon mass function as

Nb(>Mb) = N
(
>Mb f −1

b

)
, (9)

where N(M) is the total mass function. Equation (9) allows us to
evaluate the baryon mass functions for different models accord-
ing to the various expressions presented in Sect. 2. By studying
the evolution of Nb(Mb) for high-z cluster data, we can constrain
the density parameter previous adjustment of the mass function
to the local cluster observations. In this last procedure, the shape
factor Γ of the power spectrum and theσ8 parameter (formula (4)
evaluated on a scale of 8 h−1 Mpc) can be fixed. It is worth noting
that the baryon fraction universality implies, for a cluster, that
the total matter density contrast equals the baryonic matter con-
trast, i.e. ∆ = ∆b, where b stands for baryonic. The most obvious
advantage of this method is that the baryonic mass is a quan-
tity that can be measured directly. We refer the reader to V2003
for details.

3.3. Standard CDM vs. Γ -varying spectra

In order to make the comparisons mentioned above, we used
the local (z � 0.05) and high-z (�0.5) cluster observations from
Voevodkin & Vikhlinin (2004, see their Table 1) and V2003 re-
spectively, where data is defined for ∆b = 324. When comparing
the reliability of a particular cosmology to cluster observations,
the value of h can be taken arbitrarily, because once the bary-
onic mass data is scaled properly (Mb ∝ h−2.25, Voevodkin &
Vikhlinin 2004), the only factor that determines the fit inside
the context of a particular cosmology, is the redshift evolution
of the mass function (previous constraint of the Γ and σ8 pa-
rameters using local cluster data, see Sect. 3.2). In our com-
parison we adopted two fiducial models: a concordance model
with ΩM = 0.3, Γ = 0.2, σ8 = 0.71, Ωb = 0.04, h = 0.71
and a model with ΩM = 1, Γ = 0.12, σ8 = 0.6, Ωb = 0.105,
h = 0.5. The first model is close to the preferred one accord-
ing to V2003 when fitted to the baryon mass function and its
evolution. The second one is the best fit model to X-ray cluster
data proposed by Vauclair et al. (2003). The baryon fractions
were taken to be the apparent value after computing the cor-
rections of depletion and clumping (Sadat & Blanchard 2001)
using the analysis of local clusters by Sadat et al. (2005), i.e.:
fb = Υ · Ωb/ΩM � 1.14 · Ωb/ΩM. When using a particu-
lar mass function that assumes another value for ∆b a correction
must be applied because of the distinct cluster mass definition.
To achieve this, a Navarro-Frenk-White (Navarro et al. 1996,

Fig. 1. Low and high redshift cluster data (z � 0.05 and z � 0.5 re-
spectively, h = 0.5) compared with various theoretical baryon mass
functions (dotted line: J01 # 1, dashed 3-dotted line: J01 # 3, solid line:
J01 # 5, dashed line: SMT, see Sect. 2). A Universe satisfying (ΩM,
ΩΛ) � (1,0) clearly fits the data for non-standard power spectra with
Γ = 0.12.

NFW96) universal profile for the structure of the CDM halos
in clusters was used assuming C = 5 (where C is the concen-
tration parameter defined in Eq. (3) of NFW96), giving typical
corrections for the baryonic mass on the order of 20%. The re-
sults of our comparisons can be seen in Figs. 1 and 2 where we
have plotted various of the expressions for the baryon mass func-
tion (see Sect. 2) in each graph. As can be seen in the figures,
the different functions lead to nearly identical behaviour for the
same values of Γ and σ8 up to z � 0.5. To get total agreement,
only a tiny change in these parameters is needed for each ex-
pression. We checked that in such a case the various expressions
lead to a very similar level of evolution, since almost identical.
We also noticed that V2003 have used a Υ varying parameter
with X-ray temperature that leads to better agreement in the pre-
dicted mass function at low masses. The validity of such a vari-
ation with X-ray temperature is questionable (Sadat et al. 2005)
and does not modify our conclusions. The most noticeable result
obtained in the comparison is that the evolution of the baryon
mass function in an Einstein-de Sitter cosmology (ΩΛ � 0) is
clearly consistent with the high redshift cluster data. Although
the amount of evolution is clearly not the same between differ-
ent cosmologies the baryon masses inferred from high redshift
data also differ in a way that accidentally compensates for the
evolution abundance effect.
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Fig. 2. Same as Fig. 1 but for the case of a fiducial concordance cos-
mology with h = 0.71 (dotted line: J01 # 2, dashed dotted line: J01 # 4,
solid line: J01 # 5, dashed line: SMT, see Sect. 2).

4. Discussion

We have found that a non-standard (Γ-varying) spectra can
reproduce the observed baryon mass distribution function both
for local and high redshifts in the case of an Einstein-de Sitter
cosmology just as well as the concordance model does. For
this, we used several formulas for the baryon mass function
and found that the results are essentially insensitive to the
expression used. It is important to recall that the V2003 analysis
is based on the assumption of standard CDM power spectra
for matter and on a particular value of the Hubble constant.
This assumption fixes the value of the shape factor essentially
in Γ � Ω0h (e.g. Peacock & Dodds 1994). Furthermore, as
they have used h � 0.65, i.e. a Hubble constant value near
the Hubble Key Project result (Freedman et al. 2001), they
would get a shape factor of Γ � 0.65 in an Einstein-de Sitter
Universe, which is very far from the value we get here for
the same cosmology, i.e. Γ = 0.12. It is well known that the
standard CDM model is ruled out in an Einstein-de Sitter
cosmology, which is the reason for needing a non-standard
CDM spectra in the ΩM � 1 case. This difference explains
the apparently conflicting conclusions between V2003 and the
present work. While the Einstein-de Sitter and concordance

models produce distinct cluster number counts for a flux lim-
ited survey (Vauclair et al. 2003) or for the temperature distri-
bution function evolution (Blanchard et al. 2000), once models
are properly normalized at low redshift, the baryon mass func-
tion does not differentiate among flat cosmologies, because the
inferred baryon masses are different, and this difference acciden-
tally and roughly compensates for the effect of number evolu-
tion. This kind of non-standard spectra with lower Γ on clus-
ter scales could have originated from different hypotheses on
the dark matter content and/or from the existence of some un-
known phase in the evolution of the Universe (like hot dark mat-
ter or quintessence) that could drive different power spectra for
matter. The initial power spectrum could also be altered from
a single power law by physics at the inflation period. We are
therefore lead to the final conclusion that present baryon clus-
ter data can be described equally well by either a concordance
or an Einstein-de Sitter (with a non-standard Γ value on cluster
scales) Universe implying that the baryon mass function is not
as effective as the evolution of the temperature function. This
removes the apparent discrepancies between the conclusions in-
ferred from the XMM-Newton Ω-project (Vauclair et al. 2003;
Sadat et al. 2005) and V2003.
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