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We previously reported that a human immunodeficiency virus type 1 with a simian 
immunodeficiency virus vif substitution (HSIV-vifNL4-3) could replicate in pigtailed macaques 
(PTMs), demonstrating that Vif is a species-specific tropism factor of primate lentiviruses. 
However, infections did not result in high-peak viremia or setpoint plasma viral loads, as 
observed during simian immunodeficiency virus (SIV) infection of PTMs. Here, 
we characterized variants isolated from one of the original infected animals with CD4 
depletion after nearly 4 years of infection to identify determinants of increased replication 
fitness. In our studies, we found that the HSIV-vif clones did not express the HIV-1 Vpr 
protein due to interference from the vpx open reading frame (ORF) in singly spliced vpr 
mRNA. To examine whether these viral genes contribute to persistent viral replication, 
we generated infectious HSIV-vif clones expressing either the HIV-1 Vpr or SIV Vpx protein. 
And then to determine viral fitness determinants of HSIV-vif, we conducted three rounds 
of serial in vivo passaging in PTMs, starting with an initial inoculum containing a mixture of 
CXCR4-tropic [Vpr-HSIV-vifNL4-3 isolated at 196 (C/196) and 200 (C/200) weeks post-
infection from a PTM with depressed CD4 counts] and CCR5-tropic HSIV (Vpr+ HSIV-vif 
derivatives based NL-AD8 and Bru-Yu2 and a Vpx expressing HSIV-vifYu2). Interestingly, all 
infected PTMs showed peak plasma viremia close to or above 105 copies/ml and persistent 
viral replication for more than 20 weeks. Infectious molecular clones (IMCs) recovered from 
the passage 3 PTM (HSIV-P3 IMCs) included mutations required for HIV-1 Vpr expression 
and those mutations encoded by the CXCR4-tropic HSIV-vifNL4-3 isolate C/196. The data 
indicate that the viruses selected during long-term infection acquired HIV-1 Vpr expression, 
suggesting the importance of Vpr for in vivo pathogenesis. Further passaging of HSIV-P3 
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IMCs in vivo may generate pathogenic variants with higher replication capacity, which will 
be a valuable resource as challenge virus in vaccine and cure studies.

Keywords: HIV-1, SIV, HSIV-vif, nonhuman primates, pigtailed macaques, animal model, in vivo passaging, 
infectious molecular clones

INTRODUCTION

Several alternate animal models such as infection of macaques 
with simian immunodeficiency viruses (SIVs) or chimeric simian–
human immunodeficiency viruses (SHIVs) have been developed 
to understand HIV pathogenesis and disease progression and 
determine the efficacy of vaccines and drugs. However, the 
genetic difference between HIV-1 and SIV, and the absence of 
other HIV-1 genes, such as gag, vif, vpr, and nef in SHIV limit 
the utility of these models. Therefore, there is a need to rationally 
and minimally modify HIV-1 such that it can replicate and 
cause AIDS in macaques. Such an animal model will be  a 
valuable tool for preclinical evaluation of vaccines and the 
development of novel therapeutic strategies targeting HIV-1 
proteins, and for understanding viral immunopathogenesis.

The important lentiviral restriction factors in macaque species 
such as rhesus macaques (RMs) are the apolipoprotein B mRNA 
editing enzyme catalytic polypeptide 3 (APOBEC3 or A3) 
family of proteins, tripartite motif containing (TRIM) family 
of proteins, BST2/CD317/Tetherin, and sterile alpha motif 
(SAM) and histidine/aspartic acid (HD) domain containing 
protein 1 (SAMHD1; reviewed in Thippeshappa et  al., 2012; 
Saito and Akari, 2013). However, SIV can overcome RM TRIM5α 
and the APOBEC3 family of restriction factors and simian-
tropic HIV-1 (stHIV-1) or macaque-tropic HIV-1 (mtHIV-1) 
have been developed by incorporating capsid and vif sequences 
from SIVmac239 (Hatziioannou et  al., 2006; Saito et  al., 2011; 
Doi et  al., 2013, 2018; Nomaguchi et  al., 2013; Otsuki et  al., 
2014). Instead of a full-length capsid substitution, an HIV-1 
derivative carrying only a short 21 nucleotide segment from 
the SIV capsid sequence corresponding to the HIV-1 cylophilin 
A binding loop has also been constructed (Kamada et  al., 
2006). Additionally, variants with CCR5-tropic HIV-1 have also 
been developed (Otsuki et  al., 2014; Doi et  al., 2017). These 
variants of stHIV-1 or mtHIV-1 establish infection in vivo in 
different species of nonhuman primates (NHPs; Igarashi et  al., 
2007; Saito et  al., 2011, 2013; Otsuki et  al., 2014; Doi et  al., 
2018). However, none of the variants result in CD4 depletion, 
and there remains a need to develop a pathogenic macaque-
tropic HIV-1 (reviewed in Thippeshappa et  al., 2020).

Compared to other NHPs used in AIDS research, PTMs 
are relatively more susceptible to HIV-1 infection (Agy et  al., 
1992, 1997; Frumkin et al., 1993; Gartner et al., 1994a,b; Bosch 
et  al., 1997, 2000). While PTMs can be  infected with HIV-1, 
viral loads diminished rapidly (Agy et  al., 1992). Attempts to 
in vivo passage HIV-1 in PTMs failed to select variants capable 
of persistent replication.

An explanation for the susceptibility of PTM CD4+ T cells to 
HIV-1 is that PTMs do not express restriction factor TRIM5α. 
Instead, they express novel isoforms of TRIM5 (TRIM5θ and 

TRIM5η) and TRIM5-cyclophilin A fusion protein (TRIMcyp) 
that do not interfere with HIV-1 infection (Liao et  al., 2007; 
Brennan et  al., 2008; Newman et  al., 2008; Virgen et  al., 2008). 
The absence of TRIM5α suggests that other retroviral restriction 
factors in PTMs, such as APOBEC3 family of proteins, BST2, 
and SAMHD1 may limit replication of HIV-1. Since APOBEC3 
family proteins can be  degraded by SIVmac and HIV-2 vif, 
Hatziioannou et  al. constructed minimally modified HIV-1 
derivatives carrying either SIVmac vif or HIV-2 vif (Hatziioannou 
et  al., 2009). PTMs infected intravenously (IV) with a mixture 
of these two viruses exhibited acute infection and persistent viremia 
for up to 25 weeks post-infection (wpi). However, CD4+ T cell 
depletion was not observed in the animals. To select a variant 
with increased fitness, serial in vivo passaging of a mixture of 
four clonal HIV-1NL4-3–derived viruses, each encoding CCR5-tropic 
gp120 env from YU2, BaL, AD8, and KB9, was conducted in 
PTMs transiently depleted of CD8 T cells. Viral swarm or infectious 
molecular clone (IMC) generated following passaging caused CD4 
depletion only in macaques that were transiently depleted of CD8 
T cells. However, they were controlled in immunocompetent PTMs 
(Hatziioannou et  al., 2014; Schmidt et  al., 2019). Inability of 
passaged viruses to cause AIDS in non-CD8-depleted macaques 
suggests partial adaptation to the PTM host. Despite these studies, 
the key characteristics necessary for enhanced replication of 
macaque-tropic HIV-1 clones remain poorly understood.

We have constructed PTM-tropic HIV-1 viruses (HSIV-vif) 
by replacing the vif genes with vif from highly pathogenic 
PTM-adapted SIVmne027 (Kimata et  al., 1998, 1999). These 
cloned viruses (CXCR4-tropic HSIV-vifNL4-3 and CCR5-tropic 
HSIV-vifAD8 and HSIV-vifYu2) replicated better than their respective 
parental clones in PTM peripheral blood mononuclear cells 
(PBMCs; Thippeshappa et al., 2011). Intravenous (IV) inoculation 
of PTMs with HSIV-vifNL4-3 showed low viral replication during 
the post-acute stages of infection through 44 wpi and small 
rebounds in viral titer at 64 and 72 wpi in juvenile PTMs 
(Thippeshappa et  al., 2011). Furthermore, we  observed that 
unlike pathogenic SIVmne, HSIV-vifNL4-3 replication is suppressed 
by type I  interferon (IFN) treatment in PTM CD4+ T cells, 
perhaps suggesting that the IFN response during acute infection 
may limit virus replication in PTMs. Interestingly, we  found 
that HSIV-vifYu2 was resistant to interferon alpha (IFNα)-treatment 
in PTM CD4+ T cells in vitro, which may be  due to envelope-
mediated counteraction of IFNα-induced restrictions at the 
entry step of the viral life cycle (Thippeshappa et  al., 2013). 
To further define important mutations in HSIV-vif that confer 
increased viral fitness in PTMs, we  isolated and characterized 
variant virus isolates from peripheral blood CD4+ T cells after 
196–200 wpi with HSIV-vifNL4-3 infection when there was CD4+ 
T cell depletion, and then performed a serial in vivo passaging 
experiment using a mixture of these virus isolates and different 
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clones of HSIV-vif to define genetic characteristics that could 
contribute to persistent viral replication in vivo.

MATERIALS AND METHODS

Cell Lines
TZM-bl cells were obtained from the NIH HIV Reagent Program 
(Derdeyn et  al., 2000; Wei et  al., 2002). TZM-bl and 293T 
cells were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% heat-inactivated fetal bovine 
serum (HI-FBS), 2 mM glutamine, 100 U of penicillin per ml, 
and 100 μg of streptomycin per ml (p/s; DMEM complete). 
The immortalized PTM CD4+ T cells, obtained from Dr. Hans-
Peter Kiem (Fred Hutchinson Cancer Research Center), were 
maintained in Iscove’s Modified Dulbecco’s Medium (IMDM) 
containing 10% HI-FBS, 2 mM glutamine, p/s, and 100 U/ml 
human interleukin 2 (IL-2; Roche; Munoz et al., 2009). CEM × 174 
were obtained from the American Type Culture Collection 
and cultured in Roswell Park Memorial Institute (RPMI) media 
with 10% HI-FBS, 2 mM glutamine, 100 U of penicillin per 
ml, and 100 μg of streptomycin per ml (RPMI complete).

Isolation of Biological Clones of HSIV-
vifNL4-3
Total CD4+ T cells were isolated from 1 × 107 PBMCs recovered 
at 196 and 200 wpi of pigtailed macaque M08009 by negative 
selection using the Miltenyi nonhuman primate CD4+ T cell 
isolation kit (Miltenyi Biotech). The cells were isolated according 
to the manufacturer’s protocol. The M08009 CD4+ T cells were 
cocultured with the human T cell-B cell hybrid cell line, 
CEMx174 for up to 16 days. Supernatants after 7 and 16 days 
were assayed for HIV-1 p24 antigen by ELISA (Advanced 
Bioscience Laboratories). If positive, supernatants were passed 
through 0.45-μm syringe filters, aliquoted, and frozen at −80°C. 
The infectious titers of the stocks were determined by limiting 
dilution infection analysis using TZM-bl reporter cells and 
luciferase assay as described (Misra et  al., 2018). Infectious 
virus recovered from CD4+ T cells at 196 and 200 wpi was 
named C/196 and C/200, respectively.

Coreceptor Usage of HSIV-vif Biological 
Isolates
TZM-bl cells (1 × 104 cells per well) were plated in wells of a 
96-well plate in DMEM complete with 30 μg/ml DEAE-dextran. 
In triplicate cultures, cells were treated with either the CXCR4 
inhibitor, AMD3100, or CCR5 inhibitor, Maraviroc, such that 
after adding 250 infectious units of C/196, C/200, or control 
viruses HSIV-vifNL4-3 or HSIV-vifAD8 the final concentrations 
of inhibitors were 1 μM, 500 nM, or 250 nM, and the final 
concentration of DEAE-dextran was 20 μg/ml. After 2 days of 
infection, the cells were washed once with PBS and lysed with 
Promega Glo Lysis buffer. Lysates were assayed for luciferase 
activity using the Promega luciferase assay system and tube 
luminometer according to the manufacturer’s instructions 
(Promega).

Serum Neutralization
Neutralizing antibody titers in serum specimens from PTMs 
infected with HSIV-vifNL4-3 were determined using a TZMbl-
based neutralization assay as described previously (Wu et  al., 
2006). Serum samples were heat-inactivated at 56°C for 30 min 
prior to use.

Plasmids
Construction of the HSIV-vif clones based on NL4-3, NL-AD8, 
and Bru-Yu2 has been reported before (Thippeshappa et  al., 
2011). To generate Vpr+ HSIV-vifNL4-3 and HSIV-vifAD8 clones, 
SphI to SalI fragment of HSIV-vifNL4-3 encompassing HIV gag, 
pol, SIV vif, and HIV-1 vpr genes was cloned into pCR2.1 
TOPO vector (Thermofisher). SIV vpx start codon and two 
additional ATG codons upstream of the HIV-1 vpr start codon 
were mutated by Quickchange mutagenesis (Stratagene) and 
the sequence between the stop codon of vif and start codon 
of vpr were deleted. After mutagenesis, SphI and SalI fragment 
was cloned back into HSIV-vifNL4-3 and HSIV-vifAD8. Similarly, 
SphI to SalI fragment of HSIV-vifYu2 was cloned into SacI site 
removed pUC19 vector (Thermofisher), ATG codons upstream 
of vpr were mutated, and cloned back into HSIV-vifYu2 
(Supplementary Figure 1). HSIV-vif-VpxYu2 clone was generated 
by cloning SacI to NcoI fragment of SIVmne027 vpx gene 
into pUC19 vector containing SphI to SalI fragment of HSIV-
vifYu2. SphI to SalI fragment containing full length vpx was 
confirmed by sequencing and cloned back into HSIV-vifYu2 
(Supplementary Figure  2).

Virus Stocks of HSIV-vif Molecular Clones 
for Infection
Virus stocks were generated by transfection of 293T cells 
with each plasmid clone of HSIV-vif using Fugene 6 or 
X-tremeGENE 9 DNA transfection reagent according to the 
manufacturer’s protocol (Roche). Infectious titers were 
determined by limiting dilution infection analysis using TZM-bl 
indicator cells, and the amount of virus in supernatants was 
measured by HIV-1 p24gag antigen ELISA (Advanced 
Bioscience Laboratories).

Western Blot
293T cells, seeded the day before, in 6-well plates were transfected 
with HSIV-vif plasmids using Fugene 6 or X-tremeGENE 9 
DNA transfection reagent (Roche/Sigma). At 48 h post-
transfection, cell culture supernatants were used to concentrate 
viral particles by centrifugation at 23,600 × g for 1 h at 4°C. 
Viral particles were mixed with 2X SDS samples buffer and 
separated by SDS-PAGE using Tris-HCl ready gels (Bio-Rad). 
Cell lysates were prepared as previously described (Thippeshappa 
et  al., 2011). Proteins were transferred to either nitrocellulose 
or PVDF membrane and probed with rabbit antiserum to Vpr, 
Nef, or Vpx. Goat anti-rabbit IgG HRP (Promega) was used 
as secondary antibody. Antiserum to Vpr (Catalog # ARP-11836), 
Nef (Catalog # ARP-2949), Vpx (Catalog # ARP-2609), and 
anti-HIV-1 p24 Gag monoclonal (ARP-6458) were obtained 
from NIH HIV reagent program.
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Replication in PTM CD4 T Cell Line, PTM 
PBMCs, and Human Monocyte-Derived 
Macrophages
For viral replication assays, PTM PBMCs and immortalized 
PTM CD4+ T cells were infected as previously described 
(Thippeshappa et  al., 2011, 2013). PTM PBMCs were isolated 
using Ficoll hypaque gradient method. PBMCs were activated 
with concanavalin A (7 μg/ml) for 3 days. Cells were then 
washed twice and resuspended in RPMI complete media 
containing 40 U/ml IL-2 (Sigma) and cultured for 2 days. 
Approximately 1 × 106 activated PBMCs were infected in duplicate 
at a multiplicity of infection (MOI) of 0.01. To compare viral 
replication in PTM CD4+ T cells, approximately 2.5 × 105 or 
5 × 105 cells in 100 U/ml IL-2 containing IMDM were infected 
in duplicate with viruses at a MOI of 0.01 or 0.05. Human 
monocyte-derived macrophages (MDMs) were generated from 
PBMCs using previously described methods (Kimata et  al., 
1998, 2004; Biesinger et  al., 2010). PBMCs of anonymous 
donors were isolated from leukopacks purchased from the Gulf 
Coast Blood Center, Houston, TX, Unites States. Briefly, human 
monocytes were isolated from PBMCs by plate adherence 
methods. Approximately 4 × 106 PBMCs were plated into each 
well of a 24-well plate and monocytes were allowed to adhere 
to the plate for 1 h. Monocytes were then stimulated with 
RPMI complete containing 10 U/ml GM-CSF (Invitrogen) for 
7–10 days to generate MDMs. Human MDMs were infected 
with the Vpr+ and Vpr-HSIV-vif in duplicate. Infection 
experiments were conducted at least 2–3 times. PBMCs from 
different donors were also used. After 3 h of incubation, the 
cells were washed twice with phosphate buffered saline (PBS) 
or complete medium to remove unbound virus. Infected cells 
were then resuspended in RPMI complete media containing 
IL-2. To study the effect of IFNα, 200 U/ml of Interferon-αA/D 
(IFN-αA/D or IFNα, Sigma) was added to the culture media. 
To monitor replication of HSIV-vif clones, supernatants were 
harvested every 2–4 days for measurement of HIV-1 p24gag 
antigen using ELISA kit (Advanced Bioscience Laboratories or 
ExpressBio). Statistical analysis in GraphPad Prism was performed 
to compare groups using the Mann-Whitney test.

Serial in vivo Passaging in PTMs
Four PTMs specific pathogen free for simian T lymphotropic 
virus type 1, SIV, simian retrovirus type D, and herpes B 
virus were enrolled for the study. All animals were housed 
and cared for in accordance with the guidelines of the American 
Association for Accreditation of Laboratory Animal Care and 
the Animal Care and Use Committee of the University of 
Washington. In passage 1: two PTMs were inoculated IV 
with a mixture of CXCR4 and CCR5-tropic viruses. In passage 
2: pooled peripheral blood from passage 1 PTMs collected 
at 14 wpi was used for inoculation of 1 PTM. In passage 3, 
peripheral blood from passage 2 PTM at 8 wpi was used for 
transfusion into an additional PTM. At several time points 
post-inoculation, peripheral blood was drawn for CD4+ T 
cell count determinations and isolation of plasma, sera, 
and PBMC.

Plasma Viral Loads, CD4 T Cell Counts, 
and Antibody Response
Plasma viral load measurements were determined by using 
the Roche Amplicor HIV-1 monitor test, version 1.5 according 
to the manufacturer’s protocol. CD4+ T cell counts were 
determined as previously described (Polacino et  al., 2007). 
HIV-1-specific antibodies were measured by ELISA as previously 
described, using gradient-purified and disrupted whole HIV-1 
virions as the capture antigen (Hu et  al., 1989; Polacino 
et  al., 2007).

Cloning of IMCs by Long-Range PCR
The following steps were performed to generate IMCs 
(Supplementary Figure  3).

Nested PCR Amplification of Near Full Length 
Genome
Proviral DNA was isolated from 1 × 106 PBMCs using Quick-DNA 
miniprep kit (Zymo Research). In the first round PCR, 1 to 
2 μl of proviral DNA (approximately 50–100 ng) in a 25 μl 
reaction was amplified using the following primers: FWD-1: 
AAATCTCTAGCAGTGGCGCCCGAACAG and REV-1: 
TGAGGGATCTCTAGTTACCAGAGTC. Reaction mix contained 
1× High Fidelity Buffer, 2 mM MgSO4, 0.2 mM dNTPs, and 
0.025 U/μl Platinum Taq High Fidelity (Invitrogen). PCR 
conditions for the first round were 94°C for 2 min, then 94°C 
for 30 s, 64°C for 30 s, and 68°C for 10 min for 3 cycles; 94°C 
for 30 s, 61°C for 30 s, and 68°C for 10 min for 3 cycles; 94°C 
for 30 s, 59°C for 30 s, and 68°C for 10 min for 3 cycles; 94°C 
for 30 s, 57°C for 30 s, and 68°C for 10 min for 21 cycles; and 
then 68°C for 10 min. About 1  μl of first-round PCR reaction 
product was amplified using following primers FWD-2: 
ACAGGGACTTGAAAGCGAAAG and REV-2: 
CTAGTTACCAGAGTCACACAACAGACG. Reaction mix and 
PCR conditions were identical to the first round PCR. PCR 
products were visualized on 1% agarose gel and gel eluted 
using QIAquick gel extraction kit (Qiagen).

Vector PCR
About 10 ng of HSIV-vifNL4-3 was amplified with following 
primers: 3LTR-V-F90: TGTGTGACTCTGGTAA 
CTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAAT 
CTC TAGCA CCCAGGA GGTAGAGGTTGCAGTGAGC and 
5HIV-R2: CTTTCGCTTTCAAGTCCCTGTTCGGGCGCCA in 
a 50 μl reaction volume. Platinum superfi II high-fidelity DNA 
polymerase (Thermofisher) was used for amplification of vector 
PCR product. Vector PCR product was visualized on 1% agarose 
gel and gel eluted using QIAqucik gel extraction kit.

NEBuilder HiFi DNA Assembly
Nested PCR amplification of near full length genome (NFLG) 
PCR product and vector PCR product were mixed with a 
minimum of 1:5 ratio in a 20 μl reaction volume containing 
10 μl of HiFi assembly mix. After 1 h of incubation at 50°C, 
5 μl of reaction mix was used for transformation of NEB 
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STABLE cells (New England BioLabs). Miniprep plasmids were 
isolated using QIAprep spin miniprep kit (Qiagen). Plasmids 
containing full-length genomes were screened by restriction 
enzyme digestion with SalI and BamHI enzymes.

To determine whether the plasmids containing full length 
clones generate infectious virus, transfection supernatants were 
generated by transfecting 293T cells with proviral clones. 
Infectious nature of the supernatants was determined by infecting 
TZM-bl cells. Sequences of IMCs were determined by using 
primers targeting different regions of the genome that support 
coverage of the entire length of the genome.

Recombination Analysis
Parental sequences for possible recombinant sequences were 
identified using Spits tree v4.17.1 (Huson and Bryant, 2006), 
and regions with evidence of recombination were confirmed 
by RAPR.1 Because indels are unlikely to emerge independently 
in the exact same position and with the same length, gaps in 
the alignment were also considered informative.

GenBank Accession Numbers
Sequences of HSIV-P3-114, HSIV-P3-161, and HSIV-P3-284 
are deposited under accession numbers MZ146778, MZ146779, 
and MZ146780, respectively.

RESULTS

Isolates of HSIV-vifNL4-3 From Late-Stage 
Infection Evolved Resistance to Host 
Immune Responses
We previously reported HSIV-vifNL4-3 could persistently infect 
PTMs (Thippeshappa et  al., 2011). We  continued to monitor 
the viral loads in two of those HSIV-vifNL4-3-infected PTMs 
for nearly 4 years (Figure  1A). Although viral RNA was below 
the detection limit at most of the late time points measured, 

1 https://www.hiv.lanl.gov/content/sequence/RAP2017/rap.html

viral DNA could be  detected in PBMCs through 200 wpi. 
Additionally, we  recovered infectious virus from PBMCs at 
196 and 200 wpi, suggesting that the virus had been replicating 
in the animals for nearly 4 years. Interestingly, one of the 
animals (M08009), despite low or undetectable viral loads, 
showed a gradual decline and then stably depressed CD4+ T 
cell counts, suggesting disease progression (Figure  1B).

We recovered infectious virus by coculturing peripheral 
blood CD4+ T cells from infected PTM (M08009, Figure  1) 
at 196 and 200 wpi with CEMx174 cells (biological isolates 
C/196 and C/200). C/196 and C/200 were susceptible to inhibition 
by AMD3100 but not Maraviroc, suggesting that viral isolates 
were only CXCR4-tropic (Supplementary Figure  4). We  next 
determined the replication capacity of C/196 and C/200  in 
PTM CD4+ T cells. Although the differences were not statistically 
significant, C/196 replicated to higher levels in PTM CD4+ T 
cells in both the presence (22-fold) and absence (17-fold) of 
IFNα relative to the parental clone, HSIV-vifNL4-3 (Figure  2). 
While C/200 displayed more limited replication, it was not 
affected by the addition of IFNα (Supplementary Figure  5). 
Partial genome sequencing analysis of PCR amplified fragments 
of C/196 and C/200 indicated that both isolates were clonal 
(Supplementary Figure  6). We  also observed that both C/196 
and C/200 were neutralization resistant to sera from M08009, 
the animal in which it evolved, as well as sera from the other 
PTM, F08003 that had been infected with HSIV-vifNL4-3 (Table 1). 
The emergence of immune escape variants of HSIV-vifNL4-3 
suggest that it had persistently replicated in PTMs.

Characterization of HSIV-vif Clones 
Expressing Vpr and Vpx
An explanation for the low but persistent replication of HSIV-
vifNL4-3 in vivo is that the virus is attenuated because it does 
not express accessory proteins necessary for more robust viral 
replication. Two possible proteins that could enhance replication 
of HSIV-vifNL4-3 are the HIV-1 Vpr or SIV Vpx. Since 
we  introduced SIV vif, which includes a partial open reading 
frame (ORF) for vpx into HIV-1 backbone, we  determined 
whether it had affected the expression of HIV-1 vpr. Indeed, 

A B

FIGURE 1 | Long-term monitoring of HSIV-vifNL4-3 infected pigtailed macaques (PTMs). Two juvenile PTMs (F08003 and M08009) were inoculated intravenously with 
HSIV-vifNL4-3. Plasma viral RNA loads (A) and CD4+ T cell counts (B) were measured at various time points post-infection. Data up to 90 weeks post-infection (wpi) 
have been published previously (Thippeshappa et al., 2011). PTM M08009 shows gradual decline in CD4+ T cells at late-stage of infection.
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HIV-1 Vpr protein was not observed in virions of HSIV-vif 
clones, HSIV-vifNL4-3 or HSIV-vifAD8 (Figure 3). We determined 
that this is because singly spiced HIV-1 vpr RNA from HSIV-vif 
is generated using the splice acceptor site within the SIV vif 
gene (Supplementary Figure  1). The transcript, therefore, 
includes the partial ORF for the SIV Vpx protein upstream 
of the translational initiation site for HIV-1 Vpr, which may 
interfere with its expression (Supplementary Figure  1).

Vpr is a small 96 amino acid (14 kDa) protein that is not 
required for HIV-1 replication in vitro. However, it is conserved 
among all primate lentiviruses, indicating its importance for 
pathogenesis (Tristem et  al., 1992, 1998). Therefore, we  modified 
HSIV-vif clones to express Vpr. We deleted the sequence between 
the stop codon of vif and start codon of vpr and disrupted the 
vpx translational start codon and other ATG codons upstream 
of the vpr initiation site by site directed mutagenesis 
(Supplementary Figures  1 and 8). Mutation of these three ATG 
codons, one of which results in M181L in SIV Vif, resulted in 
expression of Vpr, which is incorporated into progeny virions 
(Vpr+ HSIV-vifNL4-3 and Vpr+ HSIV-vifAD8, Figure  3). Antibody 
to Nef was used as a control for incorporation of a virion-
associated protein in HSIV-vif clones. Additionally, since Vpx 
counteracts the function of SAMHD1 (Hrecka et al., 2011; Laguette 
et  al., 2011) and is essential for replication of SIV in macaques 

(Hirsch et  al., 1998; Belshan et  al., 2012; Shingai et  al., 2015) 
and because HSIV-vif already has a partial ORF for vpx, we also 
generated an HSIV-vif derivative carrying the full-length vpx 
gene (Supplementary Figure  2). We  used HSIV-vifYu2, which is 
IFN-resistant (Thippeshappa et al., 2013), to generate HSIV-vif-vpx 
carrying the full-length vpx gene (named HSIV-vif-vpxYu2). By 
Western blot using rabbit anti-serum to HIV-2Rod Vpx protein, 
Vpx could be  detected in the cell lysates of SIV, HIV-2, and 
HSIV-vif-vpxYu2, but not SIVΔVpx. However, it was not detected 
in virion lysates of HSIV-vif-vpxYu2 (Supplementary Figure  2) 
as HIV-1 does not have determinants in p6 Gag required for 
virion incorporation of Vpx (Sunseri et  al., 2011).

We tested the effect of Vpr and Vpx expression on HSIV-vif 
replication in an immortalized PTM CD4+ T cell line (Munoz 
et al., 2009). PTM CD4+ T cells were infected with Vpr- (HSIV-
vifNL4-3, HSIV-vifAD8, and HSIV-vifYu2), Vpr+ (Vpr+HSIV-vifNL4-3, 
Vpr+HSIV-vifAD8, and Vpr+HSIV-vifYu2), HSIV-vif-vpxYu2, or wild 
type HIV-1 (NL4-3, NL-AD8, and Bru-Yu2) viruses at an MOI 
of 0.01. Vpr+ HSIV-vif viruses, and HSIV-vif-vpxYu2 replicated 
in PTM CD4+ T cells to similar levels as Vpr- viruses (Figure 4). 
Expectedly, wild type HIV-1 (NL-AD8 and Bru-Yu2) failed to 
replicate (Figure  4).

We also determined the replication capacity of vpr and vpx 
carrying HSIV clones in human MDMs. Human MDMs were 
generated using previously described methods (Biesinger et al., 
2010) and infected with the Vpx+, Vpr+, and Vpr- HSIV-vif 
clones at an MOI of 0.01. Vpr+ HSIV- vifAD8 (Figure  5A) and 
Vpr+ HSIV-vifYu2 (Figure  5B) replicated to similar levels as 
Vpr- HSIV-vifAD8 and Vpr+ HSIV-vifYu2, but slightly less than 
wild type HIV-1 NL-AD8 and Bru-Yu2 (Figures 5A,B), although 
it was not statistically significant. Additionally, HSIV-vif-vpxYu2 
replicated as well as the parental HIV-1 Bru-Yu2 (Figure  5B).

Serial in vivo Passaging of HSIV-vif
Because HSIV-vifNL4-3 replication in the initial PTM experiment 
was low with peak viremia <105 copies/ml (Figure  1; 
Thippeshappa et  al., 2011), we  conducted animal to animal 
transfer of infected PTM peripheral blood to adapt HSIV-vif 
to PTMs. For this experiment, the initial inoculum contained 
a mixture of CXCR4- (C/196 and C/200) and CCR5-tropic 
viruses (Vpr+ HSIV-vifAD8, Vpr+ HSIV-vifYu2, and HSIV-vif-vpxYu2). 
At 14 wpi, pooled blood from infected PTMs (Z09080 and 
Z09067) was used to inoculate a naïve macaque (Z13086). At 
8 wpi, peripheral blood from Z13086 was transferred into an 
additional PTM (Z13098). Interestingly, all the macaques showed 
a peak viremia close to or above 105 copies/ml and the viral 
loads persisted for at least 20 wpi (Figure  6A). Furthermore, 
increases in antibody titer over time suggest that all PTMs 
were persistently infected with HSIV-vif (Figure 6B). However, 
CD4+ T cell decline was not observed in the infected PTMs 
(Figure  6C).

Cloning and Characterization of HSIV 
IMCs
We generated IMCs from proviral DNA isolated from PBMCs 
of the passage 3 macaque (Z13098). Near full-length proviral 

FIGURE 2 | Replication kinetics of biological isolates of HSIV-vifNL4-3 (C/196 
and C/200). PTM CD4+ T cells were infected in duplicate at a MOI of 0.01 
with the parental HSIV-vifNL4-3 or variant isolates C/196 in the presence or 
absence of IFNα (200 U/ml) in the culture media. Virus supernatants were 
collected every 3–4 dpi and p24 was quantified by ELISA.

TABLE 1 | Serum neutralizing antibody titer against wild type versus late isolates 
of HSIV-vifNL4-3.

Neutralizing antibody titers*

Sera F08003 Sera M08009

Viruses 64 wpi 196 wpi 64 wpi 196 wpi
Parental clone 
(HSIV-vifNL4-3)

800 3,200 8,000 12,800

C/196 <25 <25 <25 100
C/200 <25 <25 <25 50

*The neutralizing antibody titer is the reciprocal of the serum dilution that inhibits 
infection by 50% (IC50).
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genomes (NFLG) were amplified using nested PCR as described 
by Hiener et  al. (2017) with slight modifications in PCR 
conditions. NFLGs was cloned into a vector PCR product 
containing 5′ LTR sequences (amplified from HSIV-vifNL4-3 
plasmid) using NEBuilder HiFi assembly mix 
(Supplementary Figure 3). Briefly, ends of NFLG PCR product 
and vector PCR product containing 5′LTR sequences overlap 
with each other, which can be  assembled using NEBuilder 
HiFi assembly mix. We screened nearly 300 colonies to identify 
54 plasmids with full length genomes. To determine whether 
they could produce infectious virus, full length clone plasmids 
were transfected into 293T cells to generate virus. Infectious 
nature of the supernatants was determined by infecting TZM-bl 
cells. Three of the 54 plasmid clones tested (HSIV-P3-114, 
HSIV-P3-161, and HSIV-P3-284) produced measurable infectious 
virus. DNA sequencing showed that the three IMCs were closely 
related to the C/196 and C/200 biological clones of HSIV-
vifNL4-3 (Table  2; Supplementary Figures  5, 6). Importantly, 
the three IMCs had more nonsynonymous mutations (Table 2) 
than synonymous mutations (Supplementary Table  1) 
throughout the genome suggestive of adaptation to PTMs. Most 
of the mutations in Env and Nef were seen in the biological 
clones of HSIV-vifNL4-3 (C/196 and C/200) recovered from PTM 
M08009 (Table 2), suggesting that these mutations have persisted 
through three additional in vivo passages. In the Vpr+ HSIV-vif 
clones, we  had mutated SIV vpx ATG codon to ACG (silent 
mutation) and ATG codon at amino acid position 181  in SIV 
vif to TTG, which codes for leucine (M181L substitution; 
Supplementary Figure  1). However, SIV vpx start codon was 
present in the recovered IMCs. Additionally, ATA codon was 
present at amino acid position 181, which codes for isoleucine 
(M181I substitution). Further, all the recovered IMCs had the 
deletion of bases between SIV vif stop codon and vpr start 
codon (Supplementary Figure  8), suggesting that these clones 
could express Vpr protein. Third, recombination analysis using 
RAPR program suggested that the recovered IMCs are 
recombinants that consist of biological clone C/196 with an 

insertion of 737 bp region spanning the 3′ end of vif to 5′ 
end of vpu (nucleotides 5,447–6,171 according to HXB2 reference 
sequence) from Vpr+HSIV-vifAD8. We  confirmed the expression 
of Vpr from HSIV-P3 IMCs by western blot using rabbit anti-
sera against Vpr protein (Figure 7). Interestingly, virion-associated 
Vpr was higher than that for the VPR+ HSIV-vifNL4-3 clone.

We determined whether HSIV-P3 IMCs (HSIV-P3-114, 
HSIV-P3-161, and HSIV-P3-284) replicate in PTM PBMCs. 
PBMCs isolated from different donor PTMs were activated 
with concanavalin A for 3 days and maintained in IL-2 containing 
media for 2 days. Activated PBMCs were infected with HSIV-P3 
IMCs and Vpr+ HSIV-vifNL4-3 at an MOI of 0.01. Viral supernatants 
were collected at various days post-infection to assay for p24 
levels. We observed that HSIV-P3 IMCs replicated with different 
efficiency in PBMCs from different donor PTMs (Figure  8). 
Among the three HSIV-P3 IMCs, HSIV-P3-284 replicated to 
similar levels as Vpr + HSIV-vifNL4-3 in activated PBMCs.

DISCUSSION

Since first-generation SHIV constructs replicated poorly in 
macaques, serial in vivo passages were conducted to enhance 
their infectivity or replicative capacity (Luciw et  al., 1995; Joag 
et  al., 1996; Reimann et  al., 1996; Igarashi et  al., 1999; Chen 
et  al., 2000; Song et  al., 2006). We  previously reported the 
construction of HSIV-vifNL4-3 and replication trend in juvenile 
and newborn PTMs (Thippeshappa et  al., 2011). Although 
HSIVvifNL4-3 persisted for nearly 4 years, the peak viremia was 
below 105 copies/ml, rapidly declined, and was intermittently 
detectable thereafter in juvenile PTMs. Therefore, we  conducted 
serial in vivo passaging of HSIV-vif in PTMs using a mixture 
of different molecular clones and variants as an initial inoculum. 
We  report consistent replication of HSIV with peak plasma viral 
RNA levels close to or greater than 1 × 105 viral RNA copies/
ml and continuously detectable for 20–30 wpi in the passaged 
macaques. Additionally, we  performed passaging at 14 (passage 
2) and 8 wpi (passage 3) when the viral loads were low in the 
donor monkey. Therefore, peak viremia of 105 copies/ml in the 
recipient monkey suggests consistent replication of HSIV in PTMs. 
To further characterize HSIV-vif selected in PTMs, we  PCR 
cloned and generated IMCs from the passage 3 macaque using 
DNA isolated from PBMCs from passage 3 PTM at 4 wpi. Our 
characterization indicated that the selected variants appear to 
be  Vpr expressing recombinants of the HSIV-vifNL4-3 biological 
isolates from the long-term infected PTM with depressed CD4+ 
T cell counts. These data suggest that neutralization resistant 
variants which had evolved in association with CD4+ T cell 
decline and acquired the ability to express the HIV-1 Vpr had 
a fitness advantage for replication in PTMs (Overview of the 
experiments and data is provided in Supplementary Figure  9).

We have previously reported potential reasons for the 
attenuated replication of HSIV-vifNL4-3 in PTMs. In those studies, 
we noticed that HSIV-vifNL4-3 was inefficient in degrading PTM 
APOBEC3 family restriction factors compared to highly 
pathogenic SIVmne027 (Thippeshappa et  al., 2011). We  also 
observed that replication of HSIV-vifNL4-3 is inhibited in the 

FIGURE 3 | Vpr expression from HSIV clones. 293 T cells were transfected 
with HSIV clones. At 48 h post-transfection, virus supernatants were collected 
and concentrated by centrifugation. Virion lysates were analyzed by western 
blot using antibody to HIV-1 Vpr and Nef.
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presence of IFNα in PTM CD4 T cells (Thippeshappa et  al., 
2013). This perhaps suggests that HSIV-vifNL4-3 may not be able 
to overcome type I  IFN response induced during acute stage 
of infection. Here, we  also show that HSIV-vif clones do not 
express Vpr due to interference by the partial vpx ORF in 
the singly spliced vpr mRNA. We  speculate that the absence 
of Vpr expression may have affected viral replication of HSIV-
vifNL4-3 in the initial inoculation of PTMs (Figure  1).

HIV-1 Vpr incorporates into virions through an interaction 
with p6 of Gag (Bachand et  al., 1999; Selig et  al., 1999). In 
vitro studies have attributed several biological function to Vpr, 
which include: (i) cell cycle arrest and apoptosis (Di Marzio 
et  al., 1995; He et  al., 1995; Jowett et  al., 1995; Planelles et  al., 
1995; Re et  al., 1995; Bartz et  al., 1996; Goh et  al., 1998; 
Stewart et  al., 1999, 2000; Zhang and Bieniasz, 2020); (ii) 
nuclear import of viral DNA (Popov et  al., 1998a,b; Le Rouzic 
et  al., 2002; Riviere et  al., 2010); (iii) regulation of viral gene 
expression (Forget et  al., 1998; Subbramanian et  al., 1998; 
Vanitharani et al., 2001; Yurkovetskiy et al., 2018); (iv) infection 
of nondividing cells (Balliet et  al., 1994; Connor et  al., 1995; 
Campbell and Hirsch, 1997; Miller et al., 2017); (v) modulation 
of immune responses (Ayyavoo et  al., 2002; Muthumani et  al., 
2004, 2005; Majumder et al., 2005, 2008; Okumura et al., 2008; 
Doehle et  al., 2009; Khan et  al., 2020); and (vi) interaction 
with uracil DNA glycosylase (UNG2), a DNA repair enzyme 
that specifically removes uracil from DNA, and reduction of 
G to A mutations during reverse transcription (Mansky et  al., 
2000; Chen et  al., 2004; Ahn et  al., 2010). Since Vpr performs 
multiple functions during HIV replication, we  hypothesized 
that absence of HIV-1 Vpr expression in HSIV-vifNL4-3 may 
affect persistent viral replication in PTMs.

It is interesting that even without Vpr expression, HSIV-
vifNL4-3 persisted for nearly 4 years (Figure 1). While the functions 
of Vpr have not been clearly defined in vivo, the potential 
importance of Vpr for HSIV-vif replication in pigtails is supported 
by pathogenesis studies of SIVmac, which demonstrate deletion 
of either Vpr or Vpx alone or together attenuates viral replication 
and ability to cause disease (Lang et  al., 1993; Gibbs et  al., 
1995), and Vpx is necessary for SIV infection of CD4+ T cells 

A

B

C

FIGURE 4 | Vpr and Vpx expressing HSIV replicate in PTM CD4 T cells. 
Cells were infected in duplicate with HSIV-vifNL4-3 (A), HSIV-vifAD8 (B), and 
HSIV-vifYu2 (C) variants at an MOI of 0.01. Virus supernatants were collected 
every 3–4 dpi and assayed for p24 levels.

A B

FIGURE 5 | Vpr and Vpx expressing HSIV replicate in monocyte-derived macrophages (MDMs). Cells were infected in duplicate with HSIV-vifAD8 (A) and  
HSIV-vifYu2 (B) clones expressing Vpr or Vpx or neither at an MOI of 0.01. Virus supernatants were collected every 3–4 dpi and assayed for p24 levels.
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in vivo (Belshan et  al., 2012). Interestingly, Vpr null viruses 
reverted to Vpr expressing virus in SIV-infected macaques 
(Lang et al., 1993; Hoch et al., 1995), suggesting the importance 
of Vpr for in vivo pathogenesis. We  speculated that the HIV-1 
Vpr expressing HSIV may replicate better than the parental 
Vpr- HSIV-vifNL4-3 in vivo. Therefore, we  generated HSIV 
derivatives expressing HIV-1 Vpr by introducing mutations in 
ATG codons upstream of the Vpr start codon. Since Vpx 
performs similar roles as Vpr and SIV vif gene already has 
partial ORF for vpx, we  also generated an HSIV-vif derivative 
expressing the full length vpx gene. We  cloned full-length vpx 
gene into HSIV-vifYu2 backbone, as we  have previously shown 
that this clone resists IFN treatment in PTM CD4 T cells. 
HSIV-vif clones expressing either the HIV-1 vpr or SIV vpx 
were replication competent in vitro. However, accessory proteins 
such as Vpr and Vpx are not necessary for HIV-1 or SIV 
replication in vitro. Therefore, it is difficult to show the impact 
of Vpr or Vpx expression for HSIV-vif replication using in 
vitro studies. Infecting PTMs with different clones would be  a 
better method to define the significance of the HIV-1 vpr for 
HSIV-vif replication. Indeed, in our passage studies, we  used 

both HIV-1 Vpr- and Vpr+ HSIV to determine the importance 
of HIV-1 Vpr for in vivo pathogenesis in PTMs. Recovery of 
Vpr+ HSIV IMCs from the passage 3 macaque again suggests 
a role for Vpr in pathogenesis in vivo.

In our studies to characterize persistent HSIV-vif variants, 
we  have developed and standardized a rapid and robust 
approach to generate IMCs from proviral DNA. We screened 
54 plasmids for their ability to generate infectious virus. 
Out of which, only three generated infectious virus, which 
roughly correspond to 5% of total clones. This is not surprising 
as 90–95% of the proviral DNA is noninfectious (Ho et  al., 
2013; Bruner et  al., 2016; Hiener et  al., 2017). Interestingly, 
recovered IMCs from passage 3 macaque were Vpr+ HSIV-
vifNL4-3. Although PCR-mediated recombination event is possible 
(Liu et  al., 2014), this suggested a possible recombination 
between Vpr+ HSIV-vif clones (either HSIV-vifAD8 or HSIV-
vifYu2) with biological isolates C/196 and C/200 recovered 
from M08009. Three observations suggest a recombination 
event: First, the three recovered IMCs had deletion of bases 
between SIV vif stop codon and HIV-1 vpr start codon. 
Second, most mutations observed in env and nef were already 

A B C

FIGURE 6 | Passaging of HSIV to generate pathogenic variants. Passage 1 macaques were infected with a mixture of viruses. At 14 wpi, pooled blood from 
infected PTMs (Z09080 and Z09067) was used to inoculate a naïve macaque (Z13086) and then blood from Z13086 at 8 wpi was passaged through an 
additional PTM (Z13098). At several time points post-inoculation, peripheral blood was drawn for measuring plasma viral loads (A), antibody titer (B), and CD4 T 
cell counts (C).
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FIGURE 8 | HSIV-P3 IMCs replicate in PTM peripheral blood mononuclear cells (PBMCs). PBMCs from different donor PTMs were activated with concanavalin A 
for 3 days and maintained in media containing IL-2 (40 U/ml) for 2 days. Cells were then infected in duplicate with HSIV-P3 IMCs or parental Vpr+ HSIV-vifNL4-3 virus at 
an MOI of 0.01, and supernatants were assayed for p24 by ELISA every 3–4 dpi.

present in the HSIV-vifNL4-3 biological clones (C/196 and 
C/200) from M08009. Third, an analysis using RAPR program 
indicated that recovered IMCs may have resulted from 
recombination between biological clone C/196 and Vpr+HSIV-
vifAD8, with a segment spanning from within vif to vpu of 
Vpr+ HSIV-vifAD8 that includes the mutation necessary for 
Vpr expression inserted into the biological clone C/196. 
Therefore, the recombination event to generate Vpr+ HSIV-P3 
IMCs demonstrates the importance of HIV-1 Vpr for HSIV-vif 
pathogenesis in vivo.

Although we used mixture of CXCR4- and CCR5-tropic viruses 
for inoculation into passage 1 PTMs, it is interesting that CXCR4-
tropic HSIV-vifNL4-3 persisted through three passages. We  have 
previously reported that SIV variants emerging during late-stage 
disease have a higher replicative capacity and increased pathogenicity 
(Kimata et  al., 1999). Similar observations have also been made 
with SHIV-1157ipd (Song et al., 2006). Therefore, recovered virus 
(C/196 or C/200) isolated during the late stage in our study may 
have greater fitness for replication in PTMs. Since recovered virus 
was also neutralization resistant, it may have helped the virus 
overcome antibody responses during additional passages. We also 
observed several nonsynonymous mutations throughout the genome 
of HSIV-P3-IMCs. Most of the mutations were shared among 
the three HSIV-P3 IMCs. However, HSIV-P3 IMCs also had 
mutations unique to each of the clones. We  speculate that these 
mutations could help the virus overcome restriction factors, better 
utilize host dependency factors, or they could help the virus 
escape adaptive immune responses.

In conclusions, our results suggest that serial in vivo passaging 
improves HSIV replication and persistence in PTMs. Identification 
of several nonsynonymous mutations in IMCs recovered from 

TABLE 2 | Nonsynonymous mutations observed in HSIV-P3 infectious molecular 
clones (IMCs).

Gene HSIV-P3-114 HSIV-P3-161 HSIV-P3-284
Gag K15R, E344G*, 

and T469I*
K15R K15R, R387G*

Pol F8L, T27A, 
G113R, C317S, 
and G705K

F8L,T27A, 
G113R, C317S, 
and G705K

F8L, T27A, 
G113R, C317S, 
G705K, and 
N937S*

Vif E20G*, M181Ia,# M181Ia,# M181Ia,#

Vpu I42T
Env L22P*, H105Q, 

K117R, G145E#, 
R146G#, I148T#, 
R166K#, K229E#, 
A279V#, Q308H#, 
K341R, T371M#, 
E427K#, I489L#, 
C530A#, T531A#, 
D545G#, A576T, 
E732G#, D756N#, 
V780G, N807S*, 
and V827I#

H105Q, K117R, 
G145E#, R146G#, 
I148T#, R166K#, 
K229E#, A279V#, 
Q308H#, K341R, 
T371M#, E427K#, 
I489L#, C530A, 
T531A, D545G#, 
A576T, E732G#, 
D756N#, V780G, 
N814Y*, and 
V827I#,

H105Q, K117R, 
G145E#, R146G#, 
M147T*, I148T#, 
R166K#, K229E#, 
A279V#, Q308H#, 
K341R, K346E*, 
T371M#, E427K#, 
I489L#, C530A, 
T531A, D545G#, 
A576T, E732G#, 
D756N#, V780G, 
and V827I#

Rev G65E, C89R, and 
G96R

G65E, C89R, and 
G96R

G65E, C89R, and 
G96R

Nef R105K, S163N#, 
M173I#, V180M*, 
R184K#, and 
E201D

A53T*, R105K, 
S163N#, M173I#, 
R184K#, and 
E201D

R105K, S163N#, 
M173I#, R184K#, 
E201D, and 
F203S*

*unique mutations to each of the IMCs.
#mutations were observed in HSIV-vif biological isolates recovered from M08009.
aM181L mutation introduced in SIV Vif changed to isoleucine in the recovered IMCs.

FIGURE 7 | Vpr expression from HSIV-P3 IMCs clones. 293T cells were 
transfected with HSIV-P3 IMCs. At 48 h post-transfection, virus supernatants 
were collected and concentrated by centrifugation. Virion lysates were 
analyzed by western blot using antibody to HIV-1 Vpr and p24.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Thippeshappa et al. HSIV-vif Infection of Pigtailed Macaques

Frontiers in Microbiology | www.frontiersin.org 11 November 2021 | Volume 12 | Article 779460

passage 3 macaque also indicated that serial in vivo passaging 
helps in acquisition of mutations. Since these mutations are 
in the context of replication competent virus, they may play 
a significant role in the replication and pathogenesis in vivo. 
However, a shortcoming of the studies is the limited duration 
of the passage experiment and limited number of animals 
used for the study. While variants of HSIV-vifNL4-3 that acquired 
the ability to express the HIV-1 Vpr appear to have a selective 
advantage, the short duration of the experiments was insufficient 
to determine if the selected variants had increased pathogenicity. 
However, the in vivo data show consistent replication of HSIV-vif 
to 105 viral RNA copies/ml in four PTMs. Further in vivo 
passaging of HSIV-P3 IMCs with longer follow-up periods 
will be  necessary to verify their increased replication fitness, 
and to generate pathogenic variants with enhanced replication 
capacity. Development of such pathogenic variants will 
be  valuable as challenge viruses for preclinical evaluation of 
novel vaccines and therapeutics, as these HSIV clones have 
all the HIV immunologic and vaccine targets, such as Gag, 
Pol, Env, Tat, Rev., and Nef. Furthermore, establishment of 
HIV reservoirs in this model also provides an avenue for 
developing therapeutic vaccination approaches targeting HIV 
Gag, Pol, and Env, apart from testing latency reversal agents 
and cure strategies.
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