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a b s t r a c t

The study of cohesive subgroups is an important aspect of social network analysis. Cohesive
subgroups are studied using different relaxations of the notion of clique in a graph. For
instance, given a graph and an integer k, the maximum edge subgraph problem consists of
finding a k-vertex subset such that the number of edgeswithin the subset ismaximum. This
work proposes a polyhedral approach for this NP-hard problem. We study the polytope
associated to an integer programming formulation of the problem, present several families
of facet-inducing valid inequalities, and discuss the separation problem associated to
these families. Finally, we implement a branch and cut algorithm for this problem. This
computational study illustrates the effectiveness of the classes of inequalities presented in
this work.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Social network analysis is an important tool to study the relationships and flows between people, organizations, and
other entities. Social networks are encoded by graphs with vertices representing the entities, and edges representing
interdependencies between them. An important aspect of social network analysis is the detection of cohesive subgroups,
which are subsets of actors among whom there are relatively strong, direct, intense, frequent, or positive ties [26]. Although
one could potentially define such a subgroup with the concept of clique, this does not provide a full picture because in
practice missing edges frequently exist but that is not a strong enough reason to claim that two vertices cannot belong to
the same group. For example, if two individuals in a social network are not friends because they fought but share most
of their friends, they would belong to the same social group. For this reason, it is more satisfactory to define a cohesive
subgroup using a relaxation of the definition of clique.

Let G = (V , E) be the graph that represents the social network of interest. One possible approach to study cohesive
subgroups is the use of quasi-cliques, which are subgraphs with a pre-specified minimum edge density. Here, the density of
a subgraph is the quotient between the number of edgeswith both endpoints in the subgroup and the total number of edges.
Formally, given a real number 0 ≤ γ ≤ 1, a subgraph G′

= (N ′, E ′) ⊆ G is a γ -quasi-clique if 2|E ′
|/(|N ′

|(|N ′
| − 1)) ≥ γ .

In the example of the social network of friends referred to earlier, missing relationships would represent that pairs of
individuals in the groupmay not be friends with each other. In earlier work, we strongly relied on quasi-cliques to study the
network of bilateral investment treaties signed between countries of the world [24]. Besides having used them to identify
cohesive subgroups, they also allowed us to compare different random topologies. Indeed, cliques are inexact because there
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is no guarantee that randomly generated edges will form the same cliques as in the original graph. Quasi-cliques, instead,
can capture the topological structure regardless of which particular random edges are present in the network.

Since quasi-cliques are characterized by their size and density, they have been studied by considering two formulations
that are dual of each other, much like other bi-criteria optimization problems. One can either be given (i) a specified edge
density γ ∈ [0, 1], and find the largest γ -quasi-clique, or be given (ii) a size k of a subgraph, and find the densest set of
k vertices. The second approach – the one we follow in this paper – is known in the graph and optimization literature as
the maximum edge subgraph problem (MESP) [4] or dense/densest/heaviest k-subgraph problem [12] or k-cluster problem [8].
Concretely, given an integer k < |V |, the MESP consists of finding a vertex subset A ⊂ V with |A| = k such that |E(A)| is
maximum, where E(A) = {ij ∈ E : {i, j} ⊂ A}.

The maximum clique problem reduces to the MESP, hence the latter is NP-hard [3]. Indeed, if the MESP can be solved
in polynomial time, then we can polynomially search the greatest k for which the answer to the MESP is a complete
subgraph, thus solving the maximum clique problem. This problem remains NP-hard even for some simpler classes of
graphs, such as comparability, triangle-free and chordal graphs [8]. The complexity of the problemmotivated [1,4,12,15,23]
to look for approximation algorithms and heuristics, [8,19,20] to consider restricted classes of graphs, and [6] to introduce
several integer programming formulations. In this work, we consider the polytope associated to the formulation MIP1
of [6]. We introduce several families of facet-inducing valid inequalities and discuss the separation problem associated to
these families. Note that [21,22], who independently considered a generalization of our problem, also present families of
inequalities that are facet-inducing. Some of those facets are related to ours, as we point out when we present our facets.
Although the main contribution of our paper lies with the study of the polytope and its facets, for completeness we also
perform a small computational study to test the empirical strength of the families of facets and comment onwhich aremost
effective computationally.

The remainder of this paper is organized as follows. Section 2 presents the formulation and studies some of its properties.
In Section 3,we introduce some classes of valid inequalities for this formulation, discuss inwhat situations they induce facets
of the associated polytope, and explore the computational complexity of the corresponding separation problems. Section 4
describes the implementation of a branch and cut algorithm based on these classes of valid inequalities and reports on our
computational results. Finally, we conclude with some remarks and directions for future research.

2. Integer programming formulation

To represent quasi-cliques, we introduce a binary vertex variable xi for every i ∈ V . We set xi = 1 if and only if the vertex
i belongs to the k-subset A ⊂ V , which defines a feasible solution. For every ij ∈ E, we introduce a binary edge variable
zij that satisfies that ij ∈ E(A) when zij = 1. Notice that zij and zji denote the same variable because edges are undirected.
With these definitions, the maximum edge subgraph problem can be formulated using the following integer program. To
be consistent with the literature, we refer to this formulation asMIP1.

max

ij∈E

zij (1a)

s.t.

i∈V

xi = k (1b)

zij ≤ xi ∀ij ∈ E (1c)

zij ≤ xj ∀ij ∈ E (1d)

xi ∈ {0, 1} ∀i ∈ V (1e)
zij ∈ {0, 1} ∀ij ∈ E. (1f)

Here, the objective counts the number of edges in the subgraph, the first constraint guarantees that the subgraph has the
desired size, and the second and third constraints imply that only edges with both endpoints in the subset can be selected.
Note that (1f) can be dropped from the formulation, thus letting the edge variables be continuous and free variables. In an
optimal solution, the edge variables will be binary automatically.

We define P(G, k) ⊆ R|V |+|E| to be the convex hull of the vectors (x, z) satisfying constraints (1b)–(1f). Moreover, we
let PLP(G, k) ⊆ R|V |+|E| be the linear relaxation of P(G, k), as given by constraints (1b)–(1d), 0 ≤ xi ≤ 1 for i ∈ V , and
0 ≤ zij ≤ 1 for ij ∈ E. The next result implies that the polytope does not lose more dimensions than the single one lost by
the equality constraint (1b). This proof uses standard arguments and is therefore omitted.

Theorem 1. The dimension of the polytope P(G, k) is |V | + |E| − 1.

3. Valid inequalities

Each of the following subsections introduces a class of facet-inducing valid inequalities for P(G, k) and studies the
complexity of the associated separation problem. All these classes arise from combinatorial structures in the original graph
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such as trees and matchings. These inequalities were designed by analyzing the facets of simple instances that allow a
complete characterization of the polytope and generalizing them to arbitrary instances using ideas from other problems
such as those studied in [9,25].

3.1. Neighborhood inequalities

We start with our simplest class of facet-defining inequalities, defined by a specific vertex and a subset of vertices. We
refer to the neighborhood of a vertex i ∈ V by N(i) := {j ∈ V : ij ∈ E}.

Definition 1. For a vertex i ∈ V and a set A ⊆ V \ {i} with |A| ≤ k− 2, a generalized neighborhood inequality associated with
the vertex i and the set A is defined by

j∈A

xj +


j∈N(i)\A

zij ≤ |A| + (k − |A| − 1)xi. (2)

A particularly simple case is given by a vertex i and the set A = ∅, from where we have that


j∈N(i) zij ≤ (k − 1)xi. We
refer to this inequality as the neighborhood inequality associated with vertex i. The neighborhood inequalities are equivalent
to the star subgraphs inequalities introduced by Sherali and Cole Smith [25] and to the star inequalities defined by Mehrotra
in [21]. The generalized neighborhood inequalities are a facet-inducing superclass of these inequalities.

The next result establishes conditions under which generalized neighborhood inequalities induce facets of P(G, k). They
require that either i is well connected or A is big enough. The case of k = |V | − 1 is excluded but that is not important
because the optimal solution to the MESP is easy to compute in that case.

Theorem 2. The generalized neighborhood inequality (2) is valid for P(G, k). Moreover, if |N(i) ∪ A| ≥ k and k ≤ |V | − 2,
then (2) is facet-inducing for P(G, k).

Proof. Let (x, z) ∈ P(G, k) ∩ Z|V |+|E| be a feasible solution. If xi = 0, then zij = 0 for every j ∈ N(i), and (2) is satisfied by
(x, z) because


j∈A xj ≤ |A|. If xi = 1, there remain at most k − 1 variables set to 1, which implies that

j∈A

xj +


j∈N(i)\A

zij ≤


j∈A

xj +


j∈N(i)\A

xj ≤ k − 1 = |A| + (k − |A| − 1)xi.

In both cases, the solution (x, z) satisfies (2). Since (x, z) is an arbitrary integer point in P(G, k), then (2) is valid for this
polytope.

Let F be the face of P(G, k) defined by (2) and suppose λT (x, z) = λ0 for every (x, z) ∈ F . We shall prove that (λ, λ0) is a
linear combination of the coefficient vector of the generalized neighborhood inequality (2) and the coefficient vector of the
model constraint (1b), thus showing that F is a facet of P(G, k).

Claim 1. λzjl = 0 ∀jl ∈ E : j, l ≠ i. Consider the feasible solution w1
= (x, 0) ∈ F , where w1

xa = 1 for all a ∈ A, w1
xj = 1,

w1
xl = 1, w1

xi = 0, and the number of vertices v ∈ V such that w1
xv = 1 is exactly k. Notice that j and l may be vertices in

A. This construction is feasible since |V | ≥ k + 2 and |A| ≤ k − 2. Since jl ∈ E, let w2
∈ F be obtained from w1 by setting

w2
zjl = 1 and keeping the remaining variables unchanged. Since both points belong to F , we have λTw1

= λ0 = λTw2,
implying λzjl = 0.

Claim 2. λxj = λxl ∀j, l ∈ V \ A : j, l ≠ i. Consider the feasible solution w1
= (x, 0) ∈ F , where w1

xa = 1 for all a ∈ A,
w1

xj = 1, w1
xl = 0, w1

xi = 0 and the number of vertices v ∈ V such that w1
xv = 1 is exactly k. This construction is feasible

since |V | ≥ k + 2 and |A| ≤ k − 2. Let w2
∈ F be obtained from w1 by setting w2

xl = 1, w2
xj = 0 and keeping the remaining

variables unchanged. Since both points belong to F , we have λTw1
= λ0 = λTw2, implying λxj = λxl .

Claim 3. λzij = λzil ∀j, l ∈ N(i) \ A. Consider the feasible solution w1
= (x, z) ∈ F , where w1

xa = 1 for all a ∈ A, w1
xi = 1,

w1
xl = 0,w1

xt = w1
zit = 1 for a subset of exactly (k−|A|−1) vertices inN(i)\(A∪{l}) including the vertex j, andw1

zij = 1. It is
easy to verify that this construction is feasible, since |N(i)\A| ≥ k−|A|. Letw2

∈ F be obtained fromw1 by settingw2
xl = 1,

w2
xj = 0, w2

zij = 0 and w2
zil = 1. Since λTw1

= λTw2, we obtain λzij + λxj = λzil + λxl . As j, l are vertices in V \ (A ∪ {i}), by
Claim 2 we know λxj = λxl , and thus we conclude λzij = λzil .

Claim 4. λzia = 0 ∀a ∈ A, ia ∈ E. Consider the feasible solution w1
= (x, z) ∈ F , where w1

xa = 1 for all a ∈ A, w1
xi = 1,

w1
xj = 1 for a subset of exactly (k − |A| − 1) vertices j ∈ N(i) \ A, and w1

zij = 1 iff j ∈ N(i) \ A and w1
xj = 1. It can be seen

that this construction is feasible, since |N(i) \ A| ≥ k − |A|. Let w2
∈ F be obtained from w1 by setting w2

zia = 1. Since a is
an arbitrary vertex of A, we conclude λzia = 0.
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Claim 5. λxa = λzij + λxj ∀a ∈ A, j ∈ N(i) \ A. Consider the feasible solution w1 as in Claim 4, constructed in such a way that
w1

xj = 0. Let w2
∈ F be obtained from w1 by setting w2

xa = 0, w2
xj = 1 and w2

zij = 1. Again, these constructions are feasible
since |N(i) \ A| ≥ k − |A|. Since both points belong to F , we have λTw1

= λ0 = λTw2, implying λxa = λzij + λxj .

Claim 6. λxl = λxi + (k − |A| − 1)λzij ∀j ∈ N(i) \ A, l ∈ V \ (A ∪ {i}). Consider the feasible solution w1
= (x, 0) ∈ F , where

w1
xa = 1 for all a ∈ A and w1

xt = 1 for a subset of exactly (k − |A|) vertices t ∈ N(i) \ A including the vertices j and l (all
the remaining x-variables are set to zero). It can be seen that this construction is feasible, since |N(i) \ A| ≥ k − |A| and
|A| ≤ k − 2. Let w2

∈ F be obtained from w1 by setting w2
xl = 0, w2

xi = 1 and w2
zit = 1 for the remaining (k − |A| − 1)

vertices t ∈ N(i) \ A with w1
xt = 1, and keeping the remaining variables unchanged. Since l ∈ N(i) \ A and Claim 3 implies

λzij = λzil for every j, l ∈ N(i) \ A, we conclude λxl = λxi + (k − |A| − 1)λzij .
We let α := λzij for j ∈ N(i) \ A, which does not depend on the choice of j because of Claim 3. We define β := λxr for

r ∈ V \ (A ∪ {i}), which is well-defined by Claim 2. From here, λxi = β − (k − |A| − 1)α by Claims 2 and 6, λxa = α + β
for every a ∈ A by Claim 5, and λzjl = 0 for every jl ∉ {ij : j ∈ N(i) \ A} by Claims 1 and 4. We conclude that λ is a linear
combination of the coefficient vector π of the generalized neighborhood inequality (2) and the coefficient vector π ′ of the
model constraint (1b); i.e., λ = απ + βπ ′. Let π0 and π ′

0 be the independent terms of (2) and (1b), respectively. For every
(x, z) ∈ F we have

λ0 = λT (x, z) = (απ + βπ ′)T (x, z) = απ T (x, z) + βπ ′T (x, z) = απ0 + βπ ′

0, (3)

hence (λ, λ0) is a linear combination of (π, π0) and (π ′, π ′

0), and (2) induces a facet of P(G, k). �

Note that if G is a star, then A can have k − 1 vertices (i.e., |A| ≤ k − 1) and still be facet defining.
We now study the separation problem associated with the generalized neighborhood inequalities. Considering an input

vector (x, z) ∈ PLP(G, k), this problem consists of determining whether the point (x, z) is separated by a generalized
neighborhood inequality or not. To prove that this problem is solvable in polynomial time, we need the following lemma.
For i ∈ V , we define N̄(i) := V \ ({i} ∪ N(i)) as the complement of the neighborhood of i.

Lemma 1. If the generalized neighborhood inequality associated with the vertex i and the set A is violated by the point (x, z) ∈

PLP(G, k), then the corresponding inequality associated with the vertex i and the set

A′
= A \ ({j ∈ A ∩ N(i) : xi + xj ≤ 1 + zij} ∪ {j ∈ A ∩ N̄(i) : xi + xj ≤ 1})

is also violated.

Proof. We show that, when sequentially removing the vertices in {j ∈ A∩N(i) : xi+xj ≤ 1+zij}∪{j ∈ A∩N̄(i) : xi+xj ≤ 1}
from A, the difference between the RHS and the LHS of the inequality never increases. Let j ∈ A and let A′

= A \ {j}. As the
generalized neighborhood inequality associated with the vertex i and the set A is violated, we know that

v∈A′

xv + xj +


v∈N(i)\A

ziv > |A| + (k − |A| − 1)xi. (4)

If j ∈ N(i), the generalized neighborhood inequality associated with i and A′ is violated if
v∈A′

xv + zij +


v∈N(i)\A

ziv > |A′
| + (k − |A′

| − 1)xi. (5)

The difference between the LHS and the RHS of (5) is at least the difference between the LHS and the RHS of (4) if and only
if xi + xj ≤ 1 + zij. This shows that we can safely remove from A the vertex j ∈ N(i) if xi + xj ≤ 1 + zij.

If j ∉ N(i), the generalized neighborhood inequality associated with i and A′ is violated if
v∈A′

xv +


v∈N(i)\A

ziv > |A′
| + (k − |A′

| − 1)xi. (6)

In this case, the difference between the LHS and the RHS of (6) does not decrease with respect to (4) if and only if 1− xi ≥ xj,
hence we can safely delete j from A if this property holds. As the vertex j ∈ A is an arbitrary vertex, the lemma follows. �

We are now in a position to address the separation of generalized neighborhood inequalities. If xi = 0, no such inequality
associated with the vertex i will be violated because


j∈A xj ≤ |A|. When xi > 0, Lemma 1 implies that we only need to

check the generalized neighborhood inequalities associated with the sets A described in the lemma. The following result
shows that Algorithm 1, a straightforward implementation of this idea, can separate this class in polynomial time.

Theorem 3. The generalized neighborhood inequalities can be separated in O(n2 log n) time using Algorithm 1.

Notice that the bottleneck of the algorithm, which defines the running time, is sorting the vertices with respect to ωj for
every vertex i with xi > 0.
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Algorithm 1 Separation of the generalized neighborhood inequalities (GNI)
Input: A point (x, z) ∈ PLP(G, k).
Output: A violated GNI, or a certificate that no such inequality exists.
for i ∈ V such that xi > 0 do

A = ∅

for j ∈ N(i) do
ωj = xj − zij

end for
for j ∈ V \ (N(i) ∪ {i}) do

ωj = xj
end for
for j ∈ V \ {i} in decreasing order of ωj do

if |A| < k − 2 and ωj > 1 − xi then
Add j to A

end if
end for
Check if the GNI associated with the vertex i and the set A is violated

end for

3.2. Matching inequalities

Wenow introduce another class of inequalities that use amatching (i.e., a maximal set of pairwise disjoint edges) instead
of a single vertex i.

Definition 2. Let A ⊆ V and let B be a maximal matching of E(V \ A). A matching inequality associated with the set A and
the matching B is defined by

i∈A

xi +

ij∈B

zij ≤
|A| + k − 1

2
. (7)

Matching inequalities are related to the odd-set inequalities introduced by Edmonds [9]. For our problem, though, we
consider edges instead of vertices, and we take into account the parity of k and allow the set A to be arbitrary.

The next results prove that matching inequalities are valid as long as |A| and k do not have the same parity, and that they
are facet-defining when the cardinalities of A and B have the correct values. Similarly to before, the case of k > |V | − 3 can
be solved in polynomial time so we can disregard that case. We will just prove that the inequality is valid; the proof that it
is facet-defining is similar to that of Theorem 2 and is deferred to the Appendix.

Theorem 4. The matching inequality (7) is valid for P(G, k) if |A| + k is odd. In addition, if k − 2|B| + 1 ≤ |A| ≤ k − 1 and
k ≤ |V | − 3, then (7) is facet-defining.

Proof. Let (x, z) ∈ P(G, k) ∩ Z|V |+|E| be an arbitrary feasible solution, and call r =


i∈A xi. Since B is a matching, we have
ij∈B zij ≤ (k − r)/2, hence

i∈A

xi +

ij∈B

zij ≤ r + (k − r)/2 = (r + k)/2. (8)

If r = |A|, since |A| + k is odd, the RHS of (8) can be replaced by (|A| + k− 1)/2, and the resulting inequality coincides with
(7). If r ≤ |A| − 1 then (8) dominates (7), hence the latter is a valid inequality for P(G, k). �

We now address the separation problem for this family of inequalities. Recall that the maximum weight matching
problem can be solved in O(|V |

3) time [10]. We define V (B) ⊆ V to be the set of endpoints of the edges in B.

Theorem 5. The matching inequalities can be separated in O(|V |
3) time if k is odd, and can be separated in O(|V |

4) time if k is
even.

Proof. Let us first consider the case when |A| must be even because k is odd. We consider the complete graph G′
= (V , E ′)

with edge weights wij = max{zij, xi + xj − 1} for ij ∈ E and wij = xi + xj − 1 for ij ∉ E. Let M ⊆ E ′ be a maximum-weight
matching in G′, and define EA = {ij ∈ M : wij = xi + xj − 1}. We have w(M) > (k − 1)/2 if and only if there exists some
violated matching inequality. For the forward direction, it suffices to consider the inequality associated with A = V (EA) and
B = M \ EA. Note that, as zij ≥ 0, we can always extend B to a maximal matching of G \ A. For the converse, add to the
matching B an arbitrary perfect matching of the complete graph induced by A. Finally, in the case when |A| must be odd, we
repeat the previous procedure |V | times by fixing each vertex i in A and by considering G′

\{i}. In this case, there exists some
violated matching inequality if and only if w(M) > k/2 − xi. �
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3.3. Forest inequalities

We now consider a family of inequalities defined over a subset of vertices and over a forest inside that subset.

Definition 3. Let A ⊆ V be a vertex subset with cardinality |V | − k + 1, and let T ⊆ E(A) be an acyclic edge subset of A. A
forest inequality associated with A and T is defined by

1 +


ij∈T

zij ≤


i∈A

xi. (9)

The theorem below states that this family of inequalities is always valid and it is facet-defining when paths in the forest
T are not too long. The proof that the family is facet-defining is not included because it is similar to Theorem 2.

Theorem 6. The forest inequality (9) is valid for P(G, k). In addition, if for every ij ∈ E(A) \ T there exists a path in T from i to j
of length at most k − 1, then (9) is facet-defining.

Proof. Let (x, z) ∈ P(G, k) ∩ Z|V |+|E| be a feasible solution. Letting M ⊆ T be the subset of edges ij in the forest such that
zij = 1, the LHS of (9) equals 1 + |M|. This value is upper bounded by |V (M)| because M is acyclic. If M is empty then, as
|V \ A| = k − 1, there must be at least one vertex i ∈ A such that xi = 1, so the inequality holds. If M is nonempty, the
inequality also holds because xi = 1 for every i ∈ V (M). Since (x, z) is an arbitrary integer point in P(G, k), then (9) is valid
for this polytope. �

The separation problem for forest inequalities, defined as follows, turns out to be NP-complete.
Forest inequalities separation
Instance: A graph G, an integer k and a point w = (x, z) ∈ PLP(G, k)
Question: Does w violate some forest inequality?

Theorem 7. Forest inequalities separation is NP-complete.

Proof. We can easily check that this problem belongs to the class NP, since we can nondeterministically generate a vertex
subset A ⊂ V and a forest T ⊆ E(A), and verify in deterministic polynomial time whether the forest inequality associated
with A and T is violated by the point w or not. To complete the proof, we construct a polynomial reduction from the edge-
weighted version of the r-cardtree problem [13] to Forest inequalities separation. An instance of r-cardtree is given by
a tuple (H, r, p), whereH = (VH , EH) is an edge-weighted graphwith weight functionwH : EH → R, r ∈ N is a nonnegative
integer such that r ≤ |VH |, and p ∈ R. An instance is affirmative when H contains a tree of exactly r edges whose weight is
less than p, and negative otherwise. This problem is known to be (strongly) NP-hard [13].

The edge weights can be assumed to be positive (if some of them are negative, let α = −min{wH(ij) : ij ∈ EH}, add α
to all the edge weights, and modify the value of p by adding rα). We can also trivially assume r > 2 and wH(ij) ≤ p for
every edge ij ∈ EH . Finally, notice that without loss of generality we can always assume |VH | > cr , where c ≥ 1 is a positive
number, by adding a suitable number of isolated vertices.

To reduce this instance to an instance of forest inequalities separation, we keep the same graph structure and construct
a feasible solution w for which the two problems will be equivalent. The goal is getting a violated forest inequality from w
when there exists a tree of cardinality r with weight less than p. We can safely assume that |VH | ≥ 2r + 4 (otherwise, we
add the necessary isolated vertices).

• Set the structure of the graph G(V , E) as the original one H(VH , EH). Set k = n − r , where n = |VH |.
• We construct a feasible solution w = (x, z) ∈ R|V |+|E|. To have all vertices with the same value, we set xi = 1 − r/n in

each vertex i ∈ V . From here, the RHS of (9) equals (r + 1)(n − r)/n.
• To get trees that violate (9) to have small cardinality, we need tomake z inversely correlatedwithweightswH . We choose

the functional form zij = 1 − ρ(wH(ij))r/n for a carefully constructed function ρ(w) = 1 + (w/p + 1)/(r + 1) ≥ 1.

The function ρ(w) above was specifically chosen to get the following important property, which follows after some
algebra:

ij∈T

wH(ij) < p ⇔ 1 +


ij∈T

zij >

i∈V (T )

xi. (10)

This construction is polynomial in the size of H . We now verify that w ∈ PLP(G, n − r) by checking that w satisfies
all the constraints of the relaxed polytope. Constraint (1b) is satisfied by construction, while (1c) and (1d) hold because
ρ(w) ≥ 1. Finally, the relaxed versions of (1e) and (1f) are verified because n ≥ 2r + 4 and wH(ij) ≤ p. Putting all
together,w ∈ PLP(H, n−r). To complete the proof,we show that the prescribed transformationmaps affirmative instances of
r-cardtree onto affirmative instances of Forest inequalities separation and conversely. In other words, we need to prove
that (H, r, p) is affirmative, i.e., there exists a tree T of r + 1 vertices whose edge weight is at most p, if and only if the point
w as constructed above violates a forest inequality.
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Algorithm 2 Heuristic for the separation of forest inequalities
Input: A point (x, z) ∈ PLP(G, k).
Output: A set of violated forest inequalities (which may be empty)
Construct the directed graph GH = (VH , EH) in the following way:

VH = {i ∈ V : 0 < xi < 1},
EH = {i → j : ij ∈ E, zij = xj > 0}.

Let R = {i ∈ V : xi = 0} and r = |R|.
Set S = ∅.
for i ∈ VH do

Using BFS build a tree T starting from vertex i until the tree has |V | − k + 1 vertices, or until no more vertices can be
added.
if T has at least |V | − r − k + 1 vertices then

The inequality associated with the edge set T and the vertex set A = V (T ) ∪ U , where U ⊆ R and |U| =

|V | − k + 1 − |V (T )|, is violated by 1 − xi.
Add the inequality to S.

end if
end for
Return S.

(⇒) By (10), we conclude that the forest inequality associated with A = V (T ) and the tree T is violated.
(⇐) Conversely, suppose that the forest inequality associated with the vertex set A and the forest F is violated. Set A is such
that |A| = r+1 and V (F) ⊆ A. If F is a tree spanning A, the claim follows. Otherwise, |E(F)| ≤ r−1. SincewG(ij) ≤ (n−r)/n
for every edge ij of G, and n > 2r , then 1 +


ij∈E(F) zij ≤ 1 + (r − 1)(n − r)/n ≤ (r + 1)(n − r)/n =


i∈V (F) xi, a

contradiction. Therefore, the transformation maps affirmative instances of r-cardtree onto affirmative instances of forest
inequalities separation and conversely, hence the latter is NP-complete. �

Since the separation problem for forest inequalities is NP-complete, we propose a heuristic procedure for tackling this
problem. Our heuristic, which is shown in Algorithm 2, decides which vertices to place in A by attempting to find trees that
violate a forest inequality. We let VH := {i ∈ V : 0 < xi < 1} and R := {i ∈ V : xi = 0}. First we construct a directed
graph GH on the vertices of VH , by adding a directed edge from vertex i to vertex j, only if the value of the variable zij equals
the value of xj. The algorithm tries to find a maximum cardinality spanning tree rooted at a vertex i ∈ VH . The construction
of GH guarantees that each vertex, with the exception of the root, has the same value as the directed edge entering it. If the
cardinality of the tree is |V | − k + 1, then we have found a violated inequality. If not, we can try to expand A by adding
vertices in R. Note that this will not affect the values at either side of the inequality, that will end up violated by 1 − xi. We
refer the reader to Section 4 for a discussion on the effectiveness of this heuristic in finding violated inequalities.

3.4. Tree inequalities

In this section we consider a family of inequalities that depends on a subset of vertices as before, but now we take a tree
induced by the vertices outside the subset. For a tree T , we define LT ⊂ VT to be the set of leaves of T and L̄T := VT \ LT to
be the set of interior vertices; i.e., L̄T is the set containing all the vertices i ∈ VT such that dT (i) > 1. We denote the number
of leaves of T by ℓ := |LT |.

In the sequel, we will use the following notation. For a subgraph H ⊆ G and a vertex i ∈ VH , denote by NH(i) := {j : ij ∈

EH} the set of neighbors of i in H , and by dH(i) := |NH(i)| the degree of i in H .

Definition 4. Let A ⊂ V be a (possibly empty) vertex subset with |A| < k. In addition, let T = (VT , ET ) ⊆ G \ A be a tree on
k − |A| + 1 vertices. A tree inequality associated with the subset A and the tree T is defined by

i∈A

xi +

ij∈ET

zij ≤ |A| +


i∈VT

(dT (i) − 1)xi. (11)

Consider T as a tree rooted at t , where t ∈ L̄T is an interior vertex. Assuming that T is not a star, it has at least one branch
containing two or more vertices. For any vertex j ∈ T , denote by Bj the branch containing the minimum number of vertices
among those containing at least two vertices.We let b(T ) be themaximum size of a branch of T when the tree is rooted in an
arbitrary interior vertex. This value equals maxj∈L̄T {|Bj|}. Note that Johnson et al. [17] andMehrotra [21] introduced a family
of facet-inducing inequalities, referred to as tree inequalities, that correspond to the case A = ∅ in (11). The inequalities (11)
provide a facet-inducing superclass of this family.

We are ready to prove that this family of inequalities is valid and conditions that guarantee that it is facet-defining.

Theorem 8. The tree inequality (11) is valid for P(G, k). Furthermore, if T is not a star, 2k − |V | − ℓ + 2 ≤ |A| ≤ k − 2, and
k + b(T ) ≤ |V | − 1, then (11) induces a facet of P(G, k).
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Proof. Let (x, z) ∈ P(G, k) ∩ Z|V |+|E| be a feasible solution. Let M = {ij ∈ ET : zij = 1} be the subset of the tree whose
edges have zij = 1, and let R = {r ∈ VT :


j∈NT (r) zrj < dT (r)}. Assume first that xa = 1 for every a ∈ A. Since

|VT | = k − |A| + 1, then R is nonempty. It suffices to show that


ij∈M zij ≤


i∈V (M)(dT (i) − 1)xi. As M is a forest, we
will prove that


ij∈Mt

zij ≤


i∈V (Mt )
(dT (i) − 1)xi holds for every maximal treeMt ⊆ M . Consider the treeMt as rooted in a

vertex q ∈ Mt such that q ∈ R. We know that such vertex q exists in every maximalMt , as T is a tree, R is nonempty andMt
is maximal. Then, q has at most dT (q)− 1 neighbors in T \ R so the inequality


i:iq∈E(T ) ziq ≤ (dT (q)− 1)xq holds. Nowmark

the edges iq ∈ E(T ) and traverse the remaining vertices in a BFS order rooted at q. Each vertex v has left at most dT (v) − 1
unmarked incident edges jv such that zjv = 1. This procedure can be repeated until no unmarked edges are left in M . As in
each step the partial inequalities hold, and no edges are left, then the inequality holds. Assume now that xa = 0 for some
a ∈ A. Hence,


a∈A xa < |A|. If R is nonempty, we have seen that


ij∈ET

zij ≤


i∈VT
(dT (i) − 1)xi, so the inequality will

hold. On the contrary, if R is empty, then xi = 1 for every i ∈ VT . Then,


i∈VT
(dT (i) − 1)xi = k − |A| − 1, so the RHS of the

inequality is k − 1. As there are at most k − |A| edges ij ∈ ET such that zij = 1, the LHS of the inequality is at most k − 1,
hence the inequality holds. Since (x, z) is an arbitrary integer point in P(G, k), then (11) is valid for this polytope.

Now we switch to proving that the inequality is facet-defining. Suppose that the hypotheses of the theorem hold. Let F
be the face of P(G, k) defined by (11), which satisfies λT (x, z) = λ0 for every (x, z) ∈ F . We shall prove that (λ, λ0) is a linear
combination of the coefficient vector of the tree inequality (11) and the coefficient vector of the model constraint (1b), thus
showing that F is a facet of P(G, k).
Claim 1. λzjl = 0 ∀jl ∈ E \ ET . To prove this claim, we partition E \ ET in three subsets.

• Claim 1a. λzjl = 0 ∀j, l ∈ V \ L̄T : jl ∈ E. Consider the feasible solution w1
= (x, 0) ∈ F , where w1

xa = 1 for all a ∈ A, and
the number of vertices v ∈ V \ L̄T such thatw1

xv = 1 is exactly k. This construction is feasible since |V | ≥ 2k+2−|A|−ℓ.
It also satisfies (11) with equality because w1

xa = 1 for every vertex a ∈ A and w1
xr = 0 for every vertex r having a

non-null coefficient in the RHS of the inequality. Assume, furthermore, w1
xj = w1

xl = 1, since |A| ≤ k − 2. Let w2
∈ F be

obtained from w1 by setting w2
zjl = 1 and keeping the remaining variables unchanged. Since both points belong to F , we

have λTw1
= λ0 = λTw2, implying λzjl = 0.

• Claim 1b. λzjl = 0 ∀j ∈ A, l ∈ L̄T : jl ∈ E. Consider the feasible solution w1
= (x, z) ∈ F , where w1

xa = 1 for all a ∈ A,
w1

xt = 1 for all t ∈ VT \ {s}, where s is an arbitrary leaf of T (i.e., s ∈ LT ), and w1
ztu = 1 for all tu ∈ ET , t, u ≠ s. Notice

that w1
∈ F , since the value of the LHS is k − 1 (|A| vertices from A plus the k − |A| − 1 edges in T ) and the value of the

RHS is |A| +


i∈VT
(dT (i) − 1) = |A| + 2(k − |A|) − (k − |A| + 1) = k − 1. Assume w1

xj = w1
xl = 1 and let w2

∈ F be
obtained from w1 by setting w2

zjl = 1 and keeping the remaining variables unchanged. Since both points belong to F , we
have λTw1

= λTw2, implying λzjl = 0.
• Claim 1c. λzjl = 0 ∀j ∉ A ∪ VT , l ∈ L̄T . Consider the feasible solution w1

= (x, z) ∈ F , where w1
xa = 1 for all vertices

a ∈ A, w1
xj = 1, w1

xt = 1 for all t ∈ VT \ Bl, w1
ztu = 1 for all tu ∈ ET , t, u ∈ VT \ Bl, and the remaining vertices in the

solution (if any) are chosen from V \ (A ∪ VT ). Recall that this is possible since |V | ≥ k + 1 + maxt∈L̄T {|Bt |}. Let w2
∈ F

be obtained from w1 by setting w2
zjl = 1 and keeping the remaining variables unchanged. Since both points belong to F ,

we have λTw1
= λTw2, implying λzjl = 0. Notice that if T is a star, the construction of w1 is not feasible. As |Bl| = 1,

by setting w1
xi = 1 for every i ∈ (VT ∪ A) \ Bl we already have k vertices, and thus we cannot set w1

xj = 1 for a vertex

j ∉ A ∪ VT . Even more, if i ∈ L̄T is the center of the star, then for every w = (x, z) ∈ F , wzij must be equal to zero, for
every j ∉ VT , and thus F may not be a facet of P(G, k).

Claim 2. λxi = λxj ∀i, j ∈ V \ (L̄T ∪ A). Consider the feasible solution w1
= (x, 0) ∈ F , where w1

xa = 1 for all a ∈ A, w1
xi = 1,

w1
xj = 0, and the number of vertices v ∈ V \ L̄T such that xv = 1 is exactly k. Let w2

∈ F be obtained from w1 by setting
w2

xi = 0, w2
xj = 1 and keeping the remaining variables unchanged. This construction is feasible since |V | ≥ 2k+ 2− |A| − ℓ.

Since both points belong to F , we have λTw1
= λTw2, implying λxi = λxj .

Claim 3. (a) λzij = λzlm ∀ij, lm ∈ ET , and (b) λxi = λxj − (dT (i) − 1)λzlm ∀i ∈ L̄T , j ∈ V \ (A ∪ L̄T ), lm ∈ ET . If |ET | = 1,
statement (a) is trivial, so we may assume that one of i, j belongs to L̄T and, w.l.o.g., we assume i ∈ L̄T . Consider T as rooted
in i. Let T1, . . . , Tq be the subtrees obtained from T \ {i} as in Fig. 1(a). As i ∈ L̄T , we know q ≥ 2. Since |V | ≥ k + 1 + b(T ),
for each 1 ≤ r ≤ q, |V | ≥ k + 1 + |Tr |. This allows us to build a feasible solution w1

= (x, z) ∈ F , in which w1
xa = 1 for all

a ∈ A, w1
xi = 0, w1

xd = 1 for all d ∈
q

r=1, r≠u Tr , w
1
zde = 1 for all de ∈

q
r=1, r≠u E(Tr), where Tu is an arbitrary subtree, and

the remaining |Tu| vertices are selected from V \ (A ∪ VT ) (see Fig. 1(b)). Let jr be the root of Tr , for r = 1, . . . , q. Let w2
∈ F

be obtained from w1 by setting w2
xv = 0 for some vertex v ∈ V \ (A ∪ VT ), w2

xt = 1 for some leaf t ∈ LT ∩ Tu. Since both
points belong to F , we have λTw1

= λTw2, implying λxv = λxt . Since i, v, u, and t are arbitrary,

λxv = λxt for every v ∈ V \ (A ∪ VT ), t ∈ LT . (12)
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(a) Rooted tree with root i and
subtrees T1 , T2 and T3 .

(b) A feasible solution w1 . Vertices in gray are present in the
solution, vertices in black are not. In this solution, w1

xa = 1 for all
a ∈ A, w1

xi = 0, w1
xd = 1 for all d ∈ T2 ∪ T3 , w1

zde = 1 for all
de ∈ E(T3), and the remaining |T1| = 2 vertices are selected from
v ∈ V \ (A ∪ T ).

Fig. 1. Examples of the concepts involved in the proof of Claim 3.

Now, let w3
∈ F be obtained from w1 by setting w3

xv = 0 for some vertex v ∈ V \ (A ∪ VT ), w3
xi = 1, w3

zijr
= 1 for

r = 1, . . . , q, r ≠ u, and keeping the remaining variables unchanged. Since both points belong to F , we have λTw1
= λTw3,

implying

λxv = λxi +


1≤r≤q, r≠u

λzijr . (13)

Using the same construction as before but considering a different Tl (l ≠ u), we obtain λxv = λxi +


1≤r≤q, r≠l λzijr , thus
concluding λzijl

= λziju for every ju, jl ∈ NT (i). Pivoting on each internal vertex in the path from ij to lm in T , we obtain
λzij = λzlm and thus prove Part (a).

Notice that (13) and (12), together with Part (a) of the claim, imply λxi = λxj − (dT (i)− 1)λzlm , for i ∈ L̄T , j ∈ V \ (A∪ L̄T ),
lm ∈ ET .
Claim 4. λxa = λxj + λzil ∀a ∈ A, j ∈ V \ (A∪ L̄T ), il ∈ ET . By Claims 3 and 2, we can choose a convenient edge il and vertex
j, since the value λzil is the same for all the edges il of T and the value λxj is the same for all the vertices j of V \ (A ∪ L̄T ).
So, let l ∈ LT , and consider the feasible solution w1

= (x, z) ∈ F , where w1
xa = 1 for all vertices a ∈ A, w1

xt = 1 for all
t ∈ VT \ {l}. Let w2

∈ F be obtained from w1 by setting w2
xa = 0 for some a ∈ A, w2

xl = 1, w2
zil = 1 where il ∈ ET and keeping

the remaining variables unchanged. Since both points belong to F , we have λTw1
= λTw2, implying λxa = λxl + λzil .

With these claims, we now define α := λzij for any ij ∈ ET . Note that, by Claim 3a, the choice of ij does not alter the value
of α. We define β := λxi for i ∈ V \ (A∪ L̄T ). Again, this is well defined by Claim 2. Claim 4 implies that λxa = α +β for each
a ∈ A, Claim 3b implies that λxi = β − (|dT (i)| − 1)α for each i ∈ L̄T , and Claim 1 implies that λzij = 0 for every ij ∈ E \ ET .
We conclude that λ is a linear combination of the coefficient vector π of the tree inequality (11) and the coefficient vector
π ′ of the model constraint (1b); i.e., λ = απ + βπ ′. Let π0 and π ′

0 be the independent terms of (11) and (1b), respectively.
The calculation in (3) can be replicated for this case, concluding that (λ, λ0) is a linear combination of (π, π0) and (π ′, π ′

0)
and, therefore, (11) induces a facet of P(G, k).

Finally, if T is a star of center i, then the tree inequality (11) is dominated by (2), the generalized neighborhood inequality
associated with the same set A and the vertex i, hence (11) does not induce a facet of P(G, k) in this case. �

The separation problem for the tree inequalities can be defined as follows.
Tree inequalities separation
Instance: A point w = (x, z) ∈ PLP(G, k) and an integer k.
Question: Does w violate some tree inequality?
The problem Tree inequalities separation is NP-complete because it involves finding a minimal dependent set that

minimizes a linear function, which is an NP-hard problem [17]. We now outline an alternative, self-contained proof of this
result.

Theorem 9. Tree inequalities separation is NP-complete.

Proof Sketch. We go along the same lines as in the proof of Theorem 7, by showing that r-cardtree can be reduced to tree
inequalities separation. Given an instance (H, r, p), where H = (VH , EH) is an edge-weighted graph with non-negative
edge weights wH : EH → [0, p], we construct a solution w = (x, z) in the following way:

• Let k = r .
• Set wxi = k/n for every i ∈ VH .
• Set wzij = (k/n)(1 − wH(ij)/p) for every ij ∈ EH .
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It can be easily verified that 0 ≤ wzij ≤ k/n = wxi for every ij ∈ E. In this setting, it can be proved that


ij∈T wH(ij) <

p ⇔


ij∈ET
wzij >


i∈VT

(dT (i) − 1)xi. In addition, any affirmative instance of Tree inequalities separation must have
r = k − 1 edges, so it must be a tree, and hence |A| must be empty. �

Since the separation problem for the tree inequalities is NP-complete, we propose a heuristic procedure for separating
these inequalities (see Algorithm 3). The general idea is to build maximum-size trees that violate the inequality. If the tree
has k + 1 vertices, due to the construction of the directed graph GH , it will violate the inequality. Otherwise, we check if we
can add a set A such that the inequality associated with both A and T is violated.

Algorithm 3 Heuristic for the separation of the tree inequalities
Input: A point (x, z) ∈ PLP(G, k).
Output: A set of violated tree inequalities (which may be empty)
Construct the directed graph GH = (VH , EH) in the following way:

VH = {i ∈ V : 0 < xi},
EH = {i → j : ij ∈ E, 0 < zij, zij = xi}.

Set S = ∅.
for v ∈ VH do

Using BFS build a tree T starting from v until it has k + 1 vertices or no more vertices can be added to T .
if T has k + 1 vertices then

The inequality associated with the tree T and A = ∅ is violated by xv .
Add the inequality to S.

else
Set r = |V (T )|.
Let A be the set of (k − r + 1) vertices in VH \ T such that


a∈A xa is maximum.

if (k − r + 1) −


a∈A xa < xv then
The inequality associated with the tree T and the vertex set A is violated by xv +


a∈A xa − (k − r + 1).

Add the inequality to S.
end if

end if
end for
Return S

3.5. Disjoint matching inequalities

We now consider a more advanced structure defined by a matching and a tree.

Definition 5. Let M ⊆ E be a matching such that 0 < |M| < (k − 1)/2 and let T = (VT , ET ) ⊆ G be a tree on k − 2|M| + 1
vertices from V \ V (M). A disjoint matching inequality associated with the tree T and the matchingM is defined by

ij∈M

zij +

ij∈ET

zij ≤ |M| +


i∈VT

(dT (i) − 1)xi. (14)

This family of inequalities is valid and facet-defining under the conditions below. The proof is similar to that of Theorem8
and is deferred to the Appendix.

Theorem 10. The disjoint matching inequality (14) is valid for P(G, k). Furthermore, if 2k < |V | + 2|M| + ℓ, and k + b(T ) ≤

|V | − 1, then (14) induces a facet of P(G, k).

It can be seen that the separation problem related to this family of inequalities is NP-complete.We omit the proof because
it follows the same lines as that of Theorem 9. Moreover, one can provide a heuristic that addresses the separation problem
using the ideas of Algorithm 3.

4. The branch and cut algorithm

This section briefly describes the implementation of a branch and cut (B&C) algorithm based on the polyhedral results
presented in Section 3. We employ the formulation MIP1 described in (1a)–(1f), strengthened with all neighborhood
inequalities associated with vertices of degree at least k. Recall that the neighborhood inequality associated with a vertex i
is a particular case of the generalized neighborhood inequality associated with the vertex i and the set A = ∅. Theorem 2
proves that it is facet-inducing if |N(i)| ≥ k, and hence the restriction on the degree used for the strengthening.
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The B&C procedure dynamically adds cuts generated from generalized neighborhood inequalities (2), matching
inequalities (7), forest inequalities (9), tree inequalities (11), and disjoint matching inequalities (14). To separate these
inequalities, we implemented the algorithms presented in the corresponding sections. For the matching inequalities, we
implemented both the exact algorithm described in the proof of Theorem 5 and a heuristic that constructs the maximum
weight matching using a greedy algorithm.

To exploit the potential structure in the fractional solutions at each node in the B&C tree, we also implemented a standard
primal heuristic based on solution rounding. We construct a feasible solution from each fractional one by selecting the
vertices associated with the k highest x-variables in the fractional solution, and by setting the z-variables accordingly.

Since the x-variables are sufficient for defining a feasible solution, we branch on these variables only. When performing
a branching step, we select a fractional x-variable and create two children vertices that force this variable to be 0 and 1,
respectively.

4.1. Computational experiments

The B&C procedure explained above was implemented under the ABACUS framework [16], using CPLEX 9.1 to solve the
linear relaxations. The experiments were performed on a CoreTM2 Duo CPU, running at 1.5 GHz with 1 Gb of RAM memory
and a 1 h time limit.

We divided the experiments in two phases. During the first phase, we focused on tuning the implementation of our B&C
procedure by selecting the families of inequalities that achieved the best performance. During the second phase, we tested
our B&C algorithm against CPLEX. We used CPLEX with default parameters in all cases to make the comparison fair.

For the computational study we selected instances of three different classes: random instances, well-known benchmark
instances and real-world graphs. To generate random instances of different sizes and edge densities, we employed the
NetworkX package [14] to produce two types of random graphs:
• Erdős–Rényi randomgraphs— ER(n, p): These is the simplest kind of randomgraph,where one fixes the number of vertices

and its density. Starting with an empty graph of n vertices, we connect each dyad with probability p, using independent
draws from a Bernoulli distribution with parameter p [11].

• Barabási–Albert random graphs— BA(n,m): Besides using ER random graphs, since the MESP frequently appears in social
networks analysis, we also selected graphs with topological structures that are similar to those from the real world.
Specifically, we generate scale-free graphs [2]. To construct these graphs, we start with a graph consisting of an isolated
vertex, and successively add vertices one at a time until a total of n vertices are added. At each step, we connect a new
vertex to m of the existing vertices using preferential attachment, i.e., the probability of selecting a given existing vertex
is proportional to its current degree [5]. The result is a scale-free network that has a power-law degree distribution.

For the second group, we selected some instances from the 1993 DIMACS challenge [18]. Although these instances were
submitted to the challenge with the goal of finding maximum cliques, the structure of both problems is similar enough
to make the library very appropriate for our purposes. Finally, we also included some instances representing Bilateral
Investment Treaties (BITs) that were introduced in [24]. These networks are snapshots of the world taken at different times.
Here, vertices represent countries and an edge is included whenever two countries signed a BIT by the date of the snapshot.
We generated graphs for years 1990, 1995, 2000, 2005 and 2007 to study the evolution of BITs in the world.

A first conclusion that can be drawn from our experiments is that it pays off to add the neighborhood inequalities to
the initial formulation. Strengthening the formulation in this way results in much tighter dual bounds. This was evidenced
by a reduction of execution time ranging between 40% and 90%. In addition, the strengthening allowed us to solve larger
instances because it prevented the computer from running out of memory in many cases because of the resulting pruning
of the branch and bound tree.

We also explored the effectiveness of different combinations of families of valid inequalities. To benchmark our cut
generation procedure, we implemented a simple branch and bound (B&B) solution under ABACUS. To this end, we created
instances of Erdős–Rényi and Barabási–Albert random graphs with different numbers of vertices and edge densities. We
created 25 instances for each set of parameters, tested the B&C algorithm with each family of inequalities alone, and
compared the execution times with those of the B&B algorithm. Table 1 illustrates some of these results.

Although all the families alone and most of the combinations presented a considerable improvement with respect to
the plain branch and bound algorithm, the best results were achieved when separating the generalized neighborhood
inequalities at each node of the B&B tree. Only one execution of Algorithm 1 is performed at each node, and the obtained
inequalities are added as cuts to the current subproblem (although they are valid globally). Making use of additional families
after having added cuts from this family proved ineffective because the extra cuts do not offset the time needed to identify
the violated inequalities.

According to our experiments, the execution times were highly influenced by the following three factors:
• The structure of the instance. The execution timesweremuch higher for ER graphs than for BA graphs, keeping the number

of vertices, the edge density and the value of k fixed.
• The edge density. As the edge density of the instance increases, so does the execution time. Bigger instances require

more storage memory and handling them requires more overhead. Nevertheless, this could be a limitation of our
implementation.



2584 F. Bonomo et al. / Discrete Applied Mathematics 160 (2012) 2573–2590

Table 1
Comparison between ABACUS B&B and ABACUS B&C enhanced with the GNI, tree, and forest inequalities. Times are in seconds and correspond to averages
over 25 random instances generated with the same parameters. The results for the matching inequalities are omitted since their performance was poor.
Times are reported in seconds, and ** specifies that the solver ran out of memory.

Instance m k B&B (time) B&C (time)
GNI Tree Forest

ER(30, 0.2) 93 6 20.89 4.72 22.15 30.34
ER(30, 0.4) 173 6 332.99 12.41 173.53 98.00
ER(30, 0.6) 254 6 ** 3.19 14.21 12.85
ER(30, 0.8) 354 6 ** 2.74 7.69 9.26
ER(40, 0.2) 129 8 402.62 10.43 47.92 38.97
ER(40, 0.4) 318 8 ** 58.85 218.89 128.12
ER(40, 0.6) 462 8 ** 4.40 15.58 15.45
ER(40, 0.8) 606 8 ** 3.64 5.92 7.30
ER(40, 0.2) 129 8 402.62 10.43 47.92 38.97
ER(40, 0.2) 129 10 407.99 26.05 64.68 63.00
ER(40, 0.2) 129 12 515.58 59.59 170.69 132.23
ER(40, 0.2) 129 14 401.48 91.66 76.46 186.24
BA(30, 2) 56 6 8.02 10.43 36.85 32.51
BA(30, 4) 104 6 12.33 18.85 69.33 64.29
BA(30, 6) 144 6 16.89 4.40 16.21 18.31
BA(30, 8) 175 6 110.16 3.64 9.57 10.28
BA(40, 2) 76 8 1.57 0.77 0.58 0.63
BA(40, 4) 144 8 150.76 3.52 10.11 7.73
BA(40, 12) 336 8 ** 8.10 26.50 20.68
BA(40, 18) 459 8 ** 3.95 17.28 15.73
BA(40, 4) 144 8 150.76 3.52 10.11 7.73
BA(40, 4) 144 10 183.91 5.83 21.26 16.38
BA(40, 4) 144 12 231.82 12.37 37.88 35.24
BA(40, 4) 144 14 217.76 9.28 29.94 31.65

• The relation between k and the clique number ω(G). (The clique number of a graph is the cardinality of its largest clique.)
The case of k ≤ ω(G) can be solved efficiently, even for difficult instances, because in that case the problem consists of
identifying the vertices that compose the clique of cardinality k. However, as k increases and goes over the clique number,
the execution time increases.

We tested the following policies for selecting the branching variable: the first vertex that is not fixed, a random vertex,
the vertex with most neighbors, and the vertex with the highest value in the LP relaxation of the current B&B node. The best
performance was obtained with the last of those policies. The node selection rule was set to be DFS. Finally, the total time
spent in adding the inequalities was between 3% and 20% of the overall CPU time, depending on the size of the instance.
When the instance has a high number of edges, fewer nodes of the B&B tree are explored, hence the relative time devoted
to the separation routines is smaller.

To put our results in perspective, Mehrotra found that star inequalities alone reduced approximately 47% of the LP gap
(the average of Tables 1–3 in [21]). In our case, GNI inequalities, a superclass of Mehrotra’s star inequalities, provide a
reduction of approximately 73.4% of the computing time with respect to pure B&B. (Note that this is an understatement
because the average is taken among instances for which the pure B&B algorithm finished, which are relatively easier.) For
the case of tree inequalities, Mehrotra achieves approximately a 64% reduction of the LP gap, while our tree inequalities
(a superclass of Mehrotra’s) achieve a 13.6% reduction of computing time. Our conclusion is that the generalization
of neighborhood inequalities into the much wider class GNI, together with the complexity of its separation procedure
(Algorithm 1), provide quick and effective cuts that allow us to accelerate the branching procedure significantly.

4.2. Comparison with CPLEX

We tested our implementation by comparing its performance against the running times obtained by CPLEX 9.1 with
default parameters. Table 2 shows both the running times (in seconds) for CPLEX and for our implementation. The table
displays two groups of instances: the group on top contains easy instances for which k ≤ ω(G), while the second group
contains the harder instances for which k > ω(G). In all cases we selected k to be close to the clique number, either below
or above, to make the instances interesting but also not extremely hard. Note that both groups contain the same graphs, the
only change is the value of k. In the cases when we could not achieve optimality within the time limit, we report the duality
gap.

It can be observed in the table that CPLEX declared optimality only in a few cases. Our procedure could solve all but
one instance to optimality in the easy group, but also had a hard time solving the hardest instances in the second group.
Nevertheless, even for instances not solved to optimality, the gaps obtained by our procedure were orders of magnitude
better than those of CPLEX.
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Table 2
Comparison between CPLEX and our procedure. Times are reported in seconds, and ** specifies that the running time exceeded the time limit of 1 h.

Instance n m ω(G) k LP relax. root node CPLEX B&C
Time Gap (%) Time Gap (%)

Easy instances

ER(100, 0.2) 100 1,021 5 5 51.05 ** 47.67 10.53 –
ER(200, 0.1) 200 2,016 4 4 40.32 ** 275.45 75.17 –
ER(200, 0.2) 200 4,022 5 5 100.55 ** 716.30 503.75 –
BA(100, 10) 100 900 8 8 72.00 593.66 – 11.71 –
BA(200, 10) 200 1,900 8 8 76.00 ** 106.52 39.37 –
BA(200, 15) 200 2,392 8 8 95.68 ** 113.70 142.74

–
c-fat200-1 200 1,534 12 12 92.04 432.00 – 46.63 –
c-fat200-2 200 3,235 24 12 194.10 ** 138.41 88.00 –
hamming6_4 64 704 4 4 44.00 704.88 – 4.61 –
hamming6_2 64 1,824 32 30 855.00 ** 73.81 757.36 –
johnson8-2-4 28 210 4 4 30.00 2.20 – 1.03 –
johnson8-4-4 70 1,855 14 14 371.00 ** 204.47 303.92 –
keller4 171 9,435 11 8 441.40 ** 474.41 1587.79 –
san200_07_1 200 13,930 30 30 2098.50 ** 415.78 ** 4.68
MANN_a9 45 918 18 15 306.00 ** 84.66 22.26 –
brock200_1 200 14,834 21 10 741.70 ** – 407.37 –

BITs 1990 113 447 5 5 19.77 615.37 – 3.24 –
BITs 1995 158 1,192 7 7 52.81 ** 44.68 12.39 –
BITs 2000 173 1,994 12 12 138.31 ** 88.96 84.61 –
BITs 2005 179 2,460 14 13 178.65 ** 92.26 97.32 –
BITs 2007 179 2,529 15 14 197.79 ** 94.72 105.64 –

Hard instances

ER(100, 0.2) 100 1,021 5 7 71.47 ** 89.72 1108.02 –
ER(200, 0.1) 200 2,016 4 7 70.56 ** 211.14 ** 6.66
ER(200, 0.2) 200 4,022 5 7 140.77 ** 603.65 3061.24 –
BA(100, 10) 100 900 8 10 90.00 640.46 – 236.43 –
BA(200, 10) 200 1,900 8 10 95.00 ** 64.10 2494.92 –
BA(200, 15) 200 2,392 8 10 119.60 ** 119.39 2831.53 –

c-fat200-1 200 1,534 12 14 107.38 658.60 – ** 3.74
c-fat200-2 200 3,235 24 24 388.20 ** 38.63 1155.35 –
hamming6_4 64 704 4 7 77.00 ** 158.21 ** 6.35
hamming6_2 64 1,824 32 35 997.50 ** 54.30 ** 4.90
johnson8-2-4 28 210 4 8 60.00 60.73 – 625.32 –
johnson8-4-4 70 1,855 14 16 424.00 ** 192.81 ** 7.14
keller4 171 9,435 11 13 717.28 ** 354.59 ** 4.60
san200_07_1 200 13,930 30 32 2228.80 ** 410.80 ** 4.80
MANN_a9 45 918 18 18 367.20 ** 64.29 ** 1.32
brock200_1 200 14,834 21 25 1854.25 ** 611.50 ** 15.40

BITs 1990 113 447 5 7 27.69 2274.45 – 918.23 –
BITs 1995 158 1,192 7 8 60.35 ** 61.12 2936.26 –
BITs 2000 173 1,994 12 14 161.36 ** 73.41 ** 0.12
BITs 2005 179 2,460 14 15 206.14 ** 79.94 ** 0.09
BITs 2007 179 2,529 15 16 226.05 ** 85.10 ** 0.08

To further compare the two solution procedures, Table 3 presents the optimal (or best when the time limit was reached)
solution and the number of explored nodes in the B&B tree for the group of hard instances. The cuts allowed us to
significantly prune the B&B tree, and consequently our method always returned solutions that dominated those of the
standard procedure. While CPLEX explored thousands of nodes within the 1 h time limit, our algorithm explored less than
5% of this amount. This provides evidence of the power of the generated cuts. On the negative side, a limiting factor of our
implementation is the overhead imposed by the communication between ABACUS and CPLEX, whereas CPLEX does the B&C
procedure internally. This overhead, plus the extra time needed to generate cuts, limited the number of nodes that could be
explored within the time limit. For this reason, although our method can find good solutions relatively quickly, sometimes
it cannot prove optimality (e.g., with instance cfat200-1). The overhead also explains why in some cases when instances are
small (e.g., instances cfat200-1 and johnson8-2-4), CPLEX outperforms our method.

Finally, Table 4 shows how the performance of both our CPLEX and our B&C procedures varies as we change the value of
k, for the DIMACS benchmark instances we considered above. These experiments were made for values of k greater than ω.
As expected, the gap in our method increases as k increases, but the B&C still outperforms CPLEX in most cases.

Going back to the original motivation of computing quasi-cliques to determine the cohesiveness of groups of countries
with respect to their signature of Bilateral Investment Treaties, looking at the output in Table 3, we can see how in the
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Table 3
Primal bounds and number of nodes in the enumeration trees with CPLEX and B&C for the group of hard instances with k > ω(G). The column ‘Opt?’
displays a check mark if optimality was proved.

Instance n m k CPLEX B&C
Best sol. #Sub Opt? Best sol. #Sub Opt?

ER(100, 0.2) 100 1,021 7 17 44,300 18 391
√

ER(200, 0.1) 200 2,016 7 15 149,200 15 221
ER(200, 0.2) 200 4,022 7 15 44,800 19 161

√

BA(100, 10) 100 900 10 43 65,200
√

43 147
√

BA(200, 10) 200 1,900 10 36 107,600 41 239
√

BA(200, 15) 200 2,392 10 34 98,200 43 267
√

c-fat200-1 200 1,534 14 79 27,900
√

79 461
c-fat200-2 200 3,235 24 244 37,800 263 19

√

hamming6_4 64 704 7 15 502,700 16 2551
hamming6_2 64 1,824 35 554 303,000 577 605
johnson8-2-4 28 210 8 21 144,000

√
21 2417

√

johnson8-4-4 70 1,855 16 104 200,800 112 631
keller4 171 9,435 13 63 92,100 63 35
san200_07_1 200 13,930 32 388 4,100 415 17
MANN_a9 45 918 18 149 1023,200 151 1615
brock200_1 200 14,834 25 246 3,600 260 13

BITs 1990 113 447 7 18 897,100
√

18 331
√

BITs 1995 158 1,192 8 25 203,200 27 286
√

BITs 2000 173 1,994 14 86 135,200 90 498
BITs 2005 179 2,460 15 99 131,800 104 451
BITs 2007 179 2,529 16 111 127,600 119 439

Table 4
Comparison between CPLEX and our procedure for different values of the parameter k ≥ ω(G) for the considered DIMACS benchmark instances. Times are
reported in seconds, and ** specifies that the running time exceeded the time limit of 1 h.

Instance n m ω(G) k LP relax. root node CPLEX B&C
Time Gap (%) Time Gap (%)

c-fat200-1 200 1,534 12
13 99.71 598.73 – 2825.23 –
14 107.38 658.60 – ** 3.74
15 115.05 764.32 – ** 4.32

c-fat200-2 200 3,235 24
24 388.20 ** 38.63 1155.35 –
25 404.37 ** 39.04 3211.87 –
26 420.55 ** 39.46 ** 2.73

hamming6_4 64 704 4
5 55.00 ** 55.42 1495.62 –
6 66.00 ** 121.36 3182.34 –
7 77.00 ** 158.21 ** 6.35

hamming6_2 64 1,824 32
33 940.50 ** 68.23 2937.45 –
34 969.00 ** 59.24 ** 1.63
35 997.50 ** 54.30 ** 4.90

johnson8-2-4 28 210 4
6 45.00 10.24 – 87.45 –
7 52.50 31.36 – 249.44 –
8 60.00 60.73 – 625.32 –

johnson8-4-4 70 1,855 14
15 397.50 ** 198.45 ** 1.99
16 424.00 ** 192.81 ** 7.14
17 450.50 ** 188.23 ** 9.42

keller4 171 9,435 11
12 662.10 ** 427.55 ** 2.34
13 717.28 ** 354.59 ** 4.60
14 772.45 ** 328.62 ** 5.82

san200_07_1 200 13,930 30
31 2159.15 ** 412.27 4.95
32 2228.80 ** 410.80 ** 4.80
33 2298.45 ** 408.05 ** 5.67

MANN_a9 45 918 18
18 367.20 ** 64.29 ** 1.32
19 387.60 ** 59.34 ** 2.04
20 408.00 ** 56.81 ** 3.97

brock200_1 200 14,834 21
23 1705.91 ** 704.56 ** 2.64
24 1780.08 ** 672.30 ** 5.27
25 1854.25 ** 611.50 ** 15.40

last 20 years the world has become more cohesive because quasi-cliques are larger. In 1990 there was a quasi-clique of
cardinality 7 anddensity 86%. Thismeans that there is a group of 7 countries out ofwhich 86%of all combinations of countries
signed treaties with each other. For 1995, 2000, 2005 and 2007, the maximum densities for quasi-cliques with cardinalities
8, 14, 15 and 16 are 96%, 99%, 99% and 99%, respectively. In other words, except for the instance of 1990 that is missing 3
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treaties, our best solution consists of groups of countries that signed treaties with each other except for just one pair. The
speed of our procedure facilitates the construction of pareto-curves for the cardinality and density of quasi-cliques [24].

5. Concluding remarks

We have explored the maximum edge subgraph problem with a polyhedral combinatorics perspective, presenting a
polyhedral study of the integer programming formulation of [6]. We have introduced five families of valid inequalities for
the associated polytope, which show that the polytope admits facets with a simple combinatorial structure. For each family
of inequalities, we have determined the computational complexity of the associated separation problem and, based on this
complexity, we have presented either an exact or a heuristic separation procedure. Based on these families of cuts, we have
implemented a branch and cut algorithm for this problem. The objective of our computational studywas to test the strength
of our inequalities. Although we could not solve all the instances to optimality, we have obtained promising results, in most
cases improving the results given by CPLEX, and obtaining much smaller gaps.

As mentioned in the Introduction, the detection of quasi-cliques was an integral part of the analysis of the network of
bilateral investment treaties that appeared in [24]. In that study, we detected highly cohesive groups of countries by looking
at quasi-cliques, which was deemed more appropriate than having used regular cliques because for unexplained reasons it
is possible that some countries in the same bloc do not sign treaties with each other. Themachinery presented in the current
article allowed us to perform the necessary computations. For example, the clique number of the network of treaties signed
by 2005 is 14, while the solution of the MESP with k = 18 and the same network is a group of countries that misses only 5
out of 153 edges (3.3%) to become a clique. Raising k to 22 shows that the most cohesive group of countries misses 20 out
of 231 edges (8.7%) to become a clique.

We conjecture that some of the families introduced in this work can be generalized. In particular, we believe that the
tree inequalities and the disjoint matching inequalities can be generalized intro a single family. It would also be interesting
to implement the branch and cut algorithm directly within CPLEX to perform a more direct comparison to a pure branch
and bound algorithm.
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Appendix A. Additional proofs

A.1. Proof of Theorem 4

Here, we prove a result that implies Theorem 4. Indeed, notice that the last condition of this result does not impose any
restriction when k ≤ |V | − 3 because in that case the condition is automatically false.

Theorem 11. If k−2|B|+1 ≤ |A| ≤ k−1 then thematching inequality (7) is facet-defining, unless |V |−1 < |A|+2|B| < k+3.

Proof. Let F be the face of P(G, k) defined by (7) and supposeλT (x, z) = λ0 for every (x, z) ∈ F .We shall prove that (λ, λ0) is
a linear combination of the coefficient vector of thematching inequality (7) and the coefficient vector of themodel constraint
(1b), thus showing that F is a facet of P(G, k). Notice that every solution (x, z) ∈ F has


i∈V\(A∪V (B)) xi ≤ 1 because when

(7) is tight we must have |A| − 1 ≤ r ≤ |A|. Furthermore, if i, j ∈ V \ (A ∪ V (B)) then ij ∉ E, since B is a maximal matching.
Claim 1. λzjq = 0 for every jq ∈ E \ B. Set M to be a subset of cardinality (k − |A| − 1)/2 of the matching B, noting that
the first condition in our hypothesis implies that 0 ≤ |M| < |B|. Consider the feasible solution w1

= (x, z) ∈ F , where
w1

xa = 1 for every a ∈ A, w1
zbc = 1 for every bc ∈ M , w1

xb = 1 for every b ∈ V (M), and w1
xi = 1 for exactly one vertex

i ∈ V \ (A ∪ V (M)). This construction is well defined because there must be some vertex outside A ∪ V (M). Using this
construction we can maneuver to have w1

xj = w1
xq = 1. We set w2 equal to w1 except for the coordinate w2

zjq = 1, which
was zero in w1. Since both points belong to F , we have λTw1

= λ0 = λTw2, implying λzjq = 0.

Claim 2. λxi = λxj for every i, j ∈ V \A. Consider the feasible solution w1
= (x, z) ∈ F as in Claim 1, making sure that vertex

j ∉ V (M). This is possible because the last condition of the hypothesis implies that there are at least three vertices outside
A ∪ V (M) (see the end of this paragraph). Let w2

∈ F be obtained from w1 by setting w2
xi = 0, w2

xj = 1 and keeping the
remaining variables unchanged. Since both points belong to F , we have λTw1

= λTw2, implying λxi = λxj . If there are more
than two edges in B \ M , this claim is valid for any two vertices in V \ A. Now, if there is exactly one edge in B \ M , since
there must be at least one vertex outside A ∪ V (B), this claim proves that all vertices in V (B) have a value of λ equal to that
of any of the unmatched vertices.
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Claim 3. λzql = λzij for every ql, ij ∈ B. Consider the feasible solution w1
= (x, z) ∈ F as in Claim 1, making sure that

ql ∈ M and ij ∉ M . Define w2
∈ F similarly but switching the roles of the two edges. Since both points belong to F , we have

λTw1
= λTw2. Looking at the coordinates where solutions differ, we obtain λxq + λzql = λxj + λzij . As q, j are vertices in

V \ A, by Claim 2 we know λxq = λxj , and thus we conclude that λzql = λzij .

Claim 4. λxa = λxj + λzij for every a ∈ A and every ij ∈ B. Consider the feasible solution w1
= (x, z) ∈ F as in Claim 1,

making sure that ij ∉ M . Let w2
∈ F be obtained from w1 by setting w2

xa = 0, w2
xj = 1, w2

zij = 1 and keeping the remaining
variables unchanged. Since both points belong to F , we have λTw1

= λTw2, implying that λxa = λxj + λzij .
We define α = λzij for any ij ∈ B. Note that, by Claim 3, the choice of ij does not alter the definition of α. We define

β = λxi for any i ∈ V \ A. Again, by Claim 2, the definition of β does not depend on the choice of i. From the definition of
α and β we obtain λxa = α + β by Claim 4 and λzjq = 0 for every jq ∈ E \ B by Claim 1. We conclude that λ is a linear
combination of the coefficient vector of the matching inequality (7) and the coefficient vector of the model constraint (1b).
A similar calculation as in the proof of Theorem 2 can be given to show that λ0 can be written as the same combination of
the independent terms of (7) and (1b), hence (7) induces a facet of P(G, k). �

A.2. Proof of Theorem 10

We prove that the family of disjoint matching inequalities is facet defining. The proof of its validity is very similar to
Theorem 8 and is not included.We use the same notations for leaves, interior vertices, and themaximum size of a connected
component of trees as in Section 3.4, when we worked with tree inequalities.

Proof. Suppose that the hypotheses of the theorem hold. Let F be the face of P(G, k) defined by (14), which satisfies
λT (x, z) = λ0 for every (x, z) ∈ F . We shall prove that (λ, λ0) is a linear combination of the coefficient vector of the
disjoint matching inequality (14) and the coefficient vector of the model constraint (1b), thus showing that F is a facet of
P(G, k).
Claim 1. λzrs = 0 ∀rs ∈ E \ (ET ∪ M). To prove this claim, we partition E \ (ET ∪ M) in three subsets.

• Claim 1a. λzrs = 0 ∀r, s ∈ V \ L̄T : rs ∈ E \ M . Consider the feasible solution w1
= (x, z) ∈ F , where w1

xm = 1 for all
m ∈ V (M), w1

zij = 1 for all ij ∈ M , and the number of vertices v ∈ V \ L̄T such that w1
xv = 1 is exactly k. This construction

is feasible since |V | > 2k − 2|M| − ℓ. This construction also satisfies (14) with equality, since w1
zij = 1 for every edge

ij ∈ M and w1
xi = 0 for every vertex i having a non-null coefficient in the RHS of the inequality. Assume, furthermore,

w1
xr = w1

xs = 1, since 2|M| < k − 1. Let w2
∈ F be obtained from w1 by setting w2

zrs = 1 and keeping the remaining
variables unchanged. Since both points belong to F , we have λTw1

= λ0 = λTw2, implying λzrs = 0.
• Claim 1b. λzrs = 0 ∀r, s ∈ V (M) ∪ VT : rs ∈ E \ (ET ∪M). Consider the feasible solution w1

= (x, z) ∈ F , where w1
xm = 1

for every m ∈ V (M), w1
zij = 1 for every ij ∈ M , w1

xl = 0 for one leaf l ∈ LT , w1
xt = 1 for all t ∈ VT \ {l} and w1

ztu = 1
for all tu ∈ E(T \ {l}). Notice that w1

∈ F , since the value of the LHS is k − |M| − 1 (i.e., |M| edges from M plus the
k − 2|M| − 1 edges in T \ {l}) and the value of the RHS is also k − |M| − 1. Assume w1

xr = w1
xs = 1 and let w2

∈ F be
obtained from w1 by setting w2

zrs = 1 and keeping the remaining variables unchanged. Since both points belong to F , we
have λTw1

= λTw2, implying λzrs = 0 as long as r, s ≠ l. As l in an arbitrary leaf of T , and every tree has at least two
leaves, the claim follows.

• Claim 1c. λzrs = 0 ∀r ∉ V (M) ∪ VT , s ∈ L̄T . Consider the feasible solution w1
= (x, z) ∈ F , where w1

zij = 1 for exactly
|M| − 1 edges ij ∈ M , w1

xi = 1 for i ∈ V (M) if and only if w1
zij = 1 for ij ∈ M , w1

xt = 1 for all t ∈ VT and w1
ztu = 1 for all

tu ∈ ET . Set w1
xr = 1 to complete the k vertices in the solution. Let w2

∈ F be obtained from w1 by setting w2
zrs = 1 and

keeping the remaining variables unchanged. Since both points belong to F , we have λTw1
= λTw2, implying λzrs = 0.

Notice that, in this case, it is possible for T to be a star.

Claim 2. λxr = λxs ∀r, s ∈ V \ L̄T . We prove it for two special cases below. The claim follows by transitivity because
V \ (V (M) ∪ VT ) is nonempty.
• Claim 2a. λxr = λxs ∀r, s ∈ V \ (V (M) ∪ L̄T ). Consider the feasible solution w1

= (x, z) ∈ F , where w1
xm = 1 for all

m ∈ V (M), w1
zij = 1 for all ij ∈ M , w1

xr = 1, w1
xs = 0 and the number of vertices v ∈ V \ L̄T such that w1

xv = 1 is exactly k.
This construction is feasible since |V | > 2k − 2|M| − ℓ. Let w2

∈ F be obtained from w1 by setting w2
wxr

= 0, w2
wxs

= 1
and keeping the remaining variables unchanged. Since both points belong to F , we have λTw1

= λ0 = λTw2, implying
λxr = λxs .

• Claim 2b. λxr = λxs ∀r ∈ V \ (V (M) ∪ VT ), s ∈ V (M). Consider the feasible solution w1
= (x, z) ∈ F , where w1

zij = 1 for
the |M| − 1 edges ij ∈ M with i, j ≠ s, w1

xi = 1 for i ∈ V (M) if and only if w1
zij = 1 for ij ∈ M , w1

xt = 1 for all t ∈ VT ,
w1

ztu = 1 for all tu ∈ ET , and w1
xr = 1. Let w2

∈ F be obtained from w1 by setting w2
wxr

= 0, w2
wxs

= 1, and keeping the
remaining variables unchanged. Since both points belong to F , we have λTw1

= λ0 = λTw2, implying λxr = λxs .
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Claim 3. (a) λzij = λzlm ∀ij, lm ∈ ET , and (b) λxi = λxj − (dT (i) − 1)λzlm ∀i ∈ L̄T , j ∈ V \ L̄T , lm ∈ ET . If |ET | = 1, statement
(a) is trivial, so we may assume that one of i, j belongs to L̄T and, w.l.o.g., we assume i ∈ L̄T . Consider T as rooted in i. Let
T1, . . . , Tq be the subtrees obtained from T \ {i}, and let Tu be an arbitrary subtree with 1 ≤ u ≤ q. As i ∈ L̄T , we know q ≥ 2.
Since |V | ≥ k + 1 + b(T ), for each 1 ≤ r ≤ q, |V | ≥ k + 1 + |Tr |. This allows us to build a feasible solution w1

= (x, z) ∈ F ,
in which w1

xt = 1 for all t ∈ V (M), w1
zts = 1 for all ts ∈ M , w1

xi = 0, w1
xd = 1 for all d ∈


1≤r≤q, r≠u V (Tr), w1

zde = 1 for
all de ∈


1≤r≤q, r≠u E(Tr), and the remaining |Tu| vertices are selected from V \ (V (M) ∪ VT ). Let jr be the root of Tr , for

r = 1, . . . , q. Let w2
∈ F be obtained from w1 by setting w2

xv = 0 for some vertex v ∈ V \ (V (M) ∪ VT ), w2
xt = 1 for some

leaf t ∈ LT ∩ Tu. Since both points belong to F , we have λTw1
= λTw2, implying λxv = λxt . Since i, v, u, and t are arbitrary,

λxv = λxt for every v ∈ V \ (V (M) ∪ VT ), t ∈ LT . (A.1)

Now, let w3
∈ F be obtained from w1 by setting w3

xv = 0 for some vertex v ∈ V \ (V (M) ∪ VT ), w3
xi = 1, w3

zijr
= 1 for

r = 1, . . . , q, r ≠ u, and keeping the remaining variables unchanged. Since both points belong to F , we have λTw1
= λTw3,

implying

λxv = λxi +


1≤r≤q, r≠u

λzijr . (A.2)

Using the same construction as before but considering a different Tl (l ≠ u), we obtain λxv = λxi +


1≤r≤q, r≠l λzijr , thus
concluding λzijl

= λziju for every ju, jl ∈ NT (i). Pivoting on each internal vertex in the path from ij to lm in T , we obtain
λzij = λzlm and thus prove Part (a).

Notice that (A.2) and (A.1), together with Claim 2 and Part (a) of this claim, imply λxi = λxj − (dT (i) − 1)λzlm , for i ∈ L̄T ,
j ∈ V \ L̄T , lm ∈ ET .
Claim 4. λzij = λzlq ∀ij ∈ M, lq ∈ ET . Consider the feasible solution w1

= (x, z) ∈ F , w1
xi = 0 for the vertex i, w1

xm = 1 for
the remaining vertices m ∈ V (M), w1

zmt
= 1 for mt ∈ M , m, t ≠ i, w1

xt = 1 for all t ∈ VT and w1
ztu = 1 for all tu ∈ ET . Let

w2
∈ F be obtained from w1 by setting w2

xl = 0 for some leaf l ∈ LT , w2
zlq = 0 for the corresponding edge lq ∈ ET , w2

xi = 1,
w2

zij = 1 for the corresponding edge ij ∈ M and keeping the remaining variables unchanged. Since both points belong to F ,
we have λTw1

= λTw2, and together with Claims 2 and 3 this implies that λzij = λzlq .
Defining α := λzij for ij ∈ ET and β := λxi for i ∈ V \ L̄T , we obtain that λzij = α for every ij ∈ M using Claim 4, and

that λxi = β − (|dT (i)| − 1)α for every i ∈ L̄T using Claim 3. Notice that λzjl = 0 for every jl ∈ E \ (M ∪ ET ) by Claim
1. We conclude that λ is a linear combination of the coefficient vector of the matching inequality (14) and the coefficient
vector of the model constraint (1b). A calculation similar to (3) shows that λ0 can be written as the same combination of the
independent terms of (14) and (1b), hence (14) induces a facet of P(G, k). �
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