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a b s t r a c t 

From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of neurodegenera- 

tion. Yet, traditional fMRI research on resting-state networks (RSNs) has favored static and average connectivity 

methods, which by overlooking the fluctuation dynamics triggered by neurodegeneration, have yielded inconsis- 

tent results. The present multicenter study introduces a data-driven machine learning pipeline based on dynamic 

connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participants belonging to three groups: behav- 

ioral variant frontotemporal dementia (bvFTD) patients, Alzheimer’s disease (AD) patients, and healthy controls. 

We considered non-linear oscillatory patterns across combined and individual resting-state networks (RSNs), 

namely: the salience network (SN), mostly affected in bvFTD; the default mode network (DMN), mostly affected 

in AD; the executive network (EN), partially compromised in both conditions; the motor network (MN); and 

the visual network (VN). These RSNs were entered as features for dementia classification using a recent robust 

machine learning approach (a Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), 

across four independent datasets with different MR scanners and recording parameters. The machine learning 

classification accuracy analysis revealed a systematic and unique tailored architecture of RSN disruption. The 

classification accuracy ranking showed that the most affected networks for bvFTD were the SN + EN network 

pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity = 87.54%); for AD, the DMN + EN 

network pair (mean accuracy = 86.63%, AUC = 0.89, sensitivity = 88.37%, specificity = 84.62%); and for the 

bvFTD vs. AD classification, the DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitiv- 

ity = 81.27%, specificity = 83.01%). Moreover, the DFCA classification systematically outperformed canonical 

connectivity approaches (including both static and linear dynamic connectivity). Our findings suggest that non- 

linear dynamical fluctuations surpass two traditional seed-based functional connectivity approaches and provide 

a pathophysiological characterization of global brain networks in neurodegenerative conditions (AD and bvFTD) 

across multicenter data. 
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. Introduction 

From molecular mechanisms to global networks, variable brain fluc-

uations are the hallmark of neurodegeneration. RSNs can be understood
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s dynamical systems presenting time-dependent functional connectiv-

ty (FC) variations that influence brain function during health and dis-

ase ( Breakspear, 2017 ; Sporns, 2014 ; Hutchison et al., 2013 ). Despite

his highly variable environment, most RSN research on dementia only

mploys static FC (SFC) measures (i.e., averages of FC across the whole

R acquisition time) ( Sporns, 2014 ). Also, the field has broadly favored
(A. Ibáñez). 
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Fig. 1. Preprocessing and machine learning pipeline. (A) In order for the RS-BOLD data from the two groups to be classified, we employed the DPARSF pipeline 

for RS-fMRI data preprocessing, followed by band-pass filtering (0.01–0.08 Hz) to obtain the preprocessed time-series. (B) By using a wavelet-based algorithm, we 

employed the wavelet coefficients to remove large signal spikes without losing relevant information to obtain the cleaned time series. (C) We segmented the RS time 

series into non-overlapping windows of different time-scales (i.e., 5, 10, 15, 20 and 25 time-points). (D) We defined seeds for the DMN, SN, EN, VN, and MN networks 

to obtain the RSNs by employing the I 𝜙2 copula dependence measure. Then we used standard masks to identify the voxels for each network. (E) We spatially averaged 

the voxels to obtain one RSNs time series for each network. Then we used the standard deviation statistic to obtain the fluctuation features for later normalization. (F) 

For testing different feature combinations, we used a LOOCV validation scheme for Bayesian hyper-parameter tuning to obtain trained XGBoost models, and then we 

tested our classification with independent datasets. For ROC analysis, we defined bvFTD group as the “positive ” class and AD group as the “negative ” class, allowing 

the sensitivity and specificity metrics being applicable to patients groups comparisons, as reported previously ( Caso et al., 2012 ). RS-BOLD: fMRI resting-state BOLD 

datasets; masked RSNs: masked resting-state networks; FEATURE ENG: Feature engineering; DATA NORM: Data normalization. 
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inear correlation measures (e.g., Pearson’s R), which are blind to non-

inear connectivity interactions. These limitations may partly explain

hy standard SFC analyses have yielded inconsistent sensitivity and

pecificity indices ( Pievani et al., 2014 ; Sedeño, 2017 ) in classifying be-

ween Alzheimer’s disease (AD) and behavioral variant frontotemporal

ementia (bvFTD) patient groups ( Pievani et al., 2014 ). The heteroge-

eous network fluctuations caused by neurodegeneration might not be

aptured by SFC and linear correlations, calling for non-linear FC meth-

ds and dynamical frameworks that outperform time-averaged connec-

ivity ( Liegeois et al., 2019 ). Here, we developed a Dynamic Connectiv-

ty Fluctuation Analysis (DCFA) which targets FC fluctuation across time

nd captures both linear and non-linear signal modulations ( Fig. 1 ). We

ested this framework’s accuracy and generalizability to discriminate

mong healthy controls and two dementia subtypes (AD and bvFTD),

ased on 300 subjects (from three international dementia centers and

nline databases). 

Dementia involves a world-wide health-system burden, with an in-

reasing prevalence and incidence in the US and other high-income

ountries ( Wu et al., 2017 ) as well as in low- and middle-income coun-

ries (LMIC) ( Wu et al., 2017 ; Kalaria et al., 2008 , 9 ; Parra et al., 2018 ;

banez and Kosik, 2020 ). Moreover, the neuropathology of neurodegen-

rative disorders may manifest differences due to varied social, cultural,
nd regional contexts ( Alladi and Hachinski, 2018 ). Functional network

ariability ( Whitwell et al., 2009 ; Noh et al., 2014 ; Ossenkoppele et al.,

015 ), together with socioeconomic disparities, may induce heteroge-

eous presentations of AD and bvFTD, thus requiring robust approaches

or its accurate characterization across heterogeneous populations. Such

ariability may in part explain conflicting evidence pointing to the most

ffected functional networks for each disease. Whereas some studies

ave reported that the Default Mode Network (DMN) and the Salience

etwork (SN) are differentially affected in AD and bvFTD, respectively

 Pievani et al., 2014 ), others show aberrant FC along those networks

n both conditions ( Agosta et al., 2012 ; Filippi et al., 2019 ). Moreover,

ther networks, such as the EN, may also be disrupted in both dementia

ubtypes ( Agosta et al., 2012 ; Badhwar et al., 2017 ). Therefore, there is

 call for novel approaches that prove robust to sample heterogeneity. 

Typical resting-state FC research assumes time-constant cross-

egional interaction, establishing connectivity patterns as single as-

ociation coefficients between the entire time-series while ignor-

ng temporal variations ( Hutchison et al., 2013 ). Despite the unde-

iable contribution of this approach ( Hutchison et al., 2013 ), in-

reasing evidence suggests that dynamic FC (DFC) changes may

dd critical information about brain organization ( Breakspear, 2017 ;

utchison et al., 2013 ), at different time scales and frequencies
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r  
 Chang and Glover, 2010 ; Yaesoubi et al., 2015 ). Indeed, FC variabil-

ty reflects task demands ( Fornito et al., 2015 ), learning ( Bassett et al.,

011 ), working memory ( Shakil et al., 2016 ), and different conscious-

ess states ( Greicius et al., 2008 ). Dynamical fluctuations are related

o specific electrophysiological bands, supporting their neurobiological

elevance ( Tagliazucchi et al., 2012 ). These changes are traceable at the

ypical temporal resolution of fMRI, as well as other (faster or slower)

ime-scales (from seconds to minutes) ( Handwerker et al., 2012 ). There-

ore, FC fluctuations seem critical to form adaptive activity patterns

cross different time-scales ( Hutchison et al., 2013 ). This could underlie

he cognitive and behavioral flexibility required to tackle environmen-

al demands –which can hardly be captured by studying encapsulated

echanisms rooted in fixed functional architectures ( Hutchison et al.,

013 ). 

The DFC technique proved sensitive to neurological alterations in-

exed by FC changes over short periods, usually considering seg-

ented time-windows ( Shakil et al., 2016 ; Bolton et al., 2020 ). Most

xisting studies have investigated AD or Parkinson’s disease (PD)

 Hutchison et al., 2013 ), with only one reporting reduced DFC in FTD

 Premi et al., 2019 ). Previous AD research has shown alterations in

he DFC of the DMN-prefrontal cortex and in global oscillatory FC pat-

erns ( Filippi et al., 2019 ) correlated with cognitive symptom severity

 Demirtas et al., 2017 ). Moreover, whereas a standard SFC approach

iscriminated early mild-cognitive impairment patients from controls

ith 62–72% accuracy, DFC yielded a higher classification rate (80%)

 Wee et al., 2016 ). Yet, this evidence presents several limitations. First,

ost of these studies (and others based on SFC approaches) overlook the

ombination of different RSNs as features to discriminate among demen-

ias. Although the DMN and the SN are considered key altered networks

n AD and bvFTD, respectively ( Pievani et al., 2014 ), both present aber-

ant FC patterns in each disease ( Agosta et al., 2012 ; Filippi et al., 2019 ).

oreover, other networks, such as the EN, have also been reported as

mpaired in these conditions ( Agosta et al., 2012 ; Badhwar et al., 2017 ).

econd, FC associations are generally estimated with linear metrics such

s Pearson’s correlations, despite substantial evidence highlighting the

elevance of non-linear FC ( Moguilner et al., 2018 ). Finally, the relia-

ility and reproducibility of DFC findings remains a challenge given the

ack of multicenter studies using computational decision-support meth-

ds, a robust framework to identify consistent biomarkers across coun-

ries ( Humpel, 2011 ). 

Against this background, we developed a novel DCFA framework

nd tested whether features based on connectivity fluctuations discrim-

nate between AD and bvFTD across countries. Innovatively, this ap-

roach estimates interregional FC variability with a metric that cap-

ures both linear and non-linear associations, outperforming traditional

eed-based functional connectivity metrics to characterize dementia

 Moguilner et al., 2018 ). To evaluate the robustness of our pipeline, we

mployed an advanced machine-learning algorithm, the gradient boost-

ng machines (GBM) (tuned by Bayesian hyperparameter optimization),

ith large training and test sets comprising 300 subjects from three in-

ernational dementia centers and online databases. This allows testing

he generalizability of our results, which proves critical for developing

imely, cost-effective, and robust biomarkers ( Sedeño, 2017 ). Moreover,

nlike previous research, our approach allows assessing whether global

rain dynamics (i.e., combinations between RSNs) proves more infor-

ative than single-network features. Considering the evidence above,

e predicted that our DCFA pipeline would outperform SFC and linear

FC models in characterizing patients across centers. Furthermore, we

ypothesized that models that factor in the combinations between fluc-

uations of two RSNs would outperform those targeting each network

eparately. In particular, in light of previous findings, we hypothesized

hat the combinations between the SN, the DMN, and the EN would be

rucial to classify between bvFTD and AD patients, and also between the

atter two groups and healthy controls. Lastly, as a complementary mul-

imodal evaluation, we performed a one-sample comparison of DCFA
nd SFC relative to traditional anatomical MRI measures (surface-based

orphometry, SBM). 

. Materials and methods 

.1. Participants 

The study comprised 300 participants, with 150 individuals from

ur ongoing protocol ( Donnelly-Kehoe et al., 2019 ; Baez et al., 2019 ;

edeno et al., 2017 ; Santamaria-Garcia et al., 2017 ; Dottori et al., 2017 ;

edeño et al., 2016 ; Melloni et al., 2016 ; Baez, 2016 ; Baez et al., 2014 ;

arcia-Cordero et al., 2019 ; Bachli, 2020 ) from three international clin-

cal centers, and the remaining 150 belonging to the Alzheimer’s Dis-

ase Neuroimaging Initiative (ADNI) and the Neuroimaging in Fron-

otemporal Dementia (NIFD/LONI) databases, jointly referred as “on-

ine database ” below. Following recommendations for multicenter MRI

tudies ( Poldrack et al., 2017 ), the set group of participants consisted

f 51 healthy controls, 46 patients fulfilling revised criteria for proba-

le bvFTD, and 53 with probable Alzheimer’s disease (AD), all recruited

rom centers with extensive experience in neurodegeneration: INECO

oundation, in Argentina (Country-1: 19 controls, 18 bvFTD patients, 15

E patients); San Ignacio University Hospital, in Colombia (Country-2:

8 controls, 15 bvFTD patients, 20 AD patients); and the frontotempo-

al dementia research group (FRONTIER) at the University of Sydney, in

ustralia (Country-3: 14 controls, 13 bvFTD patients, 18 AD patients);

nd an online database (50 controls, 50 bvFTD patients, 50 AD patients).

As in previous reports ( Sedeño et al., 2017 ; Baez et al., 2014 ;

iguet et al., 2011 ; Melloni et al., 2016 ), clinical diagnosis was estab-

ished by bvFTD and AD expert clinicians and supported by a stan-

ard clinical examination including extensive neurological, neuropsy-

hiatric, and neuropsychological assessments (Supplementary informa-

ion 1). Then, each case was reviewed in a multidisciplinary clinical

eeting involving cognitive/behavioral neurologists, psychiatrists, and

europsychologists. The patients were impaired (i.e. in episodic mem-

ry for AD and prominent changes in personality and social behavior

or bvFTD), as reported by caregivers. They were all in early/mild dis-

ase stages and did not fulfill criteria for specific psychiatric disorders.

atients presenting primarily with language deficits were excluded. 

Patients from each group in each sample were matched on sex, age,

nd education with controls (Supplementary Table 1). No participant

resented a history of drug abuse, and patients did not present other psy-

hiatric or neurological diseases. All subjects provided signed informed

onsent in accordance with the Declaration of Helsinki. The study pro-

ocol was approved by each center’s institutional Ethics Committee. 

.2. Image acquisition 

MRI acquisition and preprocessing steps followed the Organization

or Human Brain Mapping guidelines ( Poldrack et al., 2017 ) (Supple-

entary information 2). In the resting-state protocol, participants were

sked not to think about anything in particular, while remaining awake,

till and with eyes closed ( Sedeño et al., 2017 ; Melloni et al., 2016 ). As

n previous multicenter research ( Sedeño et al., 2017 ; Moguilner et al.,

018 ; Donnelly-Kehoe, 2019 ; Dottori et al., 2017 ; Bachli et al., 2020 ),

ifferent scanners were used across centers, with diverse acquisition

arameters (Supplementary Table 2). This variability is one of the

trengths of multicenter approaches ( Humpel, 2011 ), as it allows eval-

ating whether the same measure and machine-learning algorithm are

ufficiently robust and reliable to discriminate among patients and con-

rols despite methodological and sociocultural heterogeneity. 

.3. FMRI data preprocessing 

For each preprocessing step, DPARSF called the Statistical Paramet-

ic Mapping (SPM 12) and the Resting-State fMRI Data Analysis Toolkit
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REST V.1.7) to process the data. Before preprocessing, the first five

olumes of each subject’s resting-state session were discarded to en-

ure steady state magnetization. Then, the images were slice-time cor-

ected (using as reference the middle slice of each volume) and aligned

o the first scan of the session to correct head movement. To reduce

he effects of motion and physiological artifacts, six head-motion pa-

ameters, as well as white matter (WM) and cerebrospinal fluid (CSF)

ignals, were removed as nuisance variables. WM and CSF masks for

his procedure were derived from the tissue segmentation of each sub-

ect’s T1 scan in native space. Next, functional images were normalized

o the MNI space using the echo-planar imaging (EPI) template from

PM ( Ashburner and Friston, 1999 ), and then they were smoothed with

n 8-mm full-width half-maximum Gaussian kernel. Finally, data was

and-pass filtered (0.01–0.08 Hz) given the relevance of slow frequency

n the analysis of resting-state networks ( Fox et al., 2005 ; Raichle, 2009 ).

hen, we compared the mean translational and mean rotational param-

ters between groups in each country through ANOVA: no differences

ere found in any of the centers ( Table 1 ). 

.4. Data cleaning 

To ensure that algorithms are fed with appropriate training data,

nd as a complement to the standard pre-processing pipeline described

n Section 2.3 , we further cleaned the BOLD fMRI time series by de-

piking the signal with a wavelet-based algorithm ( Patel et al., 2014 )

 Fig. 1. B). This spatially-adaptive, wavelet-based method for identify-

ng, modeling, and removing non-stationary events in fMRI time series

aused by head movement is able to accommodate the substantial spa-

ial and temporal heterogeneity of motion artifacts. Therefore, this pro-

edure can remove a range of high- and low-frequency artifacts from

MRI time series, which may be linearly or non-linearly related to phys-

cal movements. The Wavelet Despiking algorithm comprises five key

teps. First, each voxel time series is decomposed in the wavelet domain.

econd, the maximum and minimum wavelet coefficients are defined.

hird, the maximum and minimum coefficients of the decomposition

re searched, as abrupt changes in time series are represented as chains

f maximal and minimal wavelet coefficients. Then, the maximum and

inimum coefficients are set to zero. Finally, after the spikes have been

emoved, the wavelet despiked (denoised) signal is recomposed into the

ime-series space by using the inverse wavelet transform. Importantly,

avelet denoising yields more robust results than traditional filters, such

s time despike methods ( Patel et al., 2014 ). 

.5. Time series segmentation 

Using pre-processed and cleaned BOLD time series as input, we seg-

ent the time-series into non-overlapping time windows, reducing its

imensionality while avoiding serial correlations when compared to

ther segmentation methods ( Haimovici et al., 2017 ) ( Fig. 1 C, Supple-

entary information 3). The aim of this step was to prepare our time-

ependent analysis of dynamic connectivity. 

.6. Seed analysis and resting-state network definition 

First, seed analysis was used to evaluate both linear and non-linear

MRI connectivity for both SFC and DCFA analyses using the I 𝜙2 (details

elow) of five well-known RSNs ( Fox et al., 2005 ): the SN, typically im-

aired in bvFTD ( Sedeño et al., 2017 ; Sedeño et al., 2016 ; Agosta et al.,

013 ); the DMN, characteristically affected in AD ( Greicius et al.,

004 ) but also compromised in bvFTD ( Zhou et al., 2010 ); the exec-

tive network (EN), affected in AD ( Agosta et al., 2012 ) and in bvFTD

 Filippi et al., 2019 ); and the motor network (MN) and the visual net-

ork (VN), less markedly compromised in AD ( Badhwar et al., 2017 )

 Fig. 1. D, Supplementary information 4). 
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.7. Dependence measure 

Dependence measures, such as Mutual Information (MI), capture

oth linear and non-linear dependencies. Yet, their application in fMRI

tudies is limited because of their low temporal resolution. MI calcula-

ion usually involves the estimation of probability distributions which

equire a high sample rate to yield adequate results. To overcome this is-

ue, our DCFA analysis used rank statistics in a non-parametric and non-

inear dependency measure called the Hoeffding’s phi-square ( I 𝜙2 , Sup-

lementary information 5) –an approach which circumvents the short-

omings of probability estimations. 

.8. Feature engineering and data normalization 

After obtaining the masked connectivity RSNs for each time segment,

e spatially averaged the voxels of each network within the time seg-

ent to obtain a scalar connectivity value for each time segment. Then,

e applied the standard deviation statistic to the values of each seg-

ent to assess the amount of fluctuation present in the RSN connectiv-

ty. Since this approach was employed in each of the segmented time

eries, considering five different time scales (i.e., 5, 10, 15, 20, and 25

ime-points) for five different RSNs (DMN, SN, EN, MN and VN), we ob-

ained a total of 25 features per subject ( Fig. 1. E). Then, following fea-

ure engineering, we normalized (i.e. z-scored) each patient group (i.e.,

D and bvFTD) features by subtracting the mean of the corresponding

ontrol group feature sample and dividing it by its sample standard de-

iation ( Donnelly-Kehoe, 2019 ). This normalization approach was also

mployed in the SFC analysis. 

.9. Machine learning classification 

For our analysis within Country-1, and in order to obtain an inde-

endent test set to evaluate the generalizability of our model, we first

plit in half the dataset to create a training and testing set. Then, within

he training sample, we performed a leave-one-out cross-validation

LOOCV) scheme for hyper-parameter tuning. After the model was

rained and cross-validated in this training sample, we evaluated the

esults in the other half of the data set which is independent from the

raining set. The following analysis involved training the model with

he whole dataset corresponding to Country-1 to predict classification

n the other two datasets (from Country-2 and Country-3). We have used

he online database as a full out-of-sample validation, having an in-

ependent sample not only for testing, but also for training, with the

im to confirm the model’s reproducibility from scratch by arriving to

he same conclusions starting from different training sets ( Saito et al.,

015 ). Then, we trained the model with the whole dataset correspond-

ng to Country-1 to predict classification in the other two datasets (from

ountry-2 and Country-3). We then used an independent training and

est set from the online database, where each sample (i.e., controls, AD,

nd bvFTD groups) was divided in two groups, resulting in one half for

raining and one half for testing. We used a GBM classifier library called

GBoost (eXtreme Gradient Boosting), a classification algorithm em-

loyed in fMRI analysis. Compared to other algorithms, XGBoost proves

ore robust and is less affected by irrelevant and redundant features

 Chang et al., 2019 ). The algorithm was tuned by Bayesian optimiza-

ion (Supplementary information 6) ( Fig. 1. F). 

.10. Complementary comparisons with structural measures (MRI 

nalysis) 

Cortical morphometric features for the machine learning classifica-

ion were obtained via SBM ( Clarkson et al., 2011 ). This procedure pro-

ides regionally specific anatomical metrics, such as volume, curvature,

egularity, and cortical thickness. Also, it avoids registration to a stan-

ard space, improving the parcellation process and thus offering reliable

egion-specific metrics to analyze structural changes ( Clarkson et al.,
011 ). All T1 brain volumes were processed accordingly to obtain a

omplete morphometric description using the FreeSurfer’s (v 6.0) im-

ge analysis suite ( Fischl, 2012 ). The morphometric procedures of this

oolbox show good test-retest reliability across scanner manufacturers

nd field strengths ( Fischl, 2012 ). Finally, the volume, area, and thick-

ess from each segmentation based on the Desikan-Killiany parcellation

f cortical and subcortical areas ( Desikan et al., 2006 ) were quantified

o obtain the regional structural features for each subject. 

. Results 

.1. Classification within Country-1 

The first analysis comprised the whole dataset from Country-1. Half

he participants of each group (controls, AD, and bvFTD patients) were

sed in the training dataset for hyper-parameter tuning with LOOCV

alidation, and the other half was employed as the testing dataset

o measure generalization. The classification accuracy ranking plots

 Fig. 2 A) show that, for bvFTD against controls, the combination of SN

nd EN variability features provided the highest classification (accu-

acy = 83.33%, AUC = 0.91, sensitivity = 80%, specificity = 87.5%).

or the AD vs. controls classification, the best features resulted from the

ombination of the DMN and the EN (accuracy = 86.67%, AUC = 0.90,

ensitivity = 83.33%, specificity = 88.89%). Finally, for the bvFTD vs.

D contrast, the best results stemmed from the combination of the SN

nd the DMN (accuracy = 82.35%, AUC = 0.89, sensitivity = 87.50%,

pecificity = 71.43%) ( Fig. 2 - 3 ). All these results were obtained with the

5 time-point window; all other analyses yielded lower results for each

lassification model (Supplementary information 7). 

.2. Generalization to Country-2 and Country-3 

To assess the robustness of our results, we trained with the complete

ountry-1 dataset and tested in the datasets from the other two coun-

ries, featuring different acquisition parameters and sociocultural char-

cteristics. First, we trained with Country-1 data using a LOOCV valida-

ion scheme, and tested in the Country-2 dataset. For the bvFTD vs. con-

rols classification, SN and EN variability features provided the highest

lassification (accuracy = 88.89%, AUC = 0.94, sensitivity = 92.31%,

pecificity = 89.47%); for AD vs. controls, the combination of the

MN and the EN offered the best classification (accuracy = 89.47%,

UC = 0.88, sensitivity = 94.44%, specificity = 85%); and for the bvFTD

s AD classification, the combination of the SN and the DMN yielded

he best results (accuracy = 85.29%, AUC = 0.85, sensitivity = 80%,

pecificity = 89.47%) ( Fig. 2 - 3 ). These results were also obtained un-

er a 15 time-point window. Then, we evaluated classification perfor-

ance using Country-3 data. For the bvFTD vs. controls, SN and EN vari-

bility features provided the highest classification (accuracy = 87.50%,

UC = 0.95, sensitivity = 88.89%, specificity = 85.71%); for AD vs.

ontrols, the combination of the DMN and the EN offered the best re-

ults (accuracy = 84.38%, AUC = 0.92, sensitivity = 88.24%, speci-

city = 80%); and for the bvFTD vs AD classification, the combination of

he SN and the DMN offered the highest outcomes (accuracy = 83.87%,

UC = 0.90, sensitivity = 75%, specificity = 93.33%) ( Figs. 2 , 3 ). These

esults were also obtained under the 15 time-point window (Supplemen-

ary information 7). 

.3. Classification with the online database 

Next, we assessed the generalizability of our method using the on-

ine database ( Fig. 2 A, column 4). For bvFTD vs. controls, SN and EN

ariability features provided the highest classification (accuracy = 86%,

UC = 0.86, sensitivity = 84.62%, specificity = 87.50%); for AD vs. con-

rols, the highest classification was obtained with a combination of the

MN and the EN (accuracy = 86%, AUC = 0.87, sensitivity = 87.5%,
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Fig. 2. Classification accuracy rankings and average results. Classification accuracy ranking and average results. (A) Binary classification results for bvFTD vs. con- 

trols, AD vs. controls, and bvFTD vs. controls, training and testing within Country-1 (first column), training with Country-1 and testing with Country-2 (Generalization 

to Country 2, second column), training with Country-1 and testing with Country-3 (Generalization to Country-3, third column), and the results from the training and 

testing of our model with an online databases (ADNI and NIFD, fourth column). Classification accuracy ranking ordered from highest to lowest accuracy rates shows 

the best set of features for each classification. (B) Average results for each classification type over the four analyses showing mean sensitivity (y-axis), specificity 

(x-axis) and accuracy (average classification accuracy across databases: 87.64% for bvFTD vs. controls, 87.95% for AD vs. controls, and 84.97% for bvFTD vs AD). 

C: Healthy control; bvFTD: behavioral-variant frontotemporal dementia; AD: Alzheimer’s disease; SN: salience network; EN: executive network; DMN: default mode 

network; VN: visual network; MN: motor network. 
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Fig. 3. ROC curves and confusion matrices. First row: Each ROC curve represents the performance of the best resting-state networks for each binary classification 

model per country (SN + EN networks for bvFTD vs controls; DMN + EN networks for AD vs controls; and DMN + SN for bvFTD vs AD). Second to fifth rows: 

confusion matrices for each of the ROC curves of the first row (in percentage values). Controls: Healthy control; bvFTD: behavioral variant frontotemporal dementia; 

AD: Alzheimer’s disease; SN: salience network; EN: executive network; DMN: default mode network. 
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pecificity = 84.62%); and for the bvFTD vs AD classification, the high-

st outcomes were obtained through a combination of the SN and

he DMN (accuracy = 80%, AUC = 0.83, sensitivity = 82.61%, speci-

city = 77.78%) ( Figs. 2 , 3 ). These results were also obtained under the

5 time-point window (Supplementary information 7). 

.4. Supplementary analyses results 

To compare the performance of our non-linear DCFA with SFC and

inear DCFA, we employed the same datasets and the same machine-

earning pipeline, obtaining the following results: 

.4.1. Comparison of non-linear DCFA versus SFC 

This analysis allowed evaluating whether DCFA outperforms the typ-

cal average connectivity analysis (SFC) using the I 𝜙2 copula depen-

ence method. The DCFA average classification accuracy across datasets

as: 86.43% for bvFTD vs. controls, 86.63% for AD vs. controls, and

2.67% for bvFTD vs AD, outperforming SFC (76.66% for bvFTD vs.

ontrols, 76.80% for AD vs. controls, and 76.72% for bvFTD vs AD)

Supplementary information 8). 

.4.2. Comparison of nonlinear DCFA versus linear DCFA analysis 

We executed a DCFA but using R instead of the I 𝜙2 copula depen-

ence measure, to analyze the benefit of considering non-linear associ-

tions between brain regions. The resulting average classification accu-

acy across databases for linear DCFA was: 73.57% for bvFTD vs. con-

rols, 70.74% for AD vs. controls, and 70.22% for bvFTD vs AD –once

gain, outperformed by nonlinear DCFA (Supplementary information

). 

.4.3. Comparison of nonlinear DCFA versus T1 atrophy measures 

To compare the classification results yielded by connectivity (both

CFA and traditional SFC) with those obtained through brain structural

1 atrophy, we employed non-parametric tests to track statistically sig-

ificant differences between ROC curves ( Venkatraman, 2000 ) for the

wo comparisons (i.e., DCFA vs. SFC, and DCFA vs. atrophy). In this ap-

roach, the equality of the curves is analyzed at all operating points,

nd a reference distribution is generated by permuting the pooled ranks

f the test scores for each classification. We found that, although the

trophy-based classification was significantly higher than SFC ( Fig. 4 A),

t was not statistically different from that yielded by DCFA ( Fig. 4 B). 

. Discussion 

Results provide the first non-linear dynamical fluctuations patho-

hysiological characterization of global RSN in AD and bvFTD across

ulticentric data. The non-linear DFCA yielded a better classification

etween controls, AD, and bvFTD across centers compared to canonical

onnectivity approaches (including both static and linear dynamic con-

ectivity). The classification accuracy ranking showed that the SN-EN

air offered the best classification between bvFTD and controls; whereas

he DMN-EN pair provided the highest classification between AD and

ontrols; and the SN-DMN pair offered the best classification between

vFTD and AD. Previous evidence suggests that bvFTD targets the SN,

 network responsible for social-emotional-autonomic processing, and

etworks comprising the executive abilities ( Ranasinghe et al., 2016 ;

banez and Manes, 2012 ; Baez et al., 2014 ; Baez et al., 2016 ; Baez et al.,

016 ; Baez et al., 2016 ; García-Cordero, 2016 ; García-Cordero et al.,

015 ; Ibáñez, 2018 ; Ibáñez et al., 2017 ). As regards AD, disruptions

f DMN, a network associated with autobiographic memory and hubs

ffected in AD, have been reported in mild cognitive decline and AD

 Grieder et al., 2018 ), along with EN alterations ( Zhao et al., 2018 ).

ur results show that these networks were affected in each condition

ollowing the ranking of expected compromise. When comparing bvFTD

ith AD, divergent network connectivity patterns emerged between the
MN and the SN, consistent with known reciprocal network combina-

ions and the strength and deficit profile of each disorder ( Zhou et al.,

010 ). Moreover, distinct MRI atrophy patterns in regions associated

ith the DMN and the SN discriminate between these dementias, with a

imilar anatomical involvement measured as FDG-PET hypometabolism

 Foster et al., 2007 ), and in amyloid ligand Pittsburgh compound B (PiB)

 Rabinovici et al., 2011 ). Here, network combinations afforded higher

lassification accuracy, suggesting that the pathophysiological profile

f specific dementia types involves a distributed pattern of fluctuating

SNs rather than disruptions of a single, static, linear network. The clas-

ification accuracy ranking analysis enabled us to weigh each RSN com-

ination, yielding the expected relevance for AD and bvFTD, with other

etworks (e.g., MN and VN) emerging as noncontributing factors for

lassification. Higher classification accuracy was obtained when train-

ng with the whole Country-1 dataset and testing with the Country-2

nd Country-3 datasets, in comparison with training with half Country-

 dataset and testing with the other half. As in the latter case we used a

maller training dataset, subtle differences can be observed in an under-

tting model, thus resulting in (relatively) lower classification scores.

otably, the results of this data-driven approach were consistent despite

eterogeneous acquisitions. 

Unlike previous methods, our data-driven machine-learning ap-

roach showed a disease-specific disturbance of dynamic temporal fluc-

uations in key RSNs, providing insights into the pathophysiological

echanisms of bvFTD and AD. Previous studies have adopted tempo-

ally stationary characterization of the SN in bvFTD ( Pievani et al.,

014 ) and the DMN for AD ( Agosta et al., 2012 ; Greicius et al., 2004 ).

he dynamic temporal nature of brain activity, as revealed via fMRI

ime-series fluctuations, should be affected differentially by aging and

eurodegeneration. Even while assuming that RSNs are static in the spa-

ial domain, our report taps on brain dynamics using static parcellations

f brain networks, as done before ( Deco et al., 2017 ; Tagliazucchi et al.,

012 ; Glomb et al., 2018 ; Ipiña, 2020 ; Stevner et al., 2019 ). Atypi-

al fluctuations are a basic outcome in neurodegeneration at differ-

nt levels across different mechanisms ( Fornito et al., 2015 ). Find-

ngs suggest pathophysiological fluctuations in neurodegeneration, as

lready described at different levels, including neuroligins and neurex-

ns, histaminergic, proteome, copper, and metabolic perturbations, as

ell as white matter, neural synchrony, and global brain dynamics

 Filippi et al., 2019 ). These multilevel mechanisms, from molecular to

arge-network assemblies, may potentially have an effect on the dynam-

cal network fluctuations of neurodegeneration. 

We found that inclusion of FC fluctuations increased classification

ccuracy for each dementia subtype. Previous studies showed that dif-

erences in brain meta-state dwell time, particularly in DMN states, is a

allmark of AD. Decreased global metastability between functional net-

orks indicates that oscillatory patterns are progressively altered over

he AD continuum ( Demirtas et al., 2017 ). Notably, there is a decline

f DFC fluctuations in aging ( Chen et al., 2017 ), and the disruption

f DMN dynamics increases cognitive impairment ( Wee et al., 2016 ).

n FTD, diminished fluidity has been shown for transitioning between

rain states ( Premi et al., 2019 ). Such switching in everyday life may be

ssociated with the fluctuations of a self-organized DFC system, provid-

ng the healthy neural substrate needed for cognitive tasks ( Deco and

orbetta, 2011 ). Computational modelling has shown that FC fluctua-

ions represent a fundamental emergent feature of large-scale dynamics

hat supports flexible cognition ( Deco and Corbetta, 2011 ). Thus, ab-

ormal transient activity of RSNs may provide relevant information for

etecting neurodegeneration. 

Traditional DFC analyses using time windows are based on linear

orrelations. Non-linear relationships have been observed between gray

atter atrophy ( Gispert et al., 2015 ) and disease severity. EEG/MEG-

erived Synchronization Likelihood (SL) has shown linear and non-

inear abnormalities on long-range networks in dementia ( Stam et al.,

006 ). Other non-linear measures based on mutual information have

roven robust to better characterize brain networks in FTD (relying on
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Fig. 4. Statistical comparison of ROC curves. (A) ROC curves representing the classification performance for Country-1 for each classification pair, with their 

corresponding AUC value. In green, we show the ROC curve of the SFC classification using the best performing features for the classification (SN + EN networks 

for bvFTD vs controls; DMN + EN networks for AD vs controls; and DMN + SN for bvFTD vs AD). In blue, we present atrophy AUC results obtained from the 

classification based on the SBM analysis for each subject. To compare the classification results between the two methodologies, we employed a non-parametric 

permutation comparison test of the ROC curves ( Venkatraman, 2000 ). All p -values < 0.05 show that there are statistically significant differences between methods 

for all classification pairs. (B) ROC curves representing the classification performance for Country-1 for each classification pair, with their corresponding AUC value. 

The ROC curve of the DCFA classification using the best performing features for the classification (SN + EN networks for bvFTD vs controls; DMN + EN networks for 

AD vs controls; and DMN + SN for bvFTD vs AD) is shown in red. Atrophy measures are plotted in blue. All p -values > 0.05 show significant differences for A (SFC 

vs atrophy). But not for B (DCFA vs atrophy) in each classification pair. 
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oth EEG ( Dottori et al., 2017 ) and fMRI ( Moguilner et al., 2018 ) data).

nlike all these antecedents, in which the measured parameters were

xed for specific contexts, we developed a data-driven pipeline without

sing any a-priori parameter such as a specific window length or specific

SN disturbance using a Bayesian hyperparameter optimized XGBoost

lgorithm, enabling us to obtain more generalizable results. 

.1. Relevance for research on disease heterogeneity and diversity 

While the classification accuracy ranking of RSNs was similar be-

ween measures, higher non-linear DCFA scores were obtained across

ifferent groups and datasets (Supplementary information 9 and 10)

hen compared to linear DCFA and SFC. Multi-centric approaches on

iverse populations are needed to find robust and effective biomarkers

f global applicability ( Sonnen et al., 2008 ). Population heterogeneity

ay be underrepresented when local datasets are exclusively employed,

specially when using data from high-income countries[12]. Developing

ountries have unique interactions between genetics, environmental fac-

ors and socioeconomical status ( Parra et al., 2018 ). There is an ongoing

eed for accurate dementia markers to complement traditional clinical

ork ( Alladi and Hachinski, 2018 ). Differential diagnosis between AD

nd bvFTD may prove difficult, as bvFTD could frequently be misdiag-

osed as AD, especially in clinical contexts where the costly PET amy-
oid and CSF markers are not readily available in LMIC ( Piguet et al.,

011 ). Major challenges in neuroradiological protocol design initiatives

n LMIC also involve the lack of expertise to perform standardized pre-

rocessing and accurate image interpretation ( Schnack et al., 2010 ;

aez and Ibanez, 2016 ). Against this background, our data-driven ma-

hine learning DCFA pipeline brings a first step to include dynamical

etworks in the set of complementary, innovative, and affordable tools

or decision-support diagnostic tools. 

.2. Limitations and future studies 

Our work features some limitations. First, AD and bvFTD diagnoses

ere based on clinical expertise but without pathological or genetic con-

rmation. However, the diagnostic criteria for both AD and bvFTD ful-

lled standard diagnostic guidelines. This limitation is shared by sim-

lar works employing traditional statistical and machine-learning tech-

iques to study dementia ( Donnelly-Kehoe, 2019 ; Zhou et al., 2010 ).

lso, even when the results suggest robust classification despite absent

efinite diagnosis, future studies may combine confirmative biomarkers

o evaluate the effectiveness of neuroimaging metrics. Second, our work

ocused on functional connectivity, leaving the evaluation of the com-

ination between fMRI and structural (MRI) or metabolic PET imaging

or future studies. The objective of this work was to compare the DFCA
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f functional connectivity fluctuations with traditional seed-based FC

easures. Although this excludes multimodal comparisons with atrophy

easures, which have been done before ( Sedeño et al., 2017 ; Donnelly-

ehoe, 2019 ), we performed a complementary analysis with atrophy-

ased classification outcomes (See Section 3.4 , and Fig. 4 ). While the

se of atrophy features provided significantly higher classification re-

ults than SFC as previously reported ( Sedeño et al., 2017 ; Donnelly-

ehoe, 2019 ), these were not significantly different from those obtained

hrough dynamical fluctuation features. Future studies may combine

trophy features with dynamic connectivity as well as other imaging

odalities for multimodal classification. While acknowledging the rel-

vance of combining multimodal imaging, the economic constraints in

ow-income countries may pose difficulties in employing combined or

ostly biomarker protocols, such as those advanced in the NIA/AA 𝛽-

myloid and pathologic tau PET framework ( Jack et al., 2018 ). How-

ver, MR functional methods may be as effective as other biomarkers in

roviding early diagnosis ( Iturria-Medina et al., 2016 ). Third, no heart

ate and respiration measures were available during acquisition, which

ay have potentially confounded our results if groups differed signifi-

antly in this regard. Although this limitation is shared by similar works

n neurodegeneration ( Grieder et al., 2018 ; Filippi et al., 2013 ), fur-

her studies should include the physiological rhythms (cardiac rhythm,

espiration) as potential features in the machine learning classification.

ourth, although we found a specific set of best performing RSN features

s a consistent marker across samples for each classification, we did not

ystematically assess the statistical significance among all results, as the

cope of this work is to generate a data-driven model, rather than per-

orming statistical hypothesis testing. Therefore, we did not prove the

tatistical significance of the feature within ranking itself, but we can as-

ess the reproducibility of the results regarding the best performing fea-

ures across datasets. Lastly, future longitudinal assessments using the

resent approach may unveil how dynamic network fluctuations unfold

ver the course of each disease. 

. Conclusions 

Although linear, static, averaged FC methods have been proposed

s potential biomarkers for neurodegenerative diseases ( Pievani et al.,

014 ), inconsistent results ( Zhou et al., 2010 ; Dopper et al., 2014 ;

hitwell et al., 2011 ; Balthazar et al., 2014 ) and current evidence point-

ng to dynamical fluctuations in health and disease ( Breakspear, 2017 ;

utchison et al., 2013 ) call for a different approach. Our study shows

hat dynamical brain fluctuations boost dementia classification, pro-

iding a data-driven hierarchical model of brain network profiles that

irrors the expected pathophysiological compromise in AD and bvFTD

cross heterogeneous acquisition contexts. Neural signals continuously

ombine, dissolve, and reconfigure to produce adaptive patterns of ac-

ivity over various time scales, producing a repertoire of multi-stable

rain states. Our findings provide insights into specific dynamical per-

urbations of oscillatory brain network architecture in dementias, lead-

ng to more plausible biological models, better disease characterization,

nd, eventually, more targeted drug treatments. 
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