A complete classification of simultaneous blow-up rates

Cristina Brändle ${ }^{\mathrm{a}, *}$, Fernando Quirós ${ }^{\text {a }}$, Julio D. Rossi ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Matemáticas, U. Autónoma de Madrid, 28049 Madrid, Spain
${ }^{\mathrm{b}}$ Departamento de Matemática, F.C.E y N., UBA, (1428) Buenos Aires, Argentina

Received 12 July 2005; accepted 8 August 2005

Abstract

We study the simultaneous blow-up rates of a system of two heat equations coupled through the boundary in a nonlinear way. We complete the previous known results by covering the whole range of possible parameters. © 2005 Elsevier Ltd. All rights reserved.

MSC: 35K50; 35B40; 35K60 Keywords: Blow-up rates; Parabolic system; Nonlinear boundary conditions

1. Introduction

We devote our attention to the parabolic system

$$
u_{t}=u_{x x}, \quad v_{t}=v_{x x}, \quad(x, t) \in(0, L) \times(0, T),
$$

with a nonlinear coupling at one of the ends of the interval

$$
-u_{x}(0, t)=u^{p_{11}}(0, t) v^{p_{12}}(0, t), \quad-v_{x}(0, t)=u^{p_{21}}(0, t) v^{p_{22}}(0, t), \quad t \in(0, T),
$$

zero flux at the other end, $u_{x}(L, t)=0, v_{x}(L, t)=0, t \in(0, T)$ and initial data $u(x, 0)=u_{0}(x)$, $v(x, 0)=v_{0}(x), x \in(0, L)$, which are smooth and compatible with the boundary conditions. We consider all possible parameters satisfying $p_{i j} \geq 0$. Moreover, we will restrict to solutions decreasing in space and increasing in time.

[^0]The time T denotes the maximal existence time for the solution (u, v). If it is infinite we say that the solution is global. If it is finite we say that the solution blows up. Nontrivial solutions of our problem blow up if and only if the exponents $p_{i j}$ verify any of the following conditions, $p_{11}>1, p_{22}>1$ or $p_{12} p_{21}>\left(1-p_{11}\right)\left(1-p_{22}\right),[10]$ (see also [11,12]). In this case we have

$$
\underset{t \nearrow T}{\limsup }\left\{\|u(\cdot, t)\|_{\infty}+\|v(\cdot, t)\|_{\infty}\right\}=\infty
$$

However, a priori there is no reason that both components, u and v, should go to infinity simultaneously at time T. Indeed, if $p_{11}>p_{21}+1$ there are solutions for which u blows up while v remains bounded. Analogously, if $p_{22}>p_{12}+1$ there are solutions for which v blows up while u remains bounded [6]. If $p_{11}>p_{21}+1$ and $p_{22} \leq p_{12}+1$, or $p_{22}>p_{12}+1$ and $p_{11} \leq p_{21}+1$, then blow-up is always non-simultaneous, while if $p_{11} \leq p_{21}+1$ and $p_{22} \leq p_{12}+1$, blow-up is always simultaneous. It is also possible that simultaneous and non-simultaneous blow-up coexist. This happens if $p_{11}>p_{21}+1$ and $p_{22}>p_{12}+1$. See [1].

When blow-up is non-simultaneous, the blow-up rate for the blow-up component coincides with the rate for the scalar problem in which the bounded component is replaced by a constant. For instance, if u blows up while v remains bounded then $u(0, t) \sim(T-t)^{-1 / 2\left(p_{11}-1\right)}$ [1]. By $f \sim g$ we mean that there exist constants $c, C>0$ such that $c f \leq g \leq C f$.

What is the blow-up rate when blow-up is simultaneous? There are some partial results. Let

$$
\alpha_{1}=\frac{1+p_{12}-p_{22}}{2\left(p_{12} p_{21}-\left(1-p_{11}\right)\left(1-p_{22}\right)\right)}, \quad \alpha_{2}=\frac{1+p_{21}-p_{11}}{2\left(p_{12} p_{21}-\left(1-p_{11}\right)\left(1-p_{22}\right)\right)}
$$

The case $p_{11}<1+p_{21}, p_{22}<1+p_{12}, p_{12} p_{21}>\left(1-p_{11}\right)\left(1-p_{22}\right)$ has been studied in [5], where the authors show that

$$
\begin{equation*}
u(0, t) \sim(T-t)^{-\alpha_{1}}, \quad v(0, t) \sim(T-t)^{-\alpha_{2}} \tag{1.1}
\end{equation*}
$$

provided $p_{11}<1$ when $p_{11} \leq p_{22}+p_{21}-p_{12}$ or $p_{22}<1$ when $p_{22} \leq p_{11}+p_{12}-p_{21}$. This includes the particular case $p_{11}<1, p_{22}<1, p_{12} p_{21}>\left(1-p_{11}\right)\left(1-p_{22}\right)$, previously studied in [9] under additional assumptions on the initial data. Very recently [13] have proved, adapting the scaling method from [4] to systems, see also [2,8,14], that the simultaneous blow-up rate is also given by (1.1) when $p_{11} \geq 1$ and $p_{22} \geq 1$ with $\alpha_{1}, \alpha_{2}>0$.

The above results do not cover the whole range of parameters for which simultaneous blow-up is possible. Our aim is to fill in all the gaps (see Fig. 1), namely:
(i.a) $p_{11}<1$ and $1 \leq p_{22}<p_{11}+p_{12}-p_{21}$ if $p_{12}>p_{21}$ or
(i.b) $p_{22}<1,1 \leq p_{11}<p_{22}+p_{21}-p_{12}$ if $p_{21}>p_{12}$;
(ii) $p_{11}=p_{21}+1$ and $p_{22} \leq p_{12}+1$;
(iii) $p_{22}=p_{12}+1$ and $p_{11} \leq p_{21}+1$.

We prove the following theorem, covering the whole range of parameters.
Theorem 1.1. When blow-up is simultaneous, $u(0, t) \sim x(t), v(0, t) \sim y(t)$, where x and y solve

$$
\begin{equation*}
x^{\prime}=x^{2 p_{11}-1} y^{2 p_{12}}, \quad y^{\prime}=x^{2 p_{21}} y^{2 p_{22}-1} \tag{1.2}
\end{equation*}
$$

Thus, a straightforward integration shows that the blow-up rate is given by (1.1) if $\alpha_{1}, \alpha_{2}>0$, whenever blow-up is simultaneous. However, when one of the α_{i} vanishes a logarithmic blow-up rate appears. This happens precisely in the borderline cases between simultaneous and non-simultaneous blow-up.

Fig. 1. Gaps for $p_{12}>p_{21}$.
For instance, when the parameters go through the critical line $p_{11}=p_{21}+1$ (with $p_{22}<1+p_{12}$), v passes from a pure power blow-up rate to being bounded; in between, α_{2} becomes zero and we have a weaker form of blow-up given by

$$
\begin{equation*}
v(0, t) \sim(-\ln (T-t))^{1 /\left(2\left(p_{12}+1-p_{22}\right)\right)} \tag{1.3}
\end{equation*}
$$

The u component also has a logarithmic correction on that line,

$$
\begin{equation*}
u(0, t) \sim(T-t)^{-1 /\left(2\left(p_{11}-1\right)\right)}(-\ln (T-t))^{p_{12} /\left(2\left(p_{12}+1-p_{22}\right)\left(p_{11}-1\right)\right)} \tag{1.4}
\end{equation*}
$$

Notice that the pure power component of the blow-up rate of u on the critical line coincides with the one for non-simultaneous blow-up. Moreover, $\alpha_{1} \rightarrow 1 /\left(2\left(p_{11}-1\right)\right)$ as $p_{11} \nearrow p_{21}+1$. At the point where both critical lines meet, we recover a pure power behaviour

$$
\begin{equation*}
u(0, t) \sim(T-t)^{-1 /\left(2\left(p_{11}-1+p_{12}\right)\right)}, \quad v(0, t) \sim(T-t)^{-1 /\left(2\left(p_{22}-1+p_{21}\right)\right)} \tag{1.5}
\end{equation*}
$$

2. Proof of Theorem 1.1

We first fill in the gap (i.a). The case (i.b) is similar.
Lemma 2.1. If $p_{11}<1,1 \leq p_{22}<p_{11}+p_{12}-p_{21}$, then (1.1) holds if $p_{12}>p_{21}$.
Proof. If $p_{22} \leq p_{11}+p_{12}-p_{21}$, we have the one-sided blow-up rates

$$
\begin{equation*}
u(0, t) \geq C(T-t)^{-\alpha_{1}}, \quad v(0, t) \leq C(T-t)^{-\alpha_{2}} \tag{2.6}
\end{equation*}
$$

see [5]. Then, $u_{t}=u_{x x}$ with $-u_{x}(0, t) \leq C u^{p_{11}}(0, t)(T-t)^{-\alpha_{2} p_{12}}$ and $u_{x}(L, t)=0$. Using Proposition 1 in [9] we get

$$
u(0, t) \leq C(T-t)^{-\alpha_{1}}
$$

To obtain the rate from below for v, instead of using its equation we use again the equation satisfied by u. Using the well-known representation formula and the jump relation [3], we have

$$
u(0, t) \leq C u\left(0, t_{1}\right)+C \int_{t_{1}}^{t} u^{p_{11}}(0, s) \frac{v^{p_{12}}(0, s)}{(t-s)^{1 / 2}} \mathrm{~d} s
$$

Since $u(0, t) \sim(T-t)^{-\alpha_{1}}$ and v is increasing,

$$
u(0, t) \leq C u\left(0, t_{1}\right)+C v^{p_{12}}(0, t) \int_{t_{1}}^{t} \frac{(T-s)^{-\alpha_{1} p_{11}}}{(t-s)^{1 / 2}} \mathrm{~d} s
$$

Therefore,

$$
\frac{u(0, t)-C u\left(0, t_{1}\right)}{(T-t)^{-\alpha_{1}}} \leq C v^{p_{12}}(0, t)(T-t)^{\alpha_{1}} \int_{t_{1}}^{t} \frac{(T-s)^{-\alpha_{1} p_{11}}}{(t-s)^{1 / 2}} \mathrm{~d} s
$$

We can select t_{1} (depending on t) so that

$$
\frac{u(0, t)-C u\left(0, t_{1}\right)}{(T-t)^{-\alpha_{1}}} \geq k_{1}
$$

and

$$
(T-t)^{-\alpha_{2} p_{12}+\alpha_{1}} \int_{t_{1}}^{t} \frac{(T-s)^{-\alpha_{1} p_{11}}}{(t-s)^{1 / 2}} \mathrm{~d} s \leq k_{2}
$$

for some constants $k_{1}, k_{2}>0$. Hence,

$$
C \leq v^{p_{12}}(0, t)(T-t)^{\alpha_{2} p_{12}}
$$

The obtained blow-up rates coincide with the behaviour of the solutions of (1.2).
Next, we fill in the gap (ii). Gap (iii) can be handled in a similar way.
Lemma 2.2. (a) Let $p_{11}=p_{21}+1$ and $p_{22}<p_{12}+1$; then (1.3) and (1.4) hold.
(b) Let $p_{11}=p_{21}+1$ and $p_{22}=p_{12}+1$; then (1.5) holds.

Proof. (a) Following [7], define $M(t)=u(0, t)$ and $N(t)=v(0, t)$ and set, for $t<T$ and $y>0$, $-t<b s, d s<0$,

$$
\varphi_{M}(y, s)=\frac{u(a y, b s+t)}{M(t)}, \quad \psi_{N}(y, s)=\frac{v(c y, d s+t)}{N(t)}
$$

with $a=M^{1-p_{11}} N^{-p_{12}}, b=a^{2}, c=N^{1-p_{22}} M^{-p_{21}}, d=c^{2}$. Since $p_{11}>1, a$ and b go to zero as $t \nearrow T$. We want that c and d also go to zero. This is true if $p_{22} \geq 1$. Hence, let us assume that $p_{22}<1$.

We claim that for $\gamma<\min \left\{1, p_{21} /\left(1-p_{22}\right)\right\}$, there exists a constant K large enough that $K u^{\gamma}>v$. Indeed, let $w=K u^{\gamma}$. Since $\gamma<1, w_{t}-w_{x x}$ is a supersolution of the heat equation. As K is large we have $w\left(x, t_{0}\right)>v\left(x, t_{0}\right)$, for a fixed t_{0} close to T. Now, we argue by contradiction. Let t_{1} be the first time such that there exists $x_{1} \in[0, L]$ with $w\left(x_{1}, t_{1}\right)=v\left(x_{1}, t_{1}\right)$. From the maximum principle it follows that $x_{1}=0$. At this point the flux boundary conditions satisfied by w and v lead to a contradiction. Therefore, $w=K u^{\gamma}>v$, for t close to T. The claim implies that $d^{1 / 2}=c \leq C M^{\gamma\left(1-p_{22}\right)-p_{21}} \rightarrow 0$.

Using the technique described in [4] (see also [7]), which is based in the use of well-known Schauder estimates for passing to the limit as $t \nearrow T$, it is easy to show that

$$
\begin{equation*}
C_{1} \leq\left(\varphi_{M}\right)_{s}(0,0) \leq C_{2}, \quad C_{1} \leq\left(\psi_{N}\right)_{s}(0,0) \leq C_{2} \tag{2.7}
\end{equation*}
$$

Writing (2.7) in terms of M and N, we get that solutions behave as those of (1.2).
(b) The proof of this case is similar to the previous one. The same calculations as were used to prove the claim taking $\gamma=1$ show that $u \sim v$. The use of the ideas of [4] is even easier, since $p_{11}, p_{22}>1$ imply that $a, b, c, d \rightarrow 0$. The relation between u and v together with (2.7) provides us with the desired rates.

Acknowledgements

C. Brändle and F. Quirós were partially supported by project BFM2002-04572-C02-02 (Spain). J.D. Rossi was supported by ANPCyT PICT 5009, UBA X066, Fundación Antorchas and CONICET (Argentina).

References

[1] C. Brändle, F. Quirós, J.D. Rossi, Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary, Commun. Pure Appl. Anal. 4 (3) (2005) 523-536.
[2] M. Chlebík, M. Fila, From critical exponents to blow-up rates for parabolic problems, Rend. Mat. Appl. 19 (4) (1999) 449-470.
[3] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall Inc., Englewood Cliffs, NJ, 1964.
[4] B. Hu, H.M. Yin, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1) (1994) 117-135.
[5] M. Pedersen, Z. Lin, Blow-up estimates of the positive solution of a parabolic system, J. Math. Anal. Appl. 255 (2) (2001) 551-563.
[6] J.P. Pinasco, J.D. Rossi, Simultaneous versus non-simultaneous blow-up, New Zealand J. Math. 29 (1) (2000) 55-59.
[7] F. Quirós, J.D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana Univ. Math. J. 50 (1) (2001) 629-654.
[8] F. Quirós, J.D. Rossi, Non-simultaneous blow-up in a nonlinear parabolic system, Adv. Nonlinear Stud. 3 (3) (2003) 397-418.
[9] J.D. Rossi, The blow-up rate for a system of heat equations with non-trivial coupling at the boundary, Math. Methods Appl. Sci. 20 (1) (1997) 1-11.
[10] M.X. Wang, Parabolic systems with nonlinear boundary conditions, Chinese Sci. Bull. 40 (17) (1995) 1412-1414.
[11] M. Wang, Fast-slow diffusion systems with nonlinear boundary conditions, Nonlinear Anal. Ser. A: Theory Methods 46 (6) (2001) 893-908.
[12] M. Wang, S. Wang, Quasilinear reaction-diffusion systems with nonlinear boundary conditions, J. Math. Anal. Appl. 231 (1) (1999) 21-33.
[13] S. Zheng, B. Liu, F. Li, Blow-up rate estimates for a doubly coupled reaction-diffusion system, J. Math. Anal. Appl. (in press).
[14] S. Zheng, X. Song, Z. Jiang, Critical Fujita exponents for degenerate parabolic equations coupled via nonlinear boundary flux, J. Math. Anal. Appl. 298 (1) (2004) 308-324.

[^0]: * Corresponding author. Tel.: +34 914977643; fax: +34 914974889.

 E-mail addresses: cristina.brandle@uam.es (C. Brändle), fernando.quiros@uam.es (F. Quirós), jrossi@dm.uba.ar (J.D. Rossi).

