
Vol.:(0123456789)1 3

Bulletin of Volcanology           (2022) 84:51  
https://doi.org/10.1007/s00445-022-01557-5

PERSPECTIVES

The lifecycle of volcanic ash: advances and ongoing challenges

Joali Paredes‑Mariño1,2,3  · Pablo Forte4,5 · Stefano Alois6,7,8 · Ka Lok Chan9,10,11 · Valeria Cigala12 · 
Sebastian B. Mueller12 · Matthieu Poret13,14 · Antonio Spanu15,16 · Ines Tomašek17,18,19 · Pierre‑Yves Tournigand20,21 · 
Diego Perugini1 · Ulrich Kueppers12

Received: 15 September 2021 / Accepted: 18 March 2022 
© The Author(s) 2022

Abstract
Explosive volcanic eruptions can produce vast amounts of volcanic ash made up mainly of fragments of magmatic glass, 
country rock and minerals < 2 mm in size. Ash particles forming from magma fragmentation are generated by several pro-
cesses when brittle response accommodates (local) deformation stress that exceeds the capability of the bulk material to 
respond by viscous flow. These processes span a wide range of temperatures, can occur inside or outside the volcanic edifice 
and can involve all melt compositions. Ash is then dispersed by volcanic and atmospheric processes over large distances 
and can have global distributions. Explosive eruptions have repeatedly drawn focus to studying volcanic ash. The continued 
occurrence of such eruptions worldwide and their widespread impacts motivates the study of the chemical and physical pro-
cesses involved in the lifecycle of volcanic ash (e.g. magma fragmentation, particle aggregation), as well as the immediate 
to long-term effects (e.g. water and air pollution, soil fertilization) and consequences (e.g. environmental, economic, social) 
associated with ashfall. In this perspectives article, we reflect on the progress made over the last two decades in understand-
ing (1) volcanic ash generation; (2) dispersion, sedimentation and erosion; and (3) impacts on the atmosphere, hydrosphere, 
biosphere and modern infrastructure. Finally, we discuss open questions and future challenges.
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Introduction

Commonly, scientific progress goes hand-in-hand with tech-
nological advances. Alternatively, events with significant 
societal impacts may cause a temporal shift in focus and 
draw the attention of researchers, government institutions and 
funding agencies. Volcanology, and its subfield of volcanic 
ash studies, is no exception. The first detailed efforts to better 
understand processes leading to explosive volcanic eruptions 
trace back to the 1970s (McBirney and Murase 1970; Sparks 
1978). However, it was not until the 1980 explosive eruption 
of Mt. St. Helens (USA) that volcanic ash studies gained 

momentum. During this event, (i) ash dispersal was moni-
tored in real-time, allowing for immediate correlation with 
the impact on the environment, people and infrastructure 
(Blong 1984; Miller and Hoblitt 1981); (ii) satellite images 
were used to track the motion of volcanic clouds and retrieve 
data on its ascent and radial expansion (Sparks et al. 1986; 
Holasek and Self 1995); and (iii) models on ash transport and 
deposition were developed (Carey and Sparks 1986; Harris 
et al. 1981). The 1990s were then marked by the emergence 
of experimental volcanology, providing new insights into 
explosive eruptions and ash generation processes (Mader 
et al. 1994; Alidibirov and Dingwell 1996).

In the early 2000s, ash-related studies benefited from the 
sophistication of computational capacities, analytical tech-
niques and remote sensing technologies (Ersoy et al. 2006; 
Shea et al. 2009). Despite the progress achieved up to this 
point, the relatively small (VEI 3) eruption of Eyjafjalla-
jökull in Iceland in April 2010 exposed the vulnerability of 
modern societies and the need for additional efforts to face 
the challenge of understanding and mitigating the impact of 
volcanic ash on the environment and society.
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Here, we summarize key aspects of ash-related research 
since 2000 CE based on its lifecycle through (i) ash genera-
tion processes; (ii) dispersion, sedimentation and erosion; 
and (iii) impact of volcanic ash on the atmosphere, hydro-
sphere, biosphere and infrastructure. Finally, we look into 
the next decade (the 2020s) for prospective research direc-
tions and challenges.

Volcanic ash generation

Volcanic ash comprises fragments of magmatic glass, coun-
try rock and minerals of < 2 mm in diameter that are emit-
ted during explosive volcanic events. Magma fragmentation 
is the fundamental mechanism behind ash generation and 
it results from a transition between a melt with dispersed 
gas bubbles (± crystals) to a continuous gas phase with 
suspended magma fragments (pyroclasts) (Fig. 1). During 
the ‘90s, several mechanisms and criteria were proposed 
to explain the brittle failure of magma, such as the strain-
induced by magma acceleration as well as volatile expansion 
due to decompression with ascent (e.g. Mader et al. 1994; 
Dingwell 1996; Papale 1999).

Post-2000, characterization of ash particles has pro-
vided key information on the state of magma before frag-
mentation (Lloyd et al. 2013). Microtextural analysis of 
volcanic ash (i.e. vesicularity, componentry, crystallinity 

degree, shape; e.g. Wright et al. 2012; Cassidy et al. 2015; 
Matsumoto and Geshi 2021), along with grain size analy-
ses and decompression and fragmentation experiments 
(e.g. Kueppers et al. 2006; Paredes-Mariño et al. 2017; 
Forte and Castro 2019), has proven helpful in constraining 
the complex dynamics of magma ascent and fragmenta-
tion, as well as in estimating decompression rates and frag-
mentation efficiency. Volcanic ash also holds information 
about eruptive style transitions, as shown by textural, mor-
phological and chemical studies (e.g. Ersoy et al. 2006; 
Castro et al. 2014; Liu et al. 2017). However, volcanic ash 
is the lowest end member of a wide spectrum of particle 
sizes; therefore, to fully understand eruptive processes and 
fragmentation mechanisms, the integration of the physical, 
chemical and textural properties of lapilli and blocks is 
also important (e.g. Eychenne and Le Pennec 2012; Pioli 
and Harris 2019; Trafton and Giachetti 2021).

There is general consensus that volcanic ash is also gen-
erated during secondary processes above the fragmenta-
tion level (Fig. 1), i.e., (i) within the conduit, (ii) in vol-
canic plumes or (iii) during transport in pyroclastic density 
currents (e.g. Dufek and Manga 2008; Jones et al. 2016; 
Paredes-Mariño et al. 2019) and (iv) by break-up during 
sedimentation (Mueller et al. 2017). Secondary fragmenta-
tion leads to particle size reduction and shape alteration 
due to mechanical interactions of variable energy (Jones 
and Russell 2017; Hornby et al. 2020).

Fig. 1  Volcanic ash lifecycle. From 1 to 7, some of the most relevant 
processes within the cycle are highlighted: (1) magma fragmenta-
tion, (2) secondary ash generation within volcanic conduit, (3) vol-
canic lightning in the eruptive column, (4) volcanic ash transport by 
pyroclastic density current, (5) ash aggregation in the volcanic plume 
(umbrella section), (6) ash deposition blanketing the landscape and 

(7) ash remobilization by wind and water. The style of Figs.  1 and 
2 presented in this article has been set intentionally, so they can be 
used for outreach and education purposes. This type of conceptualiza-
tion has been previously used in different publications (Jenkins et al. 
2015; Van Wyk de Vries et al. 2018)
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Volcanic ash dispersion, sedimentation 
and erosion

Explosive eruptions inject large quantities of gas and ash 
particles of different sizes, shapes and chemistries into the 
atmosphere. Given the small size and high surface area 
of very fine ash (< 30 µm), such particles have the poten-
tial to be transported hundreds to thousands of kilometres 
away from the source (Rose and Durant 2009). The past 
two decades have witnessed significant improvements in 
our capacity of measuring (Flentje et al. 2010; Guéhen-
neux et al. 2015) and modelling ash transport and deposi-
tion (Costa et al. 2006; Bonadonna et al. 2012) over such 
spatial scales. The development of increasingly high-
resolution cameras—and even the extended use of smart-
phones—has provided ample and high-quality footage of 
eruption plumes, further supporting the study of eruption 
dynamics (Schipper et al. 2013, Giordano and De Astis 
2021), volcanic plume evolution (Mastin 2014; Tourni-
gand et al. 2017) and lightning discharges (e.g. Aizawa 
et al. 2016; Cimarelli et al. 2016; Behnke et al. 2018).

In addition to the local wind field, the ascent of a vol-
canic plume, as well as the dispersion and deposition 
of tephra, plus their sedimentation rate, depends on air 
entrainment and the physical characteristics of the ejected 
volcanic pyroclasts (Folch et al. 2016). In this regard, the 
use of shape descriptors instead of a spherical approxima-
tion for ash particles shape has, for example, been encour-
aged to increase the accuracy of calculated volcanic ash 
sedimentation rates (Saxby et al. 2020a). Additionally, 
scanning electron microscopy, stereoscopic imaging and 
micro-computed tomography techniques have proved valu-
able in estimating the surface area of the irregular shapes 
of volcanic ash (Ersoy et al. 2010; Umo et al. 2021). At the 
same time, experimental studies have constrained bound-
ary conditions for ash aggregation (Van Eaton et al. 2012; 
Mueller et al. 2016; Fig. 1), a process that is known to 
affect fallout patterns and dispersal dynamics (Taddeucci 
et al. 2011; Poret et al. 2017). However, it has also been 
recognized that this is a reversible process as mechanical 
forces, or evaporation, can cause partial disintegration of 
aggregates (Bonadonna et al. 2011).

The use of satellite-based instruments and images, as 
well as ground-based video obtained in the visible and 
infrared range, has been shown to allow the constraint 
of the evolution of plumes, while also allowing source 
conditions to be derived (e.g. Pardini et al. 2017; Tourni-
gand et al. 2017; Poret et al. 2018). Such measurements 
are important in identifying temporal changes in erup-
tion intensity or style (Harris and Ripepe 2007; Lopez 
et al. 2015). Furthermore, these advances in satellite and 
ground-based remote sensing have improved the ability 

to forecast the potential impact of volcanic clouds on 
airspace so as to promote the development of strategies 
for determining volcanic ash presence in the atmosphere 
(Dacre et al. 2011; Pavolonis et al. 2018).

Since 2000 tephra stratigraphy mapping of recent vol-
canic events has also benefited from improved remote sens-
ing technologies and the expansion of volcano monitoring 
networks, making it possible to relate event dynamics (i.e. 
dispersion, sedimentation and timing) with the associated 
deposits (Alfano et al. 2011; Pistolesi et al. 2015). In turn, 
methods for near real-time sampling of tephra fallout have 
helped to validate dispersion models, and stand as useful 
tools for prompt hazard assessment. For example, direct 
sampling by aircraft can determine ash concentration for air 
traffic safety (Weber et al. 2012), while dense networks of 
low-cost homemade “ashmeters” can improve ash field-data 
collection, especially for “small” explosive eruptions and 
thin distal fallout from larger events (Bernard 2013). There 
has also been renewed interest in cryptotephra preserved 
in lake- and ice-cores, study of which has contributed to 
recognizing and analyzing distal deposits (Cashman and 
Rust 2019; Hartman et al. 2019). Based on the study of such 
deposits, multidisciplinary approaches—combining satellite 
remote sensing data, dispersion modelling and characteriza-
tion of the optical/physical properties of crytotephras—have 
been tested to understand discrepancies in volcanic ash dis-
persion models (Stevenson et al. 2015; Saxby et al. 2020b).

Finally, rain and wind can easily erode deposits of ash 
(Fig. 1) and disperse vast quantities of ash into initially 
unaffected areas. Rainfall and snowmelt events can cause 
surface runoff of volcanic deposits and the occurrence of 
debris flows, precluding ash incorporation into a new soil 
profile (Hayes et al. 2002; Tarasenko et al. 2019). Rainfall 
can also cause the opposite effect and impede the erosion 
due to the wetting and cementation of the deposit (Ayris and 
Delmelle 2012). Moreover, and under certain weather condi-
tions, aeolian ash remobilization can repeatedly take place 
for years, decades and even centuries (Hadley et al. 2004; 
Dominguez et al. 2020). Our understanding of ash resus-
pension processes has evolved as a result of experimental 
studies using wind tunnels and high-speed camera imaging 
(e.g. Etyemezian et al. 2019; Del Bello et al. 2018, 2021).

Volcanic ash impacts

Understanding the multifaceted nature of the processes 
involved in volcanic ash formation helps to better under-
stand its potential impacts on human populations and 
ecosystems (Fig. 2), thereby allowing possible mitigation 
actions to be implemented. Post-eruption field observations 
carried out over the last 20 years have built knowledge on the 
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consequences of volcanic ash dispersion and fallout. This, 
integrated with experimental work and quantitative mod-
elling, has permitted the causes and ramifications of ash-
related impacts to be explored (Barsotti et al. 2010; Jenkins 
et al. 2015).

The effects of human exposure to fine ash can range from 
short-term breathing problems and eye/skin irritation, to 
potential long-term health issues (Horwell and Baxter 2006). 
Health concerns extend beyond the duration of an eruption 
since human activity (e.g. ash clean-up, road traffic) aids 
remobilization of ash deposits and leads to an additional and 
prolonged exposure (Andronico and Del Carlo 2016). Since 
2003 and the creation of the International Volcanic Health 
Hazard Network (IVHHN1), several methods for determina-
tion of health-relevant characteristics of ash samples and 
health impact assessment of ash inhalation have been devel-
oped (e.g. Le Blond et al. 2009; Damby et al. 2017; Mueller 
et al. 2020). Extensive ash characterization work and in vitro 
bioanalytical studies represent an important step forward in 
understanding the potential effects of ash on human health 
(e.g. Tesone et al. 2018; Tomašek et al. 2019, 2021).

Research has also contributed to understand volcanic ash 
impacts on buildings and critical infrastructure (Wardman 
et al. 2014; Blake et al. 2017). The consequences can range 
from roof collapse, blockage of roads, modern technology 
damage to the entire shutdown of community facilities and 
disruption of supply chains (Wilson et al. (2012); Fig. 2). 
Regarding aviation infrastructure, between 2000 and 2010, 
efforts were strongly focused on strengthening volcanic ash 
warning system, ensuring an accurate forecast of the vol-
canic activity (Guffanti et al. 2005; Webley et al. 2009). Back 
then, a global strategy of ash avoidance was followed as the 

procedure to guarantee flight safety (Casadevall 1994), until 
the 2010 Eyjafjallajökull eruption. This procedure severely 
affected civil aviation, triggering unexpected economic reper-
cussions (Mazzocchi et al. 2010), and causing a reassessment 
of warning systems and communication protocols (Stewart 
et al. 2016; Reichardt et al. 2018). Consequently, the assess-
ment and reduction of volcanic ash impacts on aviation have 
become one of the main research areas in the last decade 
(Song et al. 2014; Lechner et al. 2017).

Blong (1984) also stressed how ash fallout can impact 
fauna, flora, cultivated land and soils, leading to crop fail-
ure and livestock starvation. This point has been followed-up 
upon by studies such as those of Cronin et al. (2003) and Ayris 
and Delmelle (2012). Aeolian remobilization of ash can 
extend the spatial and temporal scale of such impacts (Wilson 
et al. 2011; Forte et al. 2018), possibly inducing large-scale 
ecosystem destruction via burial of land to stimulate deserti-
fication (Arnalds et al., 2001), and interaction of rainfall, as 
well as snow melt events can cause erosion, surface runoff of 
volcanic deposits and even lahar initiation (e.g. Torres et al. 
2004; Pierson and Major 2014; Kataoka et al. 2018).

While short-term impacts of ash fall have been shown to 
be negative, some long(er)-term effects may be beneficial 
(Ayris and Delmelle 2012); Fig. 2). Weather conditions and 
time have been shown to lead to the degradation of volcanic 
ash to form fertile soils so as to increase agricultural pro-
ductivity (Ugolini and Dahlgren 2002). In turn, the degrada-
tion of volcanic ash can influence atmospheric conditions by 
sequestering  CO2 out of the atmosphere (Fiantis et al. 2016). 
When deposited in water bodies, fresh volcanic ash can 
induce physical, chemical and biological effects by releas-
ing soluble elements and increasing turbidity, with negative 
consequences to the ecosystem and altering the quality of the 
water supplies (Stewart et al. 2006; Di Prinzio et al. 2021). 
However, addition of ash can also aid in the “fertilization” 

Fig. 2  Volcanic ash impacts. 
Schematic representation of 
expected short- and long-term 
impacts due to a moderate-to-
large explosive eruption. By 
no means this cartoon claims 
to represent all the identified 
impacts associated with vol-
canic ash. For a more complete 
list of the impacts, please refer 
to the main text on the manu-
script

1 www. ivhhn. org

http://www.ivhhn.org
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of the ocean surface, which can boost marine primary pro-
ductivity by injecting bio-available iron (e.g. Langmann 
et al. 2010; Witt et al. 2017; Vergara-Jara et al. 2021). Fur-
ther studies have shown that the chemical alteration that 
ash particles undergo within eruption plumes and during 
atmospheric transport may as well determine beneficial or 
detrimental impacts on the deposition systems (e.g. de Moor 
et al. 2005; Maters et al. 2016; Delmelle et al. 2018).

We end by noting that volcanic ash also has several indus-
trial applications (see Dehn and McNutt 2015). Works from 
Kupwade-Patil et al. (2016) and Ilham et al. (2020) have 
shown how volcanic ash as a “fresh” (absorptive properties, 
chemical reactivity) or weathered (bentonite, pozzolanic 
component for cement and concrete) material can be used 
for construction and manufacturing. Such use of ash can 
constitute a solution for areas regularly affected by ashfall.

Future challenges

The past 20 years have been crucial for enlightening and inte-
grating several aspects of the volcanic ash lifecycle. From 
the mechanisms involved in its generation to the subsequent 
dispersion, deposition and remobilization processes, all these 
research topics have benefited from the sophistication of 
already existing tools as well as from new technologies and 
more accurate analytical techniques. Yet, due to the inac-
cessibility of the processes related to the generation of vol-
canic ash, and despite the hard work done in these last two 
decades, many questions remain unanswered, and new ones 
continue to emerge. For instance, although much progress has 
been made in the understanding of eruptive style transitions 
(Cassidy et al. 2018), the processes controlling simultane-
ous explosive-effusive activity need to be better constrained. 
Experimental studies will continue trying to reproduce, as 
closely as possible, conditions at different depths, to inform 
on the dynamics and processes of volcanic ash generation.

Statistically robust analysis of ash deposits remains a 
challenge. Ash characteristics vary with eruptive styles and 
distance from the vent for any single event. For such con-
ditions, models to determine an optimal sampling strategy 
are essential to represent the whole deposit (Spanu et al. 
2016; Pioli et al. 2019). Small-size explosive events pose 
a challenge by their own, as poor stratigraphic records can 
lead to degrees of high uncertainty on estimating of eruptive 
volumes (Engwell et al. 2013). Collecting, analyzing and 
integrating large amounts of fresh samples, representative 
of the whole deposit, will become a crucial input for more 

complex, near-real-time and efficient numerical models for 
ash dispersion and deposition (Freret-Lorgeril et al 2022).

Advances in the statistical modelling and analysis of ash 
deposits will lead to a more accurate definition of possible 
impact scenarios for future volcanic events (Connor et al. 
2001), and improvements to hazard communication and 
mitigation tools, such as provisioning better-constrained ash 
hazard maps. Tools such as machine learning, data assimila-
tion and inverse modelling are promising directions to follow 
in improving the forecast accuracy for volcanic ash transport 
or constraint of vent conditions, using satellite data (Prata 
2009), aircraft observation (Weber et al 2012) or muography 
(Nomura et al 2020).

It is known that volcanic ash fallout can strongly affect 
Earth system and its components or sub-systems: atmos-
phere, hydrosphere, biosphere and technosphere, the latter 
representing man-made component. The elements (and sub-
elements) within these components or sub-systems (black 
and blue hexagons respectively, Fig. 3) are intensely inter-
connected, with a vast degree of interdependency, and create 
a system or global network. This has, of course, resulted 
in great progress for our society but at the same time has 
reinforced its vulnerability (Mani et al. 2021). Elements and 
sub-elements represent the nodes in the system, and the fail-
ure of one of them can trigger cascading effects, severely 
affecting and pushing other elements of the system towards 
and beyond tipping points. In the terminology of Chorley 
and Kennedy (1971), this is a “process-response system”. 
A volcanic eruption can create such disruption to a process-
response system, and Fig. 3 illustrates possible cascading 
effects (Gasparini and Garcia-Aristizabal 2014) due to 
volcanic ash impacts on Earth systems. Raising awareness 
among all parts of the system involved in, and affected by, 
an eruptive event is one of the biggest challenges of the 
next decade. As part of this process-response system, imple-
menting mitigation measures is essential, and these need to 
respect the culture and necessities of the communities at risk 
(Lowe et al. 2002; Pardo et al. 2015). One way to construc-
tively involve and empower local communities is by training 
citizen scientists in reporting observations and collecting 
samples in near-real-time (Wallace et al 2015), as well as 
building resilience through education (Mei et al. 2020).

Volcanic ash studies increasingly need combined and 
complementary perspectives from computational, physical, 
natural and social sciences to avoid getting stuck in con-
ventional views and conceptual models. We hope that the 
coming decade will further improve our understanding of 
the life cycle of volcanic ash.
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