
 

Some remarks about emission channels of non-Abelian vortices

Osvaldo P. Santillán *

Instituto de Matemática Luis Santaló (IMAS), UBA CONICET, Buenos Aires 1248, Argentina

(Received 5 May 2021; accepted 3 June 2021; published 30 June 2021)

As is well established, several gauge theories admit vortices whose mean lifetime is very large. In some
cases, this stability is a consequence of the topology of the symmetry group of the underlying theory. The
main focus of the present work is, given a putative vortex, to determine if it is non-Abelian or not by
analysis of its physical effects. The example considered here is the simplest one, namely, a SUð2Þ gauge
model whose internal orientational space is described by S2. Axion and gravitational emission are mainly
considered. It is found that the non-Abelian property is basically reflected in a deviation of gravitational
loop factor γl found in [T. Vachaspati and A. Vilenkin, Phys. Rev. D 31, 3052 (1985), C. Burden, Phys.
Lett. 164B, 277 (1985)]. The axion emission instead, is not very sensitive to non-Abelianity, at least for this
simple model. Another important discrepancy is that no point of the vortex reaches the speed of light when
orientational modes are excited. In addition, the total power corresponding to each of these channels is
compared, thus adapting the results of [R. Davis, Phys. Rev. D 32, 3172 (1985), M. Srednicki and
S. Theisen, Phys. Lett. B 189, 397 (1987), and M. Peloso and L. Sorbo, Nucl. Phys. B649, 88 (2003)] to the
non-Abelian context. The excitations considered here are simple generalizations of rotating or spike string
ansatz known in the literature [S. Gubser, I. Klebanov, and A. Polyakov, Nucl. Phys. B636, 99 (2002),
J. Russo, J. High Energy Phys. 06 (2002) 038, S. Frolov and A. Tseytlin, J. High Energy Phys. 06 (2002)
007, and R. Izhizeki and M. Kruczenski, Phys. Rev. D 76, 126006 (2007)]. It is suggested however, that
for certain type of semilocal strings whose internal moduli space is noncompact, deviations due to
non-Abelianity may be more pronounced.

DOI: 10.1103/PhysRevD.103.116031

I. INTRODUCTION

The dynamic of gauge vortices is a fascinating branch of
physics whose role is not yet well understood. Historically,
it was realized by Abrikosov that magnetic field lines play a
fundamental role in phase transitions in type low temper-
ature II superconductors [1], and these objects were further
studied in [2]. The dynamics of vortices in random
environment is also of particular importance in the physics
of high temperature superconductors [3–5].1 In addition,
the phenomena of pinning of vortices may also have
applications in the physics of neutron stars, as described
for instance in [7] and references therein. Abelian vortices
were intensively studied as sources of galaxy formation;
some classic works about this topic are [8–23].
One notable prediction related to such vortices is the

phenomena of linear confinement of magnets inside a low

temperature type II superconductor [1]. Based on these
phenomena, Mandelstam, Nambu and ’t Hooft suggested
that a dual Meissner effect in which the field lines are
chromoelectric, and the electric and magnetic charge are
interchanged, may explain the long standing question about
how quarks are confined inside the hadrons [24–26]. The
problem with this hypothesis is that it is not well under-
stood how to include objects like monopoles in ordinary
QCD, with SUð3Þ gauge group, in order to achieve this
mechanism.
The line of work suggested in [24–26] took a

great impulse with the work of Seiberg-Witten, in the
context of supersymmetric theories [27,28]. These authors
study the dynamics of light states of a SUð2Þ gauge theory
with N ¼ 2 supersymmetry. This theory admits very
massive monopoles, which become massless in certain
limits of the parameter space. The model posses a duality
that interchanges the electric and magnetic field and
charges

Ē ↔ B̄; g →
1

g
;

with g the Abelian coupling constant of the model. The
addition of certain term that breaks N ¼ 2 supersymmetry
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to N ¼ 1 induce monopole condensation by Abrikosov
lines. From the dual point of view, these lines are magnetic.
But in the original theory, they are electric. This means that
Seiberg and Witten found a realization of a supersymmetric
dual Meissner effect.
One drawback of the Seiberg-Witten scenario is that is

related to Abelian vortices; however it motivated a large
amount of work about non-Abelian ones. In the context of
supersymmetric theories, solutions of this type were found
in [29–34]. Some of these models admit non-Abelian
vortices when the s-quarks are the Higgs phase. These
vortices induce monopole condensation at weak coupling,
thus generalizing the Seiberg-Witten mechanism to the
non-Abelian case. Another remarkable feature that arises
in this context is the presence of phases that are not
identified neither with the Higgs, Coulomb, or confined
one [35]. In particular, the “instead of confinement” phase
considered in [36], in which the quarks and gauge bosons
of the model decay into monopole and antimonopole pairs
that form stringy mesons [37]. This phase is continuously
connected to the fully Higgsed phase. This bears a
resemblance with the Fradkin-Shenker scenario [38] gen-
eralized to the supersymmetric context, but with the
difference that the confined phase is replaced with the
“instead of confinement” one.
The vortices described above are related to N ¼ 2

supersymmetric gauge theories. Since their appearance,
there have been investigations about these objects in
theories with less supersymmetry [39–45]. In addition,
some advances have been reported in the area of semilocal
strings [46] applied to supersymmetric theories [47–50]. In
particular, an interesting link with critical superstrings was
pointed out in [51] and further worked out in [52–58].
These works conjecture that in the strong coupling regime,
and in some specific thin limit, the resulting low energy
theory can be identified with a IIA string over a target space
which is the product of four dimensional space with a six
dimensional conifold. The Minkowski space represent the
translational modes of the object, and the conifold repre-
sents internal modes of the vortex. At classical level, the
conifold is not represented by a Ricci flat metric, but the
conjecture takes into account quantum corrections. After
these corrections have been properly taken into account it is
believed that the Ricci flat (Calabi-Yau) metric will emerge.
The string theory techniques then may be applied in order
to study the spectrum of the states of the theory. More
details can be found in [52–58].
The physics of non-Abelian vortices are not only related

to supersymmetric theories, and have in fact applications
in ordinary QCD, even taking into account the drawback
with monopoles mentioned above. In particular, the study
of non-Abelian vortices has proven to be fruitful in the
so-called the color-flavor locked phase of QCD [59,60].
This phase is supposed to appear for QCD at very high
densities, such as the ones in the core of a neutron star.

In this phase the mean distance between two hadrons is
much less than its mean radius r ∼ fm, and is expected for
the quarks composing these composite particles to acquire
a large mobility. The relevant excitations in such high
density phase are sourced by quarks close to the Fermi
surface. These low energy excitations then have a very
large momentum, which implies that the system is
asymptotically free and the confined phase arguably does
not take place [61]. The gluons are now part of the
asymptotic spectrum of the theory and induce an attractive
interaction, giving rise to quark Cooper pairs which are
not color singlets. A very rough estimation of the resulting
gap is Δ ∼ 50–100 MeV, but there appear several correc-
tions to this value due to the high chemical potential μ or
the high temperature T of the neutron star. The resulting
state is symmetric under certain operations that inter-
change color and flavor simultaneously, a color-flavor
diagonal symmetry [62]. For this reason this phase
sometimes is referred as color superconductivity or
color-flavor locked phase. Details of these affirmations
may be found in the reviews [61,63] and references
therein, but is worthy to emphasize that the presence of
a gap may affect the transport properties of this region and
may influence the cooling rates or their rotational proper-
ties of a neutron star [64]. This phase, as well as other
hypothetical QCD phases, admit non-Abelian vortices, as
reviewed in [63]. Recent progress in the physics of these
vortices has been reported in [65–89]. The color-flavor
diagonal symmetry, quotiented by a suitable subgroup,
describes different inequivalent vortices. Therefore these
objects acquire a moduli, which is non-Abelian in nature.
Details of these affirmations can be found in [63] and
references therein.
The present work is focused on a simple and, at the

moment, academic problem. This problem is, given an
excited vortex, to understand if it is Abelian or non-Abelian
in nature by studying its emission channels. Particular
attention is paid here on axion emission and also on
gravitational waves. One of the main differences is that
non-Abelian vortices may invest part of its energy in
excitation of internal moduli. This in particular implies
that there are no points in the vortex reaching the speed of
light, as all the velocities are slowed for sourcing these
internal excitations. Another important difference is the
loop factor for gravitational radiation, whose value changes
when internal orientations are excited, as will be discussed
in the text. It should be mentioned that there exists an
earlier work that consider axion emissions for gauge groups
SUðNÞ [90], at strong coupling, using large N techniques.
In particular, this reference axion emission by a pair
monopole-antimonopole is connected by a non-Abelian
string, but the techniques are a bit different than those
considered in that reference.
The organization of this work is as follows. In Sec. II

some generalities about gauge theories admitting

OSVALDO P. SANTILLÁN PHYS. REV. D 103, 116031 (2021)

116031-2



non-Abelian vortices are stated. In Sec. III the dynamics
of these vortices is characterized and some solutions are
presented. In Sec. IV, the coupling to axion particles is
worked out and in Sec. V, formulas for the power radiated
in axions are presented. The explicit power radiated for the
presented solutions is estimated in Sec. VI. In Sec. VII, the
power radiated corresponding to gravitational wave emis-
sion is discussed, and, in particular, it clarifies how non-
Abelian excitations may affect it. Section VIII also contains
an axion radiation process, but in this case the internal
modes excitations play a more important role than in the
examples of Sec. VI. Section IX contains the discussion of
the obtained results.

II. SIMPLE EXAMPLES OF NON-ABELIAN
VORTICES

A. N = 2 supersymmetric gauge models

In this subsection, some basic features about super-
symmetric models and about the color-flavor locked
phase are briefly discussed, following [91] or [63].
The reader familiar with these subjects may skip to the
next subsection.

A typical (but not unique) form of a bosonic Lagrangian
for N ¼ 2 supersymmetric models, admitting non-Abelian
vortices as solutions, is the following [91]:

S ¼
Z

d4x

�
1

4g22
Fa
μνFaμν þ 1

4g21
FμνFμν

þ 1

g22
j∇μaaj2 þ

1

g21
j∂μaj2 þ Trj∇μΦj2

þ Trj∇μ
¯̃Φj2 þ VðΦ; Φ̃; aa; aÞ

�
: ð2:1Þ

Here the gauge group is generically SUðNÞ × Uð1Þ, and∇μ

is the covariant derivative in the adjoint representation of
the group

∇μ ¼ ∂μ −
i
2
Aμ − iAa

μTa: ð2:2Þ

The coupling constants g1 and g2 correspond to the Uð1Þ
and SUðNÞ sectors, respectively, and aa and ΦkA are spin
zero particles. The bosonic potential VðΦA; Φ̃A; aa; aÞ is
given by

VðΦA; Φ̃A; aa; aÞ ¼
g22
2

�
1

g22
fabcābac þ Φ̄ATaΦA − Φ̃ATa ¯̃ΦA

�
2

þ g21
8
ðΦ̄AΦA − Φ̃A

¯̃ΦA − Nξ3Þ2

þ 1

2

XN
A¼1

fjðaþ
ffiffiffi
2

p
mA þ 2TaaaÞΦAj2 þ jðaþ

ffiffiffi
2

p
mA þ 2TaaaÞ ¯̃ΦAj2g

þ 2g2jΦ̃ATaΦAj2 þ g21
2

����Φ̃AΦA −
N
2
ξ

����2; ð2:3Þ

with fabc the structure constants of the Lie algebra SUðNÞ.
The parameters ξi come from Fayet-Illopoulos terms. In the
following, the choices ξ3 ¼ 0, ξ2 ¼ 0, and ξ ¼ ξ1 will be
employed. By introducing the field

A ¼ 1

2
aþ Taaa; ð2:4Þ

the vacuum of the theory is parametrized as

hAi ¼ −
1ffiffiffi
2

p

0
B@

m1 … 0

… … …

0 … mN

1
CA: ð2:5Þ

For generic values of the parameter mN the subgroup
SUðNÞ is broken to Uð1ÞN−1. However, for the specific
choice of equal masses m1 ¼ m2 ¼ … ¼ mN , the classic
group SUðNÞ × Uð1Þ is not broken. The presence of the
Fayet-Illopoulos parameter induces the following nonzero
expectation values:

hΦkAi ¼
ffiffiffi
ξ

p 0
B@

1 0 …

… … …

… 0 1

1
CA; h ¯̃ΦkAi ¼ 0; ð2:6Þ

with k ¼ 1;…; N, and A ¼ 1;…; N. The fact that the
squarks ΦkA and the gauge field A acquire expectation
values proportional to the identity matrix implies that there
exist the remanent symmetry SUðNÞCþF

Φ→ UΦU−1; aaTa → UaaTaU−1; M→ U−1MU;

ð2:7Þ

with U an element of SUðNÞ, leaving invariant the vacuum
of the theory. Such type of situations were already
considered in the 70’s in another context by Bardacki-
Halpern [92]. The symmetry (2.7) is of fundamental
importance in the presence of vortices. The reason is
that vortices break the diagonal symmetry, and different
vortex solutions are then connected by a quotient
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Q ¼ SUðNÞCþF=I of the action (2.7)with the group I
leaving these vortex solutions invariant. This give rise
to internal moduli for these objects, described by this
quotient Q.
A description similar to the one given above holds

the color-flavor locked phase [59,60], with the Fayet-
Illopoulos parameter ξ replaced by the scale Δcfl ∼
50–100 MeV. The details will not be made explicit here;
they can be found for instance in the review [63].

B. The generic form of a simple non-Abelian vortex

The models described above admit vortex solutions in
general. In the following, the simplest type of non-Abelian
type of vortices will be considered namely, vortices with
moduli parametrized by the sphere Q ¼ S2. These vortices
appear for instance in gauge scenarios with SUð2Þ ×Uð1Þ
gauge group. The generic form for a vortex solution aligned
along the ẑ axis can be written as follows:

ΦkA ¼ ΔU
�
eiθϕ1ðrÞ 0

0 ϕ2ðrÞ

�
U−1;

AiðxÞ ¼
1

2
ϵij

xj
r2
½1− f3ðrÞ�Uτ3U−1; Az ¼ At ¼ 0: ð2:8Þ

Here the latin indices i ¼ 1, 2 correspond to the x and y
components of the SUð2Þ gauge fieldAi. The parameterΔ is
a characteristic energy scale of the system. It may be
represent the gap Δ ∼ 50–100 MeV of the color-flavor
locked phase or the square root of the Fayet-Illopoulos
parameter

ffiffiffi
ξ

p
. The scalars ΦkA of the model compose a

2 × 2 square matrix. The coordinates r and θ are the
standard polar coordinates on the plane defined by
x ¼ r cos θ, y ¼ r sin θ. The SUð2Þ matrix U is a global
one, that is, it does not depend on the space time coordinates
(t, r, θ, z). The following identity for these matrices:

Uτ3U−1 ¼ naτa; a ¼ 1; 2; 3; ð2:9Þ

is well known. The quantities na represent a unit vector on
S2, that is, a vector satisfying n2 ¼ 1. Thematrices τa are the
standard Pauli matrices. The vortex solution can be
expressed alternatively as

ΦkA ¼
�
eiθϕ1ðrÞ þ ϕ2ðrÞ

2

�
I þ

�
eiθϕ1ðrÞ − ϕ2ðrÞ

2

�
naτa;

AiðxÞ ¼
1

2
ϵij

xj
r2
½1 − f3ðrÞ�naτa; i ¼ 1; 2: ð2:10Þ

Therefore, it is seen that the different vortices of the model
are parametrized by the sphere S2. This sphere of course, is
not representing any geometry in the space R3 or in the
space-timeM4. Instead, it is a internal geometry describing
different group elements characterizing all the possible
vortex configurations. The function ϕ2ðrÞ describing the

scalar field in (2.8) is slowly varying. The function ϕ1ðrÞ
instead is not, and it is zero in the r ¼ 0 line. In addition,
ϕ1ðrÞ → 1 when r → ∞. For the supersymmetric case, the
energy for unit length (tension) of the vortex [91],

T ¼ 2πξ; ð2:11Þ

is independent on the chosen orientation na. For the color-
flavor locked phase, this tension is expected to be propor-
tional to the symmetry breaking scale Δcfl. It may roughly
estimated as [63]

T ∼
14ζð3Þ
72π3

μ2Δ2
cfl

T2
c

logLm: ð2:12Þ

Here Tc is the QCD critical temperature, of the order
Tc ∼ 100–150 MeV and ζðxÞ the Riemann zeta function.
The mass m is related to an UV cutoff giving the vortex
size core

lc ∼
1

m
∼ −

96π2T2
c

7ζð3Þ log
T
Tc

:

The cutoff L is an IR one, and is related to large but
finite dimensions of the system. The chemical potential μ is
this phase is assumed to be very high, of the order of
μ ∼ 300 MeV or even larger.
The vortex solution described above is static. The region

where ϕ1ðrÞ vanishes is a line, which is interpreted as the
string or vortex location. One of the tasks of the present
work is to study the decay channel of the vortex in axions.
For this purpose, it is mandatory to describe the couplings
between the axion a and the gauge vector field Ai. The
axion is a Goldstone boson and it is coupled to the vortex
by an interaction term,

Sa ¼
Z
M4

aðxμÞ
fa

TrðFμνF̃μνÞd4x; ð2:13Þ

with F̃μν the dual field strength corresponding to Fμν. The
axion is not usually coupled directly to the gauge field, but
this interaction is an effective one, induced by a triangle of
heavy quarks in a Adler-Bell-Jackiw Feymann diagram
[93–96].

III. VORTEX EXCITATIONS

A. The excited vortex in the Manton regime

Consider now a slightly excited vortex. The excitations
arise by prompting the moduli na of S2 described in (2.9) to
a slowly varying field naðz; tÞ. Another type of excitation is
obtained by deforming its shape. In this case the position of
the vortex can fluctuate with a displacement δxμðz; tÞ
around the static position r ¼ 0. For such excited vortex,
the region of vanishing ϕ1 is a now a string xμðυ0; υ1Þ with
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time varying position in R3. Here the coordinate υ0 is the
temporal one while υ1 is the spatial one. The coordinates υi

swap a two dimensional surface, denoted by Σ, which is
interpreted as the world sheet of the string. The equations of
motions for the excited vortex, in the slow field or Manton
approximation [97], were obtained in several references;
see for instance [91] and references therein. In order to
describe it, it is convenient to introduce six coordinates
sμ ¼ ðt; r; θ;ϕ;α; βÞ. The first four coordinates parametrize
the Minkowski space M4 and describe the translation
modes of the vortex. The last two coordinates describe
the orientational S2 field na by the relation

n1 ¼ sinαsinβ; n2¼ sinαcosβ; n3¼ cosα: ð3:1Þ

In these terms, the action describing the excitations of the
vortex is [91]

S ¼ T
Z ffiffiffiffiffiffiffiffiffi

−jhj
p

habgμν∂asμ∂bsνdτdσ: ð3:2Þ

Here gμν is the canonical metric of M4 × S2

g ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ
þ R2ðdα2 þ sin2 αdβ2Þ:

The physical interpretation of the radius R of the orienta-
tional sphere S2 deserve some comments. For the color-
flavor locked phase [63] it is given by R2 ∼ μ2T−1Δ−2

cfl with
T the vortex tension and μ the chemical potential of the
environment where the vortices is located. It is estimated as

R ∼
72π3

14ζð3Þ
T2
c

Δ4
cfl logLm

: ð3:3Þ

For the supersymmetric case instead, the radius is given by

R ∼
1

ξg22
; ð3:4Þ

with the coupling g2 defined in the Lagrangian (2.1). The
moral of these expressions is that, the larger the scale of
broken symmetry is, the smaller the radius of the S2 results. In
addition, hab denotes theworld sheet metric of the string. It is
an auxiliary field, as it does not contain any kinetic energy.
In order to solve the equations of motion arising from

(3.2), it is customary, although not mandatory, to employ
the conformal gauge

ffiffiffiffiffiffiffiffiffi
−jhjp

hab ¼ ηab ¼ diagð−1; 1Þ. In
the following the notation υ0 ¼ τ, υ1 ¼ σ will be employed.
The Lagrangian corresponding to (3.2) in the conformal
gauge is then

L ¼ ∂τt∂τt − ∂τr∂τr − r2∂τθ∂τθ − r2sin2θ∂τϕ∂τϕ − R2∂τα∂τα − R2sin2α∂τβ∂τβ

− ∂σt∂σtþ ∂σr∂σrþ r2∂σθ∂σθ þ r2sin2θ∂σϕ∂σϕþ R2∂σα∂σαþ R2sin2α∂σβ∂σβ: ð3:5Þ

On the other hand, the two conformal constraints of the model are

− ∂τt∂τtþ ∂τr∂τrþ r2∂τθ∂τθ þ r2sin2θ∂τϕ∂τϕþ R2∂τα∂ταþ R2sin2α∂τβ∂τβ

− ∂σt∂σtþ ∂σr∂σrþ r2∂σθ∂σθ þ r2sin2θ∂σϕ∂σϕþ R2∂σα∂σαþ R2sin2α∂σβ∂σβ ¼ 0; ð3:6Þ

and

−∂τt∂σtþ ∂τr∂σrþ r2∂τθ∂σθ þ r2 sin2 θ∂τϕ∂σϕþ R2∂τα∂σαþ R2 sin2 α∂τβ∂σβ ¼ 0: ð3:7Þ

The unperturbed string is given by τ ¼ t, σ ¼ z ¼ r cos θ,
ρ ¼ r sin θ ¼ 0, with α and β fixed. This in particular
implies that θ ¼ 0 or θ ¼ π.

B. Some simple excitations

Consider now perturbed solutions. In the following the
ansatz:

τ ¼ t; σ ¼ z; ϕ ¼ ωt; β ¼ νt;

r ¼ rðzÞ; θ ¼ α ¼ π

2
; ð3:8Þ

will be considered. This ansatz bears some resemblance
to classical string solutions considered for instance

in [98–100]. As now cos θ ¼ 0, this perturbation describes
z dependent oscillations in the radial cylindrical direction.
The second conformal constraint is identically satisfied for
this functional form of the excitation. Instead, the first one
is not, and yields

−1þ ω2r2 þ R2ν2 þ r02 ¼ 0:

Here the 0 refers to a derivative with respect to σ. On the
other hand, the equations of motion are simply

r00 þ ω2r ¼ 0:

The last two equations are consistent, since the second
arises by taking the derivative of the first with respect to σ.
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In addition,R2ν2 < 1, which means that the limit frequency
is ν ¼ R−1. The integration of the first equation throws the
following result:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p

ω
j sinωzj: ð3:9Þ

For an infinitely large string there is no constraint in ω. In
the following however, a large but finite string will be
considered, with size L much larger that its thickness and
with fixed ends. The presence of fixed endpoints requires
rðzþ LÞ ¼ rðzÞ, and this implies that ω ¼ 2πm=L with m
integer. At the end, it would be more desirable to consider
closed loops, as these are likely the main objects to appear
in physical applications. However, in order to deal with the
complications of non-Abelianity, we will assume that these
fixed end strings may approximate the excitations of a
closed loop with radius R ¼ L=2π. The task is now to
understand the energy loss of this object by axion emission.

IV. THE COUPLING OF THE AXION TO THE
ORIENTATIONAL AND TRANSLATIONAL

MODES OF THE VORTEX

In order to study the string energy loss by axion emission,
the couplings between the axion and the orientational and
translational modes of the vortex should be found. In order to
figure out the orientational couplings, consider an excitation
naðz; tÞ of the unit vector defined in (2.9). The gauge field
components Ai are assumed in this approximation to retain
the same functional dependence on the coordinates, except
that now na → naðz; tÞ. On the other hand, due to the
nontrivial dependence of na with respect to t and z, the
gauge field components Aα with α ¼ 0, 3 are turned on.
A proper ansatz for these components is [91]

Aα ¼ −iρðrÞð∂αUÞU−1:

Note that, if the dependence on the moduli na → naðz; tÞ is
neglected, then this expression vanishes identically, and the
solution (2.8) would be recovered. However, there are
remanent Uð1Þ symmetries that leave the vortex solution
invariant [91]. By a proper quotient of this redundant
action, it can be shown that gauge field components may
be written as [91]

2Aα ¼ −ρðrÞϵabcnb∂αncτa; α ¼ 0; 3: ð4:1Þ

The field strength tensor is calculated by the convention

Fμν ¼ ∂μAν − ∂νAμ − i½Aμ; Aν�:

It is convenient to write the components i ¼ 1, 2 of (2.8) as

Ai ¼ ϵijxjgðrÞnaτa; gðrÞ ¼ 1

2r2
½1 − f3ðrÞ�: ð4:2Þ

Then, by use of the convention just introduced, it can be
calculated from (4.2) that

F12 ¼ Fxy ¼ −½2gðrÞ þ g0ðrÞ�naτa:

In addition, one has that

Fαi ¼
�∂αna

r2
ϵijxjf3ðrÞ½1 − ρðrÞ� þ xi

2r
dρ
dr

ϵabcnb∂αnc
�
τa;

F30 ¼ Fzt ¼ −ρðrÞϵabc½∂znb∂tnc − ∂tnb∂znc�τa
þ ρ2ðrÞϵdbc½∂znb∂tnc − ∂tnb∂znc�ndnaτa:

In these terms, a simple calculation throws the following
result:

TrðFμνF̃μνÞ ¼ hðrÞϵabc½∂znb∂tnc − ∂tnb∂znc�na;

with hðrÞ a function of r whose explicit form is not very
relevant for the following purposes, except that is arguably
nonvanishing for a region of the size of the vortex δ.
From this expression, by taking (2.13) into account, the
following induced coupling between the axion and the
orientational modes:

Seffa ¼ αa

Z
M2

aðt; z; 0; 0Þϵabcna _nbn0cdzdt;

is obtained. Here αa is a coupling arising due to the
integration over the transversal coordinates x and y. It has
dimensions ½αa� ¼ time ¼ length in natural units. This
effective action can be expressed alternatively as

Seffa ¼ αa

Z
M4

aðxμÞϵabcna _nbn0cδðxÞδðyÞdx4: ð4:3Þ

Consider now a dynamic string, such that the region of
vanishing ϕ1 is a time varying line sμðτ; σÞ, as the one
described in (3.8) and (3.9). In this situation the Dirac delta
δðxÞδðyÞ is generalized to

δðxÞδðyÞ →
Z
Σ

ffiffiffiffiffiffiffiffiffi
−jγj

p
δ4ðxμ − sμðτ; σÞÞdτdσ; ð4:4Þ

being

γαβ ¼ ημν∂αsμ∂βsν; α; β ¼ τ; σ; ð4:5Þ

the world sheet metric. Then, with the help of (4.4), it is seen
that effective action (4.3) is a particular case of the following
general functional form:

Seffa ¼ αa

Z
Σ

Z
M4

aðxμÞϵabcna _nbn0c
ffiffiffiffiffiffiffiffiffi
−jγj

p
δ4ðxμ − sμðτ; zÞÞ

× dτdσdx4; ð4:6Þ
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or, after integrating in the spatial coordinates,

Seffa ¼ αa

Z
Σ
aðτ; zÞϵabcna _nbn0c

ffiffiffiffiffiffiffiffiffi
−jγj

p
dτdσ: ð4:7Þ

Here the dots correspond to derivatives with respect to τ.
The Formula (4.7) gives the coupling of the axion to the

orientational modes of the vortex. In particular, for the
solution (3.8) and (3.9) found above, it is obtained that
the determinant (4.5) is expressed as

−γ ¼ ðcos2 ωzþ R2ν2 sin2 ωzÞð1 − R2ν2Þ cos2 ωz; ð4:8Þ
after identifying z ¼ σ and t ¼ τ. These formulas will be
employed in the next sections.
On the other hand, a typical coupling between the axion

a and the scalar of the fields Φak of (2.8) is given by

Laq ¼ λa2TrðΦ̄AΦA − 2IΔ2Þ:
The terma2 is needed, since the axion is a pseudo-Goldstone
boson and an odd power will make the Lagrangian pseu-
doscalar. It is clear from (2.8) that this trace does not have
any dependence on U or, what is the same, on the orienta-
tional modes ni. Thus, this coupling will solely induce a
vertex between the axion and the translational modes. By
taking into account (2.8) and the fact that ϕ2 is slowly
varying with values near the unity while ϕ1ðrÞ tends to zero
quickly near r ∼ 0, the trace can be approximated by

TrðΦ̄AΦA − 2IΔ2Þ ¼ f2ðrÞΔ2 ≃ δ2Δ2δðxÞδðyÞ:
In the previous expression δ denotes the thickness of the
string, the function fðrÞ decays rapidly for r ≫ a and was
approximated by the Dirac delta in the last step. A para-
metrization invariant form of the previous formula, for a
nontrivial loop, is the following:

Seffaq ¼ λ

Z
a2TrðΦ̄AΦA − 2IΔ2Þd4x

≃ λΔ2δ2
Z ffiffiffiffiffiffiffiffiffi

−jγj
p

a2δ4ðxμ − sμðτ; zÞÞdτdσd4x: ð4:9Þ

The last expression gives the coupling between the axion
and the translational modes of the vortex.
It is convenient to remark that (4.9) gives rise to a single

axion emission, while (4.7) represents two axion emission.

V. SOME FORMULAS FOR AXION
EMITTED POWER

The couplings found in the previous section are funda-
mental for deriving the power emitted by single axion and
two axion emission. For single axion emission, the main
object to be calculated is transition amplitude hS0; ajSi
from an initial string state jSi to a final one jS0; ai.
This amplitude is calculated by use of Lehmann-

Symanzik-Zimmerman formulas, which shows as a result
that

hS0; ajSi ¼
Z

expðik · xÞhS0jð□þm2
aÞaðxÞjSid4x: ð5:1Þ

In the following, the rough approximation that jS0i ∼ jSi
will be employed, that is, the emission of a two axions does
not react back on the string. This is of course a simplifying
assumption since, at the end, the string excitations are
expected to decay completely. The operator involved
in (5.1) is calculated by means of the following formula:

ð□þm2
aÞaðxÞ ¼

∂L
∂a :

The right hand has two type of contributions, one from the
axion couplings to the translational modes and other due
to the orientational ones, but the translational ones do not
contribute to this process, as they involve two axion
emission. The coupling to the orientational modes is
obtained from (4.6); it is simply given by

∂L
∂a

����
o
¼ αa

Z
Σ
ϵabcna _nbn0c

ffiffiffiffiffiffiffiffiffi
−jγj

p
δ4ðxμ − sμðτ; zÞÞdτdz:

In these terms the amplitude (5.1) becomes

hS0; ajSi ¼ αa

Z Z
Σ
eik·xϵabcna _nbn0c

ffiffiffiffiffiffiffiffiffi
−jγj

p
δ4ðxμ − sμðτ; zÞÞ

× dτdzd4x: ð5:2Þ
The total radiated power by axion radiation in this case can
be calculated from the expression

PT ¼
Z

EjhS; ajSij2 d3k
2ð2πÞ3E : ð5:3Þ

In the last formula, T ∼ δð0Þ is the duration of the process,
which is assumed to be infinitely large.
Consider now the amplitude corresponding to two axion

emission hS0; a1; a2jSi. In this case, the translational modes
are the one contributing to the process. The corresponding
amplitude is

hS0; a1; a2jSi ¼
Z

expðik1 · xÞhS0; a2jð□þm2
aÞaðxÞjSid4x:

ð5:4Þ

From the coupling (4.9) of the axion to the translational
modes it is found that

ð□þm2
aÞaðxÞ ¼

∂L
∂a

����
t
¼ 2λaTrðΦ̄AΦA − 2IΔ2Þ

≃ 2δ2Δ2

Z ffiffiffiffiffiffiffiffiffi
−jγj

p
aδ4ðxμ − sμðτ; zÞÞdτdz:
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The searched amplitude is then

hS0;a1;a2jSi ¼ λΔ2δ2
ZZ

Σ
eiðk1þk2Þ·x

ffiffiffiffiffiffiffiffiffi
−jγj

p
δ4ðxμ− sμðτ; zÞÞ

×dτdzd4x: ð5:5Þ

The total radiated power in this case results in

PT ¼
Z Z

EjhS; a1; a2jSij2
d3k1

2ð2πÞ3k01
d3k2

2ð2πÞ3k02
; ð5:6Þ

where E ¼ k01 þ k02.

VI. EMITTED POWER FOR THE ROTATING
STRING INSPIRED ANSATZ

It is of interest to apply the general formulas described
above for the string solution (3.9). The string location, in
Cartesian coordinates, is parametrized as follows:

st ¼ t; sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p

ω
j sinðωzÞj cosðωtÞ;

sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p

ω
j sinðωzÞj sinðωtÞ; sz ¼ z: ð6:1Þ

In addition, n0a ¼ 0 for this ansatz which, together with (5.1),
implies that only the translational modes contribute to the
calculation of the decay. However, this does not mean that
the orientationalmodes are irrelevant, as they contribute to the
solution given above by the parameter R2ν2. In particular, for
R2ν2 ≠ 0 one has that j_sj < 1 which means that there are no
points in the string reaching the speed of light. This is a
characteristic feature for non-Abelian strings, and modifies
the stationary phase analysis of Reference [101], see also
[102]. In the following, the techniques developed in that work
will be modified for dealing with the present situation.
The amplitude (5.1), applied for the solution (3.9), is

explicitly given by

hS0; a1; a2jS

≃ 4λΔ2δ2
Z

∞

−∞

Z π
ω

0

eiEte−ikxs
x−ikysy−ikzz

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2ν2sin2ωzþ cos2ωzÞð1 − R2ν2Þcos2ωz

q
dzdt;

with E ¼ k01 þ k02 and k ¼ k1 þ k2 the sum of the energy
and the wave vector of the two axions, respectively. By
making the redefinition ki → ki=ω and E → E=ω, together
with the introduction of the new dimensionless variables
η ¼ ωz and ξ ¼ ωt, the last expression may be written as

hS0; a1; a2jS ≃
4λΔ2δ2

ω2

Z
∞

−∞

Z π
2

0

e−ikx
ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η cos ξe−iky

ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η sin ξðe−ikzη − eikzηÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2ν2sin2ηþ cos2ηÞð1 − R2ν2Þcos2η

q
eiEξdηdξ; ð6:2Þ

where very elementary parity properties of the trigonomet-
ric functions were used to obtain this expression. It is
important to remark that the square root, which corresponds
to the world sheet metric determinant, is independent on ξ.
This simplifies the calculation done below.
At first sight, the integral in ηmay be estimated by saddle

point methods and the integration in ξ may be performed
later on. The present author however, has found expressions
that he could not handle. For this reason, an alternative
method will be employed. The use of the identity

kx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p
sin η cos ξþ ky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p
sin η sin ξ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
sinðηÞ sinðξþ δÞ;

sin δ ¼ kxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ; cos δ ¼ kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q ; ð6:3Þ

together with the integral representation of the Bessel
functions of the first kind [103]

JnðλÞ ¼
1

2π

Z
π

−π
eiλ sinðuÞe−inudu; ð6:4Þ

yields the following Fourier expansion:

e−ikx
ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η cos ξ−iky

ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η sin ξ

¼
X∞
n¼−∞

einðδþπÞJn
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2x þ k2yÞð1 − R2ν2Þ
q

sin η
i
einξ:

ð6:5Þ

The uniform convergence property of Fourier series implies
that this equality can be integrated term by term. Thus, by
inserting the last expression into (6.2), the searched
amplitude becomes a sum of the form

hS0; a1; a2jSi ≃
4λΔ2δ2

ω2

X∞
n¼−∞

einðδþπÞδðE − nÞan;

with the coefficients an given by
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an ¼
Z π

2

0

ðe−ikzη − eikzηÞJn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2x þ k2yÞð1 − R2ν2Þ
q

sin η

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2ν2sin2ηþ cos2ηÞð1 − R2ν2Þcos2η

q
dη: ð6:6Þ

Note that this coefficients have purely imaginary values.
In addition, the property J−nðxÞ ¼ ð−1ÞnJnðxÞ valid for
integer n > 0, implies that

a−n ¼ ð−1Þnan:

For the special case R2ν2 ¼ 1 the property that Jnð0Þ ¼ 0
for n ≠ 0 implies that an ¼ 0 for n > 0. This is desirable, as
(6.1) implies that there will be no motion of the coordinates
of the string in this case. However, a0ð0Þ is not necessarily
zero, but it will be shown below that this term does not give
any contribution to the power radiated. In the terms given
above, the squared amplitude can be rewritten as

jhS0; a1; a2jSij2 ≃
32λ2Δ4δ4T

ω3

X∞
n¼0

δðE − nÞjanj2;

with T ¼ δð0Þ=ω being the duration of the process. As the
axion mass is assumed to be very tiny, the momentum can
be parametrized by a set of pair of polar angles

kxi ¼ jk0i j sin γi sin ζi; kyi ¼ jk0i j sin γi cos ζi;
kzi ¼ jk0i j cos γi; i ¼ 1; 2:

From here it is calculated that

P ¼ 32λ2Δ4δ2ω2

ZZ
Ek01dk

0
1dΩ1k02dk

0
2dΩ2

×
X∞
n¼0

δðE − nÞjanj2:

Here the solid angle dΩi ¼ sin γidγidζi was introduced,
with i ¼ 1, 2. Note that if R2ν2 then an ¼ 0 and a0 ≠ 0, but
the Dirac delta in the last expression forces P ¼ 0. This is
an important consistency test, as the resulting static string
should not radiate axions. By taking into account that
E ¼ k01 þ k20, the last integral reduces to

P ¼ 32λ2Δ4δ4ω2
X∞
n¼0

Z
n

0

nk01ðn − k01Þdk01dΩ1dΩ2janj2;

ð6:7Þ

where the coefficient an is given by (6.6) with

kx ¼ k01 sin γ1 sin ζ1 þ ðn − k01Þ sin γ2 sin ζ2;
ky ¼ k01 sin γ1 cos ζ1 þ ðn − k01Þ sin γ2 cos ζ2;
kz ¼ k01 cos γ1 þ ðn − k01Þ cos γ2: ð6:8Þ

Note that, if the coefficients an were about to be approxi-
mated by a constant value, then after integration (6.7)
would be a sum of terms proportional to n4. However, a
careful estimation of an should be performed, as these
coefficients may go to zero and change these powers into
something of the form nl with l < 4. In addition, not only
the coefficients should be estimated, but the integral of
janj2 over dΩ1dΩ2 as well. This analysis can be done by
studying limits of the Bessel functions JnðxÞ (6.6) involved
in the problem, as shown below.
For small arguments, the asymptotic behavior of the

Bessel functions of first kind is the following:

JnðxÞ ∼
1

n!

�
x
2

�
n
; x ≪ 1; n ≥ 0: ð6:9Þ

This implies in particular that Jnð0Þ ¼ 0 for n ≠ 0. For
large arguments instead, the following behavior holds:

JnðxÞ ∼
ffiffiffi
2

x

r
cos

�
x −

nπ
2

−
π

4

�

¼
ffiffiffiffiffi
1

2x

r �
eix−

inπ
2
−iπ

4 þ e−ixþinπ
2
þiπ

4

	
; x ≫ 1: ð6:10Þ

This formula is known to be valid for n2 < x, which is
known as the Fraunhofer regime. However, the limit that
will be of interest is the Fresnel limit for which n ≤ x ≤ n2.
The use of the last asymptotic formula in this regime is
dubious, and may introduce some considerable error. The
Fresnel regime is less studied [104], but it will be described
partially below.
The coefficients an introduced in (6.6) involve expres-

sions of the form

IðEÞ ¼
Z

b

a
fðγÞeiEϕðγÞdγ;

with fðγÞ and the phase ϕðγÞ continuous and differentiable
functions of the integration variable γ and E ¼ jkj. It is
known that in this case, for E→�∞, the integral IðEÞ → 0.
If the phase ϕðγÞ ≠ 0 in the interval of integration, then
IðEÞ may be approximated as in page 258 of [105]:

IðEÞ ∼ sgϕðγÞ
iE

�
fðbÞ
ϕ0ðbÞ e

iEϕðbÞ −
fðaÞ
ϕ0ðaÞ e

iEϕðaÞ
�
: ð6:11Þ

If instead there are N some points γi in the integration
interval for which ϕ0ðγiÞ ¼ 0, then the saddle point
approximation shows that [105]

IðEÞ ∼
XN
i¼1

e
iπ
4
sgϕ00ðγiÞfðγiÞeiEϕðγiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

Ejϕ00ðγiÞj

s
: ð6:12Þ
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By use of (6.8), it may be assumed that roughly kz ∼ n andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
∼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p
for n ≫ 1, up to

factors that depend on k0, γi and ζi and which are small
only for a narrow choice of these parameters. Then, for the
large region in the space described by k0, γi, and ζi, one has

that 1 ≪ jkzj and 1 ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
. The Bessel

functions in (6.6) are in the Fresnel regime in that region.
It may be assumed that they do not involve large oscillating
phases. Thus, the only oscillating phase is the one involving
kz, which has no minima. By applying (6.11) it follows
that an ∼ 0, as the determinant is zero on η ¼ π=2 and
the Bessel functions vanish for η ¼ 0. For 1 ≪ jkzj and
0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
< 1 the same argument holds.

Thus, the radiation is concentrated in the directions
0 < kz < n0 with n0 an integer with small or intermediate
values. If kz is small and the energy E ¼ n is large, then

energy conservation forces 1 ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
.

From (6.8) it is seen that roughlyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
∼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p
. Thus, the expres-

sion (6.6) can be approximated by

an ∼
Z π

2

0

ðe−in0η − ein0ηÞJn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2x þ k2yÞð1 − R2ν2Þ
q

sin η

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2ν2sin2ηþ cos2ηÞð1 − R2ν2Þcos2η

q
dη; ð6:13Þ

and the Bessel function in the argument may be though as
in entering into the Fresnel regime. To the knowledge of the
author, there is no closed expression for this integral.
However, there exist integration formulas [103] for the
Bessel function of first kind such asZ π

2

0

cosð2μxÞJ2νð2a cos xÞdx ¼ π

2
JνþμðaÞJν−μðaÞ: ð6:14Þ

The Formula (6.13) is not exactly the same as (6.14), the
difference is due to the square root factor. However, this
factor does not induce a considerable deviation from the
expression (6.14) for R2ν2 < 1. Thus, one may assume that
the coefficient may be roughly approximated by

an ∼ iJ2n
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2x þ k2yÞð1 − R2ν2Þ
q 	

:

In brief, the discussion given above together with (6.8)
suggests that main contribution to an is concentrated in the
directions defined by

jk01 cos γ1 þ ðn − k01Þ cos γ2j ≤ 1;

1 ≪ ðk20sin2γ1 þ ðn − k0Þ2sin2γ2
þ 2k0ðn − k0Þ sin γ1 sin γ2 cosðζ1 − ζ2ÞÞð1 − R2ν2Þ:

ð6:15Þ

The coefficients are then

an ∼ iJ2n

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk20 sin2 γ1 þ ðn − k0Þ2 sin2 γ2 þ 2k0ðn − k0Þ sin γ1 sin γ2 cosðζ1 − ζ2ÞÞð1 − R2ν2Þ

q �
: ð6:16Þ

From (6.15) it is seen that main contribution comes from
angles cos γi < n−1, sin γi ∼ 1. The solid angle area sub-
tended by these angles goes as dΩi ∼ 1=n; therefore

Z
janj2dΩ1dΩ2 ∼

1

n2
J4n
�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p 	
:

From this, it is concluded that the power (6.7) goes as

P ¼ 32λ2Δ4δ4ω2 lim
N→∞

XN
n¼0

n2J4n
�
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p 	
; ð6:17Þ

The point is now to understand the behavior for the
Bessel functions in the last expression. The Reference [18]
suggests that

J0nðanÞ ∼
1

n
2
3

:

This formula of course, should not necessarily be integrated
in n in order to find JnðanÞ, as there may be factors of n that
do not correspond to the argument. In fact, integration gives
a divergent result for large n, which is known not to be the
case. On the other hand there are recurrence formulas such
as [103]

Jnþ1ðxÞþJn−1ðxÞ¼
2n
x
JnðxÞ;Jnþ1ðxÞ−Jn−1ðxÞ¼ 2J0nðxÞ:

From the last formulas it may be reasonable to postulate
that

JnðanÞ ∼
cn
n

2
3

þ another powers:

In the following, it will be assumed that these extra powers
are smaller or of almost the same order as n−

2
3. This is of

course not a rigorous result, but by playing with large
numbers in Mathematica I believe that it is a reasonable
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postulate. In these terms, the replacement of the sum in
(6.17) by an integral yields the following power radiated:

P ¼ 32λ2cΔ4δ4ω2N
1
3
c: ð6:18Þ

The constant c arises due to the cn factors, and it has
controlled values. Its specific functional form is undeter-
mined, except that c → 0 when R2ν2 → 0. The cutoff Nc
holds because this description may not be valid for
energies E > δ−1. Its value is arguably of the order
Nc ∼ δ−1ω−1 ∼ Lδ−1, and therefore

P ¼ 32λ2cΔ4δ
11
3

L
5
3

: ð6:19Þ

This result states that, for large objects, two axion radiation
is suppressed. This is in qualitative agreement with the
results of [101,106], which suggest that for an extended
object, with length of the order of a Parsec, the axion
radiation should be subdominant with respect to gravita-
tional radiation. However, there is no real sensibility of this
result with respect to the parameter R2ν2, except on c. The
direction for which the power radiated by solid angle takes
relevant values is also not significantly deformed. Thus, it is
difficult to distinguish non-Abelianity by studying two
axion emission, at least for the solution (6.1).

VII. GRAVITATION RADIATION

The next task is to consider the gravitational radiation
power emitted by the excited object. This power can be
calculated with the help of formula [107]

P ¼
X
n¼0

Pn;

dPn

dΩ
¼ Gnω

2
n

π

�
Tμνðωn; knÞTμνðωn; knÞ −

1

2
jTμ

μðωn; knÞj2
�
;

ð7:1Þ

with Tμνðkn;ωnÞ the Fourier transform of the stress energy
tensor

Tμνðkn;ωnÞ ¼
1

L

Z
2L

0

Z
R3

eiωnt−knixiTμνðt; xiÞd3xidt;

knikin ¼ ω2
n: ð7:2Þ

The frequencies ωn ¼ nπ=L. There are alternative formulas
such as the quadrupole approximation, but they have
additional assumptions such as that the emitted wavelength
by the source is larger than its size. Instead, the Formula
(7.1) employs a smaller amount of hypothesis, and for this
reason it is the one to be applied here.
The Formula (7.1) shows that the stress energy tensor

Tμνðxi; tÞ is the main quantity to be found. It can be

obtained by varying the action (3.2) of the string, which it is
written again below by further reference

S ¼ T
Z ffiffiffiffiffiffiffiffiffi

−jhj
p

habgμν∂asμ∂bsν
ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞd4x:

ð7:3Þ

In the conformal gauge, this action is

S ¼ T
Z

ηab½g̃μν∂asμ∂bsν þ R2∂aα∂bα

þ R2 sin2 α∂aβ∂bβ�
ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞd4x:

In the last expression ηab ¼ ð−1; 1Þ, and the change of
notation gμν → g̃μν for the translational modes target metric
has been made. This change of notation is convenient, since
the determinant

ffiffiffiffiffiffi
−γ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν∂asμ∂bsν

q
;

is the only quantity in the Lagrangian related to the
space time metric gμν. In the present situation, gμν and
g̃μν coincide with the Minkowski metric ημν. However, they
have not to be identified, as one is representing a sigma
model arising from details of vortex interactions and the
other is representing the space time geometry the vortex is
embedded in. In addition, it is gμν the one that has to be
considered for calculating the stress energy tensor Tμν. This
tensor, in the conformal gauge, is given by

Tμν ¼ Tηab½g̃γδ∂asγ∂bsδ þ R2∂aα∂bαþ R2 sin2 α∂aβ∂bβ�

×
1ffiffiffiffiffiffi−γp δγ

δgμν
δ4ðxμ − sμðσ; τÞÞ:

By use of the Jacobi formula for the determinant, it follows
that:

δγ

δgμν
¼ γγab

δγab
δgμν

¼ γγab∂asμ∂bsν:

By taking into account the last three formulas it is obtained
the following expression for the stress energy tensor of the
configuration:

Tμν¼−Tηab½g̃γδ∂asγ∂bsδþR2∂aα∂bα

þR2 sin2α∂aβ∂bβ�γcd∂csμ∂dsν
ffiffiffiffiffiffi
−γ

p
δ4ðxμ−sμðσ;τÞÞ:

By use of the last expression and (6.1) it is calculated that
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Ttt ¼ −
2Tð1 − R2ν2Þcos2ωz
cos2ωzþ R2ν2sin2ωz

ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞ;

Ttx ¼ 2Tð1 − R2ν2Þcos2ωz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p
j sinωzj sinωt

cos2ωzþ R2ν2sin2ωz
ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞ;

Tty ¼ −2Tð1 − R2ν2Þcos2ωz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2ν2

p
j sinωzj cosωt

cos2ωzþ R2ν2sin2ωz
ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞ;

Txx ¼ −2Tð1 − R2ν2Þcos2ωz
�
cos2ωt −

ð1 − R2ν2Þsin2ωzsin2ωt
cos2ωzþ R2ν2sin2ωz

� ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞ;

Tyy ¼ −2Tð1 − R2ν2Þcos2ωz
�
sin2ωt −

ð1 − R2ν2Þsin2ωzcos2ωt
cos2ωzþ R2ν2sin2ωz

� ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞ;

Txy ¼ −2Tð1 − R2ν2Þcos2ωz sinωt cosωt
� ð1 − R2ν2Þsin2ωz
cos2ωzþ R2ν2sin2ωz

þ 1

� ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞ: ð7:4Þ

From this point, the procedure of calculating the power radiated is quite analogous to the axion case. The energy momentum
tensor is of the form

Tμνðxi; tÞ ¼ TAμνðxi; tÞ
ffiffiffiffiffiffi
−γ

p
δ4ðxμ − sμðσ; τÞÞ:

The Formula (7.2) is the analogous of (6.2), but the square of the metric determinant
ffiffiffiffiffiffi−γp

is replaced by Aμνðxi; tÞ ffiffiffiffiffiffi−γp
. In

the same fashion than for the square of the world sheet metric determinant
ffiffiffiffiffiffi−γp

, the factors Aμνðωz;ωtÞ are simple periodic
functions whose values are not far from unity. The Fourier transform of Tμν is then

Tμνðkn;ωnÞ ¼
T

Lω2

Z
2π

0

Z
π

0

e−ikx
ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η cos ξe−iky

ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η sin ξe−ikzη

× Aμνðη; ξÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2ν2sin2ηþ cos2ηÞð1 − R2ν2Þcos2η

q
eiωnξdηdξ; ð7:5Þ

where the replacement E → E=ω and k → k=ω has been performed. The quantities Aμνðη; ξÞ are functions the two variable
integrations. At first sight, this dependence makes the steepest descent method employed in previous sections more difficult
to apply. However, from (7.4) it is seen that the dependence in ξ is very simple. It is given by linear combinations of the
trigonometric functions cos ξ, 2 cos2 ξ ¼ 1þ cosð2ξÞ, sin ξ, 2 sin2 ξ ¼ 1 − cosð2ξÞ, and 2 sin ξ cos ξ ¼ sinð2ξÞ. This makes
the calculation of Tμνðkn;ωnÞ much easier than expected.
Consider for example the Fourier component Txtðkn;ωnÞ. From (7.4) and (7.5) it is seen that

Txtðkn;ωnÞ ¼
iTð1 − R2ν2Þ32

Lω2

Z
2π

0

Z
π

0

e−ikx
ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η cos ξe−iky

ffiffiffiffiffiffiffiffiffiffiffi
1−R2ν2

p
sin η sin ξe−ikzη

×
j sin ηjj cos ηj3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ηþ R2ν2sin2η

p ðeiðnþ1Þξ − eiðn−1ÞξÞdηdξ:

By employing now (6.3)–(6.5) and by assuming that the integration order may be changed, the following Fourier
components are obtained:

Txtðkn;ωnÞ ¼
iTð1 − R2ν2Þ32einδ

Lω2

Z
π

0

e−ikzηj sin ηjj cos ηj3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ηþ R2ν2sin2η

p
×

�
e−iδJnþ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
sin η

�
− eiδJn−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞð1 − R2ν2Þ

q
sin η

��
dη:

This quantity can be estimated in terms of (6.11)–(6.12) by making a direct analogy with (6.6). This analogy follows
by replacing
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2ν2 sin2 ηþ cos2 ηÞð1 − R2ν2Þ cos2 η

q
→

j sin ηjj cos ηj3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 ηþ R2ν2 sin2 η

p ;

in (6.6) and by taking into account that now there are two
Bessel functions involved, with label nþ 1 and n − 1
instead of n. In these terms, formulas analogous to the
ones obtained in the previous section for an can be found
for Txtðkn;ωnÞ. The same type of formulas can be found for
the other components of Tμνðkn;ωnÞ as well. However,
there is no need to go through all this calculation in order to
estimate the power emitted. By simply parametrizing the
momentum as

kx ¼ n sin γ sin ζ; ky ¼ n sin γ cos ζ; kz ¼ n cos γ;

it follows that the least decaying contributions to
Tμνðkn;ωnÞ are, as before, proportional to n−

2
3. Thus, the

power radiated Formula (7.1) then may be estimated as

P ∼
GncT2

πL2ω2
ð1 − R2ν2Þ2

X∞
n¼n0

cn
n

5
3

; ð7:6Þ

up to the sum of the first terms, for which the steepest
descent method for calculation does not apply, but
which have moderate values as well. The sum in the last
expression is convergent, thus

P ∼GncT2ð1 − R2ν2Þ2; ð7:7Þ

with c an undetermined constant, which may depend on the
internal parameter R2ν2.
For Abelian strings, this radiation was studied in several

References [9–23]. In particular, the authors of [18,19]
postulate, for closed loops, that

P ¼ γlGnT2; ð7:8Þ

where γl is a factor which depends on the shape of the loop
but is independent on its perimeter L. Both (7.8) and (7.7)
have the same dependence. At first sight, Formula (7.7)
does not exhibit a sensible dependence on the internal
rotations, unless R2ν2 → 1. But in fact, this dependence
may be important for detecting non-Abelianity. The point is
that, in a Gedanken experiment, a loop with a definite
shape and tension T emits with a power of the form (7.8).
However, if the factor γl describes a loop with the wrong
shape, it may be an indication that the vortex is in fact
non-Abelian.

VIII. INTERNAL ROTATIONS

In the previous section, it was found that for the rotating
string inspired ansatz (3.9) two axion emission power is not

very sensitive to the excitations of the internal motion. The
gravitational emission instead may give a hint about non-
Abelianity due to a deviation from the shape factor γl.
However, single axion emission (5.2)–(5.3) was not yet
considered, as (3.9) does not allow this process, at least at
the perturbative level. It may be of interest to find situations
in which this emission is present. In fact, it is not the
quantitative form of the power radiated for single axion
emission which points out non-Abelianity. Instead, it is the
fact that single axion emission is present that signals it, as
single axion emission (5.2)–(5.3) is only possible when
orientational modes are present. The point is to determine if
this effect is of the order or larger than the previously
discussed, or if it is suppressed instead.
In the following, inspired by the spike string solution of

[108], it will be assumed that the string is straight and
located at r ¼ 0. The perturbations to be considered below
are purely internal, that is, the string position is always
the same straight line r ¼ 0. The perturbation is such that
only the sphere unit vector na is prompted to a varying
function of z and time. The ansatz to be used for this
situation is [108]

t ¼ Rτ; α ¼ αðσÞ; β ¼ ωτ þ σ; z ¼ λσ: ð8:1Þ

Here 2πλ ¼ L, with L the length of the vortex, and is not to
be confused with the coupling present in the interaction
term (4.9). The parameter σ will be chosen proportional to
the coordinate z of the string, and τ is a time coordinate.
Both τ and σ are dimensionless. Also ω is dimensionless,
and is not to be confused with the frequency ω ¼ π=L of
the previous sections.
It should be recalled that (8.1) is not a true solution of the

system composed by the equations derived from (3.5)
together with the conformal constraints (3.6)–(3.7). The
equations of motion are in fact satisfied but the conformal
constraint (3.7) is not.2 This is expected from the physical
point of view and is indicating that a straight vortex with
varying orientational moduli tends to move. The explicit
form of the true solution may be in fact complicated. In the
following this vortex movement will be neglected and we
conform ourselves to use (8.1), as we are intended to study
the axion emission due to pure orientational modes.
The position of the string is static, but its moduli is

varying with the height and time. The only unknown
function in the previous ansatz is αðσÞ, and the solution
to be employed is [108]

α0 ¼ sin α
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 sin2 α − C2

1 − ω2 sin2 α

s
: ð8:2Þ

2It is a true solution for the Reference [108], however, but these
authors are studying strings in other curved backgrounds.
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There are several cases to consider. In the situation ω2 < 1

it is clear that C2 < ω2 since otherwise the square root
would be imaginary. Thus C2 < ω2 < 1. The values of the
angle are such that

C2

ω2
< sin2 α < 1:

In the other case ω2 > 1 one has three situations. These are
C2 < 1 < ω2, for which

C2

ω2
< sin2 α <

1

ω2
;

1 < C2 < ω2, for which

1

ω2
< sin2 α < 1;

or 1 < ω2 < C2, which leads to the bound

1

ω2
< sin2 α <

C2

ω2
:

The rotating vectors na satisfying that nana ¼ 1, and which
define the internal orientation of the string, are given by

n1¼ sinαcosðωτþσÞ; n2¼ sinαsinðωτþσÞ; n3¼ cosα:

In these terms it follows that

ϵabcna _nbn0c ¼ −ωα0 sin α − ω cos α sin2 α sinðωτ þ σÞ cosðωτ þ σÞ:

From the last expression is calculated that

hS; ajSi ¼ −αa
Z

∞

−∞
eiERτ

�Z
2π

0

e−ikzλσ½ωα0 sin αþ ω

2
cos αsin2α sinð2ωτ þ 2σÞ�dσ

�
dτ:

By further parametrizing kz ¼ E cos γ it follows that

hS; ajSi ¼ αaI1δðERÞ þ iαaδðER − 2ωÞI2
− iαaδðERþ 2ωÞI�2

with

I1 ¼
Z

2π

0

e−iE cos γλσωα0 sin αdσ;

I2 ¼
Z

2π

0

ω

2
cos α sin2 αe−2iσ−iE cos γλσdσ: ð8:3Þ

Then

jhS; ajSij2 ¼ α2a
R2

I21δðEÞδð0Þ þ
α2a
R2

jI2j2
�
δ

�
E −

2ω

R

�

þ δ

�
Eþ 2ω

R

��
δð0Þ;

and the power radiated

P ¼ dE
dt

T ¼ 1

ð2πÞ3
Z

d3k
2E

EjhS; ajSij2;

with T ¼ 2πδð0Þ is given explicitly by

P ¼ α2a
R2

1

ð2πÞ3
Z

∞

0

Z
2π

0

Z
π

0

E2dE sin γdγdζ
2

½I21δðEÞ

þ jI2j2
�
δ

�
E −

2ω

R

�
þ δ

�
Eþ 2ω

R

��
:

From the second (8.3) it follows that

P ¼ α2aω
2

ð2πÞ3R4

Z
2π

0

Z
π

0

jI2j2 sin γdγdζ;

where now

I2 ¼
Z

2π

0

ω

2
cos αsin2αe−2ið1−ωλ

R cos γÞσdσ:

If the parameter λ is large in comparison with R and
cos γ > RðωλÞ−1, then the Formula (6.11) can be employed
for estimating I2. The result is of the form

I2 ∼
R
ωλ

:

The same follows for cos γ < RðωλÞ−1, as the interval of
integration has the small length l ¼ RðωλÞ−1. In these
terms, the power is estimated as

P ∼
α2a

R2L2
; ð8:4Þ
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up to numerical factors with controlled values. The power
emitted seems to decay for large vortices more rapidly than
for two axion emission, but of course this result is not
rigorous as the employed solution is just an approximation.

IX. DISCUSSION

In the present work it was argued that for certain types of
SUð2Þ gauge theories, the main consequence of non-
Abelianity is modification of the gravitational loop factor
γl in (7.8). Another difference is the existence of single
axion emission process, which does not take place for the
Abelian case. The task is now to understand in which
regimes one or the other process is dominant. Consider a
phase similar to the color-flavor-locked (CFL) phase. It
may be assumed that the length αa in (8.4) and the
thickness of the string δ are of the form

αa ¼
1ffiffiffiffi
T

p f

�
μ

Δ

�
; δ ¼ 1ffiffiffiffi

T
p g

�
μ

Δ

�
;

with fðxÞ and gðxÞ unknown functions which take mod-
erate values for μ ∼ Δ ∼ Tc. By use of the formula (2.12)
for the tension and (3.4) for the radius R, it follows that the
one axion emission given for (8.4) is predominant over
(6.19) for a size L given by

L <
Δ5

μ6

�
μ

Tc

�
11

h

�
μ

Δ

�
;

with hðxÞ also an unknown function. For values of the
chemical of μ ∼ 102–103 MeV, Tc ∼ 100 MeV, and
Δ ∼ 300 MeV, under the assumption that hðxÞ takes
moderate values, the resulting length is very small
10−13 m < L < 10−4 m. Thus, it is likely that one axion
emission is a suppressed process, except for microscopi-
cally small objects, although the calculation presented here
has not been rigourous. On the other hand, two axion
emission (6.19) is predominant over gravitation (7.7) for

L <

�
Tc

μ

�23
5

�
M6

p

Δ11

�1
5

k

�
μ

Δ

�
;

with kðxÞ an unknown function with moderate values
when the parameters take the values just mentioned. A
typical limit value is L ∼ 109 m, which is 10−2des with des
the distance between the Earth and the Sun. For an object
of such size, or even larger, gravitational effects start to
predominate. For a parsec scale, gravitational radiation
dominates completely over axion radiation. This is of
course for energy scales characteristic of the CFL phase,
for other models this calculation has to be repeated, but

gravitational radiation will predominate at a very
large scale.
There may the case in which there is no coupling

between the axion and the translational modes. In this
case the typical length for which gravity dominates over
single axion emission is L ≥ 100 km.
The picture above changes for very small values of the

symmetry breaking scale Δ. For Δ ∼ma ∼ 10−5 eV, single
axion emission dominates over two axion emission until
L ∼ 10 m. For scales typical of dark energy model, of the
order Δ ∼ 10−28 eV, single axion emission dominates until
L ∼ 1024 m, a scale much larger than a parsec. A priori,
detection of no Abelianity is simpler in this case, but it is
more difficult to access due to the physics at these small
energies and large scales.
The discussion given above is suggesting that single

axion emission due to orientational modes may be irrel-
evant, and the importance of these modes arises by
modifying the gravitational loop factor γl. However, there
may be other situations, not considered here due to
technical complications, for which this picture may change.
The internal space considered here is S2, but there are
SUðNÞ × Uð1Þ gauge theories whose internal space is
CPðN − 1Þ. For these theories, at large N, there is a
pioneer work [90] which considers axion radiation for
pairs of monopole-antimonopole pairs attached to the
non-Abelian string. An interesting task may be to general-
ize these results to the semilocal strings of References
[46–50]. In addition, it may be of interest to study the
gravitational side of the dynamics of these objects. Perhaps
the presence of a larger amount of directions allows one to
find solutions for which the vortex position is not of the
form si ¼ aiðxþ tÞ þ biðx − tÞ, which may modify the
analysis made in [18,19]. It is likely that for these
hypothetical solutions (7.8) still holds, but the correction
of the loop factor may be more pronounced. Another
interesting line of work would be to consider semilocal
strings [51–57], which have internal orientation space
which is not compact. The presence of noncompact
directions can generate a much more rich space of solutions
for moving strings. It may be of interest to study these
solutions and how the vortex position evolves for these
models, together with axion and gravitational emission.
This is of course technically more complicated, as the
couplings between axion and the string and the equations of
motion in this case are more involved. The study of
emission channels for these largely non-Abelian objects
deserves, in my opinion, further attention.
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