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A complete classification of simultaneous blow-up rates

Cristina Brändlea,∗, Fernando Quirósa, Julio D. Rossib

aDepartamento de Matemáticas, U. Autónoma de Madrid, 28049 Madrid, Spain
bDepartamento de Matemática, F.C.E y N., UBA, (1428) Buenos Aires, Argentina

Received 12 July 2005; accepted 8 August 2005

Abstract

We study the simultaneous blow-up rates of a system of two heat equations coupled through the boundary in a
nonlinear way. We complete the previous known results by covering the whole range of possible parameters.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We devoteour attention to the parabolic system

ut = uxx , vt = vxx , (x, t) ∈ (0, L)× (0, T ),

with a nonlinear coupling at one of the ends of the interval

−ux(0, t) = u p11(0, t)v p12(0, t), −vx (0, t) = u p21(0, t)v p22(0, t), t ∈ (0, T ),

zero flux at the other end,ux(L , t) = 0, vx (L , t) = 0, t ∈ (0, T ) and initial datau(x,0) = u0(x),
v(x,0) = v0(x), x ∈ (0, L), which are smooth and compatible with the boundary conditions. We
consider all possible parameters satisfyingpi j ≥ 0. Moreover, we will restrict to solutions decreasing in
space and increasing in time.
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Thetime T denotes the maximal existence time for the solution(u, v). If it is infi nite we say that the
solution is global. If it is finite we say that the solution blows up. Nontrivial solutions of our problem
blow up if and only if the exponentspi j verify any of the following conditions,p11 > 1, p22 > 1 or
p12p21> (1 − p11)(1 − p22), [10] (see also [11,12]). In this case we have

lim sup
t↗T

{‖u(·, t)‖∞ + ‖v(·, t)‖∞} = ∞.

However, a priori there is no reason that both components,u andv, should go to infinity simultaneously
at time T . Indeed, ifp11 > p21 + 1 there are solutions for whichu blows up whilev remains bounded.
Analogously, if p22 > p12 + 1 there are solutions for whichv blows up whileu remains bounded [6].
If p11 > p21 + 1 and p22 ≤ p12 + 1, or p22 > p12 + 1 and p11 ≤ p21 + 1, then blow-up is always
non-simultaneous, while ifp11 ≤ p21+ 1 andp22 ≤ p12+ 1, blow-up is always simultaneous. It is also
possible that simultaneous and non-simultaneous blow-up coexist. This happens ifp11 > p21 + 1 and
p22> p12 + 1. See [1].

When blow-up is non-simultaneous, the blow-up rate for the blow-up component coincides with the
rate for the scalar problem in which the bounded component is replaced by a constant. For instance, ifu
blows up whilev remains bounded thenu(0, t) ∼ (T − t)−1/2(p11−1) [1]. By f ∼ g we mean that there
exist constantsc,C > 0 such thatc f ≤ g ≤ C f .

What is the blow-up rate when blow-up is simultaneous? There are some partial results. Let

α1 = 1 + p12 − p22

2(p12p21 − (1 − p11)(1 − p22))
, α2 = 1 + p21 − p11

2(p12p21 − (1 − p11)(1 − p22))
.

The casep11< 1+ p21, p22< 1+ p12, p12p21> (1− p11)(1− p22) has been studied in [5], where
the authors show that

u(0, t) ∼ (T − t)−α1, v(0, t) ∼ (T − t)−α2, (1.1)

providedp11< 1 whenp11 ≤ p22 + p21 − p12 or p22< 1 whenp22 ≤ p11 + p12 − p21. This includes
the particular casep11 < 1, p22 < 1, p12p21 > (1 − p11)(1 − p22), previously studied in [9] under
additional assumptions on the initial data. Very recently [13] have proved, adapting the scaling method
from [4] to systems, seealso [2,8,14], that the simultaneous blow-up rate is also given by (1.1) when
p11 ≥ 1 andp22 ≥ 1 with α1, α2 > 0.

The above results do not cover the whole range of parameters for which simultaneous blow-up is
possible. Our aimis to fill in all the gaps (seeFig. 1), namely:

(i.a) p11< 1 and 1≤ p22< p11 + p12 − p21 if p12> p21 or
(i.b) p22< 1, 1≤ p11 < p22 + p21 − p12 if p21> p12;
(ii) p11 = p21 + 1 andp22 ≤ p12 + 1;
(iii) p22 = p12 + 1 andp11 ≤ p21 + 1.

We prove the following theorem, covering the whole range of parameters.

Theorem 1.1. When blow-up is simultaneous, u(0, t) ∼ x(t), v(0, t) ∼ y(t), where x and y solve

x ′ = x2p11−1y2p12, y′ = x2p21y2p22−1. (1.2)

Thus, a straightforward integration shows that the blow-up rate is given by (1.1) if α1, α2 > 0, whenever
blow-up is simultaneous. However, when one of theαi vanishes a logarithmic blow-up rate appears.
This happens precisely in the borderline cases between simultaneous and non-simultaneous blow-up.
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Fig. 1. Gaps forp12> p21.

For instance, when the parameters go through the critical linep11 = p21 + 1 (with p22 < 1 + p12), v
passes from a pure power blow-up rate to being bounded; in between,α2 becomes zero and we have a
weaker form of blow-up given by

v(0, t) ∼ (− ln(T − t))1/(2(p12+1−p22)). (1.3)

Theu component also has a logarithmic correction on that line,

u(0, t) ∼ (T − t)−1/(2(p11−1))(− ln(T − t))p12/(2(p12+1−p22)(p11−1)). (1.4)

Notice that the pure power component of the blow-up rate ofu on the critical line coincides with the one
for non-simultaneous blow-up. Moreover,α1 → 1/(2(p11 − 1)) as p11 ↗ p21 + 1. At the point where
both critical lines meet, we recover a pure power behaviour

u(0, t) ∼ (T − t)−1/(2(p11−1+p12)), v(0, t) ∼ (T − t)−1/(2(p22−1+p21)). (1.5)

2. Proof of Theorem 1.1

We firstfill in the gap (i.a). Thecase (i.b) is similar.

Lemma 2.1. If p11< 1, 1 ≤ p22< p11 + p12 − p21, then (1.1) holds if p12> p21.

Proof. If p22 ≤ p11 + p12 − p21, we have theone-sided blow-up rates

u(0, t) ≥ C(T − t)−α1, v(0, t) ≤ C(T − t)−α2; (2.6)

see [5]. Then, ut = uxx with −ux(0, t) ≤ Cu p11(0, t)(T − t)−α2 p12 and ux(L , t) = 0. Using
Proposition 1 in [9] we get

u(0, t) ≤ C(T − t)−α1.

To obtain the ratefrom below forv, instead of using its equation we use again the equation satisfied by
u. Using the well-known representation formula and the jump relation [3], we have

u(0, t) ≤ Cu(0, t1)+ C
∫ t

t1
u p11(0, s)

v p12(0, s)

(t − s)1/2
ds.
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Sinceu(0, t) ∼ (T − t)−α1 andv is increasing,

u(0, t) ≤ Cu(0, t1)+ Cv p12(0, t)
∫ t

t1

(T − s)−α1 p11

(t − s)1/2
ds.

Therefore,

u(0, t)− Cu(0, t1)

(T − t)−α1
≤ Cv p12(0, t)(T − t)α1

∫ t

t1

(T − s)−α1 p11

(t − s)1/2
ds.

Wecan selectt1 (depending ont) so that

u(0, t)− Cu(0, t1)

(T − t)−α1
≥ k1

and

(T − t)−α2 p12+α1

∫ t

t1

(T − s)−α1 p11

(t − s)1/2
ds ≤ k2,

for some constantsk1, k2 > 0. Hence,

C ≤ v p12(0, t)(T − t)α2 p12.

The obtained blow-up rates coincide with the behaviour of the solutions of (1.2). �

Next, we fill in the gap (ii). Gap (iii) can be handled in a similar way.

Lemma 2.2. (a) Let p11 = p21 + 1 and p22< p12 + 1; then (1.3) and (1.4) hold.
(b) Let p11 = p21 + 1 and p22 = p12 + 1; then (1.5) holds.

Proof. (a) Following [7], define M(t) = u(0, t) and N (t) = v(0, t) and set, fort < T and y > 0,
−t < bs, ds < 0,

ϕM(y, s) = u(ay, bs + t)

M(t)
, ψN (y, s) = v(cy, ds + t)

N (t)
,

with a = M1−p11N−p12, b = a2, c = N 1−p22M−p21, d = c2. Sincep11 > 1, a andb go to zero as
t ↗ T . We want thatc andd also go to zero. This is true ifp22 ≥ 1. Hence, let us assume thatp22< 1.

We claim that forγ < min{1, p21/(1 − p22)}, there exists a constantK large enough thatK uγ > v.
Indeed, letw = K uγ . Sinceγ < 1,wt − wxx is a supersolution of the heat equation. AsK is large we
havew(x, t0) > v(x, t0), for a fixedt0 close toT . Now, we argueby contradiction. Lett1 be the first time
such that there existsx1 ∈ [0, L] with w(x1, t1) = v(x1, t1). From the maximum principleit follows that
x1 = 0. At this point the flux boundary conditions satisfied byw andv lead to a contradiction. Therefore,
w = K uγ > v, for t close toT . The claim implies thatd1/2 = c ≤ C Mγ (1−p22)−p21 → 0.

Using the technique described in [4] (see also [7]), which is based in the useof well-known Schauder
estimates for passing tothe limit ast ↗ T , it is easy to show that

C1 ≤ (ϕM)s(0,0) ≤ C2, C1 ≤ (ψN )s(0,0) ≤ C2. (2.7)

Writing (2.7) in terms ofM andN , we get that solutions behave as those of (1.2).
(b) Theproof of this case is similar to the previous one. The same calculations as were used to prove

the claim takingγ = 1 show thatu ∼ v. Theuse of the ideas of [4] is eveneasier, sincep11, p22 > 1
imply thata, b, c, d → 0. The relation betweenu andv together with (2.7) provides us with the desired
rates. �
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