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Abstract

We study the simultaneous blow-up rates of a system of two heat equations coupled through the boundary in a
nonlinear way. We complete the previous known results by covering the whole range of possible parameters.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

We devoteour attention to the parabolic system
Ut = Uxx, Ut = Uxx, (x,t) € (0, L) x (0, T),
with a nonlinear coupling at one of the ends of the interval
—Ux(0,t) = uP2(0, t)vP2(0,1), —wvx(0,t) = uP2(0, t)vP2(0,1), te (0,T),

zero flux at the other endiy(L,t) = 0, vx(L,t) = 0,t € (0, T) and initial datau(x, 0) = ug(x),
v(X,0) = wvp(X), x € (O,L), which are smooth and compatible with the boundary conditions. We
consider all possible parameters satisfypg> 0. Moreover, we will restrict to solutions decreasing in
space and increasing in time.
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Thetime T denotes the maximal existence time for the solutiorv). If it is infi nite we say that the
soluion is global. If it is finite we sa that he soldion blows up. Nontrivial solutions of our problem
blow up if and only if the exponentg;; verify any of the following conditionspi; > 1, p22 > 1 or
pP12p21 > (1 — p10) (1 — p22), [10] (see als0]11,12)). In this case we have

limsup {luC:, Hllec + IV, Dlloc} = o0.
t AT

However, a priori there is no reason that both componerasdv, should go to infinity simultaneously
attime T. Indeed, ifp11 > p21 + 1 there arealutions for whichu blows up whilev remains bounded.
Analogously, if po2 > p12 + 1 there arealutions for whichv blows up whileu remains boundedq].

If p11 > par+21andpy < p12+1,0rpoe > p12+ 1 andpir < po1+ 1, then blow-up is always
non-simultaneous, while 11 < po1+ 1 andpy2 < p12+ 1, blow-up is always simultaneous. It is also
possible that simultaneous and non-simultaneous blow-up coexist. This happens-ifpo1 + 1 and
P22 > p12+ 1. Seel].

When blow-up is non-simultaneous, the blow-up rate for the blow-up component coincides with the
rate for the scalar problem in which the bounded component is replaced by a constant. For instance, if
blows up whilev remains bounded them(0, t) ~ (T —t)~1/2(P11=D [1]. By f ~ g we mean that there
exist onstantg, C > 0 suchhatcf < g < Cf.

What is the blow-up rate when blow-up is sitaneous? There are some partial results. Let

oy — 1+ p1o— p22 wp — 1+ p21— pu1
2(p12p21 — (1 — p1D(1 — p22)’ 2(p12p21 — (1 — pr(1 — p22)

The casepr1 < 14 p21, p22 < 14 p12, P12p21 > (1 — p11) (1 — p22) has been studied ib], where
the auhors show that

u@O,t) ~ (T —t) 1, v(0,t) ~ (T —t)"%2, (1.1)

providedpi1 < 1 whenpii < pz2+ P21 — P120r p22 < 1 whenpyz < p11+ p12 — p21. This includes
the partizlar casepi1 < 1, p22 < 1, p12p21 > (1 — p11)(1 — p22), previously studied in 9] under
additional assumptions on theitial data. Very recentlyl3] have proved, adaptg the scaling method
from [4] to systemsseealso P,8,14], that the simultaeous blow-up rate is also given by.{) when
p11 > 1andpzy > 1 withaq, a» > 0.

The above results do not cover the whole range of parameters for which simultaneous blow-up is
possible. Our ains to fill in all the gaps (se€ig. 1), namely:

(i.a) p11 < land 1< pp2 < p11+ P12 — P21if p12 > peror
(i.b) p22 < 1,1< p11 < P22+ P21 — P12if po1 > p12;

(i) p11= p21+landpy < pro+1;

(iii) po2= pr2+1andpiy < p21+ 1.

We prove the following theorem, covenj the whole range of parameters.
Theorem 1.1. When blow-up is simultaneous, u(0, t) ~ x(t), v(0, t) ~ y(t), where x and y solve

X' = x2P1—1y2pi2 y = x2Pe1y2pP22-1 (1.2)

Thus, a straightforward integration shows that the blow-up rate is giveh.byif «1, o2 > 0, whenever
blow-up is simultaneous. However, when one of thhevanishes adgarithmic blow-up rate appears.
This happens precisely in the borderline cases between simultaneous and non-simultaneous blow-u
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Fig. 1. Gaps forpio > po1.

For instance, when the parameters go through the criticaldine= pz1 + 1 (with p22 < 1+ p12), v
passes from a pure power blow-up rate to being bounded; in betwg&ecomes zero and we have a
weaker form of blow-up given by

v(0,1) ~ (—In(T — t))l/(2(912+1—pzz))‘ (1.3)
Theu component also has a logarithmic correction on that line,

u@,t) ~ (T — t)—l/(Z(pn—l))(_ In(T — t))p12/(2(p12+1—pzz)(pll—l))‘ (1.4)

Notice that the pure power component of the blow-up rate ar the critical line coincides with the one
for non-simultaneous blow-up. Moreovet, — 1/(2(p11 — 1)) asp11 /7 p21+ 1. At the point where
both critical lines meet, we recover a pure power behaviour

u(,t) ~ (T — t)—l/(2(911—1+p12)), v(0,t) ~ (T — t)—l/(z(pzz—l-i-pzl)). (1.5)

2. Proof of Theorem 1.1
We firstfill in the gap (i.a). Thecase (ib) is similar.
Lemma2.l. If p11 <1,1< p22 < p11+ P12 — P21, then (1.2) holdsif p12 > po1.
Proof. If po2 < p11+ p12 — p21, we hae theone-sided blow-up rates
u@©,t) > C(T —t) *, v(0,t) < C(T —t)7%% (2.6)

see p]. Then,uy = uxx with —ux(0,t) < CuP1(0,t)(T — t)~%2P12 and uy(L,t) = 0. Using
Proposition 1 in §] we get

u(0,t) < C(T —t)1.

To obtain the ratérom below forv, instead of using its equation we use again the equation satisfied by
u. Using the wé-known representation formula and the jump relati8)j yve have

pP12 (O, s)

t
u(0,t) < Cu(o,t C | uP1Q,s)————~ds.
(0,1) < Cu(0, ) + / 0.95—5

ta
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Sinceu(0,t) ~ (T —t)~*1 andv is increasing,

0.1) < Cu.ty + CoPe0.1) [ =D "y
u(o,t) < Cu(o, t t R
( ) = ( l) + Cv ( )ftl (t — S)1/2
Therefore,
u(0,t) — Cu(0, ty) (T —s)~@Pu
<CvP2O,t)(T - ) | ——————
(T—-t = GO0 ) y (@E—912

We can select; (depending ort) so that
u(o, t) — Cu(o, tp) -
(T-tya  ~

k1
and
U(T —s)~1Pu
n  (t—9)1/2
for some onstantk;, ko > 0. Hence,
C < vP(0, t)(T —t)*2Pr2,
The obtained blow-up rates coincide with the behaviour of the solutiorkk®f ( O

(T — ty~ozPizren ds < ke,

Next, we fill in the gap (ii). Gap (iii) can be handled in a similar way.

Lemma2.2. (a) Let p11 = p21+ 1and pz2 < p12+ 1; then (1.3) and (1.4) hold.
(b) Let p11 = p21+ 1and p22 = p12+ 1; then (1.5) holds.

Proof. (a) Following [7], defineM(t) = u(0,t) andN(t) = v(0,t) and set, fot < T andy > 0,
—t < bs,ds < 0,

u(ay, bs+t cy,ds+t
om(y, ) = 2@ISHD g = MO dSHD

M(t) N(t)

with a = MI~PuN~—P2 h = a2 ¢ = N-P2M~P21 d = ¢2 Sincepi; > 1,a andb go to zero as
t 7 T.We want that andd also go to zero. This is true ffo» > 1. Hence, let us assume that, < 1.

We claim that fory < min{1, p>1/(1 — p22)}, there exits a @nstantkK large enough thatk u? > v.
Indeed, letw = Ku”. Sincey < 1, w; — wxy IS a supersolution of the heat equation. Ksis large we
havew (X, tg) > v(X, tg), for a fixedty close toT. Now, we argudpy contradiction. Let; be the firstime
such that there existg € [0, L] with w(X1, t1) = v(Xq, t1). From the maimum principleit follows that
x1 = 0. At this point the flux boundary conditions satisfiedbyandv lead to a contradiction. Therefore,
w = Ku” > v, fort close toT. The chim implies thad'/?2 = ¢ < CMY1—P22—Pz1 _; (,

Using the technique described # [see alsoT]), which is based in the us# well-known Schauder
estimates for passg tothe limit ast 7 T, itis easy to show that

C1 = (em)s(0,0) = Ca, C1 = (¥n)s(0,0) = Co. (2.7)

Writing (2.7) in terms ofM andN, we get that solutions behave as those df3).
(b) Theproof of this case is similar to the previous one. The same calculations as were used to prove
the claim takingy = 1 show hatu ~ v. Theuse of the ideas 0#] is eveneasier, since1, p22 > 1
imply thata, b, ¢, d — 0. The relation betweemandv together with 2.7) provides  with the desired
rates. O
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