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Juan José Miranda-Bront 1 Isabel Méndez-Dı́az 1

Department of Computer Science, University of Buenos Aires
Buenos Aires, Argentina

Paula Zabala 1

Department of Computer Science, University of Buenos Aires
and Consejo Nacional de Investigaciones Cient́ıficas y Técnicas

Buenos Aires, Argentina

Abstract

The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of
the traditional TSP where the travel cost between two cities depends on the moment
of the day the arc is travelled. In this paper, we focus on the case where the travel
time between two cities depends not only on the distance between them, but also
on the position of the arc in the tour. We consider the formulations proposed in
Picard and Queryanne [8] and Vander Wiel and Sahinidis [10], analyze the relation-
ship between them and derive some valid inequalities and facets. Computational
results are also presented for a Branch and Cut algorithm (B&C)that uses these
inequalities, which showed to be very effective.
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1 Introduction

The Time-Dependent Travelling Salesman Problem (TDTSP) is a generaliza-
tion of the classical Travelling Salesman Problem (TSP) in which the cost of
the travel between two cities depends not only on the distance between the
cities, but also on the time of the day the arc is travelled.

In its simplest version, TDTSP assumes that the travel time between any
two cities is one time period, meaning that the cost function depends on the
distance between the cities and on the position of the arc in the tour. The time-
dependent cost function for each arc can be expressed as a step function with
one constant value for each time period, i.e., cijk, k = 1, . . . , n. This version
of the TDTSP can be used to model different scheduling and assignment
problems. Several formulations have been proposed for this problem in Picard
and Queyranne [8], Fox et al [4] and Vander Wiel and Sahinidis [10]. To the
best of our knowledge, the only exact algorithms in the literature are proposed
in [8] and [10], solving instances with at the most 20 vertices, and in Bigras et
al. [3] where they are able to solve scheduling instances with up to 50 vertices
using a Branch and Bound algorithm.

In [8], one of the models is a three-index integer linear programming for-
mulation. Méndez-Dı́az et al [6] tested it for Travelling Deliveryman Problem
(TDP) instances, and the results obtained are quite reasonable.

These results suggest that both models look promissory to be used in a
B&C algorithm. A Branch and Bound algorithm is developed in [8] and a
Branch and Cut algorithm is proposed in [10] to solve the master problem
of the Benders decomposition, but they only use general purpose cuts for a
restricted set of inequalities. They suggest that, as future research, it would
be interesting to study the polyhedron of the TDTSP. The aim of this paper
goes in that direction. We consider the models presented in [8] and [10]. Since
both models are a linearization of QAP, it results that their polytopes are
strongly related. We derive some families of valid inequalities and evaluate
them in a B&C algorithm.

2 Models

One of the models is proposed in [8]. It uses a set of binary decision variables
yijk, where yijk = 1 if city j is visited in time period k after city i was visited in
time period k−1. By forcing vertex 0 to be the depot, we can remove from the
formulation the variables yij0 ∀i ≥ 1, yijn ∀j ≥ 1, yi0k ∀k ≤ n−1, y0jk ∀k ≥ 1,
given that they always take value zero.

As we mentioned in the introduction, we also consider the TDTSP for-
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mulation (VW) proposed in [10]. The model is a linearization of the QAP
presented in [8], and it can be seen as the problem of finding the shortest con-
strained path in a directed multi-partite graph. We consider this formulation
in a slightly different way than the one in [10] because we force the vertex v0

to be the depot.

The QAP formulation uses a set of binary decision variables xik, where
xik = 1 if city i is assigned to time period k, and xik = 0 otherwise. This
model is quadratic because of the presence of the product between xik−1 and
xik in the objective function for each possible combination of (i, j) and k.

In [10], variables xik are referred as the assignment variables. To linearize
the objective function of the QAP, they define the transition variables, yijk,
which have the same meaning as the ones defined in the previous section.
Moreover, they prove (see Proposition 1 of [10] for a detailed proof) that
yijk = 1 if and only if xik−1xjk = 1, even when variables yijk are considered
as positive continuous variables. The advantage of this linearization is that it
only introduces continuous variables to the original formulation of the QAP.
See [10, Section 1] for a detailed explanation and examples.

These two models are strongly related. It is quite easy to see that (PQ) is
the projection of (VW) onto variables yijk, and Gouveia and Voss [5] prove that
these formulations are equivalent in terms of the linear relaxation. Formula-
tion (VW) expresses each assignment variable, xik, in terms of the transition
variables yijk. Considering the results shown in Balas and Oosten [2], we know
that there is a 1-1 correspondence between the faces of (PQ) and the faces of
(VW). Moreover, if PPQ and PV W are the polytopes associated with models
PQ and VW, respectively, we can also state that dim(PPQ) = dim(PV W ).
From Müller [7] we also know that the dimension of PPQ is n(n − 1)(n − 2).
Then, if an inequality is valid for PPQ, it follows that it is also valid for PV W

and vice versa. For the sake of notation, we will refer to both PPQ and PV W

as P n
TD.

3 Polyhedral results

In this section we present new families of inequalities that are valid for both
formulations.

3.1 Polinomial-sized families

First, we introduce four families of valid inequalities that establish upper
bounds on the value of variables yijk in terms of incoming and outgoing arcs.
The symbol δij stands for the Kronecker’s delta.
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Proposition 3.1 For i, j, l = 1, . . . , n, i �= j �= l, k = 2, . . . , n−1, inequalities

yijk ≤ ylik−1 +
n−1∑

t=1
t�=k−1,k,k+1

n∑

w=1
w �=i,j,l

ylwt + (1 − δkn−1)yl0n

yijk + yjik ≤ ylik−1 + yljk−1 +
n−1∑

t=1
t�=k−1,k,k+1

n∑

w=1
w �=i,j,l

ylwt + (1 − δkn−1)yl0n

are valid for P n
TD.

Proposition 3.2 For i, j, l = 1, . . . , n, i �= j �= l, k = 1, . . . , n−2, inequalities

yijk ≤ yjlk+1 +
n−1∑

t=1
t�=k−1,k,k+1

n∑

w=1
w �=i,j,l

ywlt + (1 − δk1)y0l0

yijk + yjik ≤ yilk+1 + yjlk+1 +
n−1∑

t=1
t�=k−1,k,k+1

n∑

w=1
w �=i,j,l

ywlt + (1 − δk1)y0l0

are valid for P n
TD.

3.2 Time-dependent cycle inequalities

We now introduce a new family of valid inequalities, based on the idea of
the well known cycle inequalities for the asymmetric TSP. The difference is
that they include the time dependency factor. As we mentioned before, cycles
are not allowed by the formulations considered in this paper. However, this
family can be used to cut fractional solutions by including them in a B&C
algorithm. Indeed, in the next section we will reinforce these inequalities by
applying a lifting procedure. We will refer to this family of inequalities as
the Time-Dependent Cycle Inequalities (TDCI). For the sake of notation, we
express them in terms of both variables xik and yijk.

Proposition 3.3 (TDCI) Let C =< v1, v2, . . . , vl, vl+1 = v1 >, l ≤ n, be a
simple cycle with transitions between consecutive vertices taken in time inter-
vals k, k + 1, . . . , k + l − 1, k + l ≤ n. Then, inequality

l∑

i=1

yvivi+1k+i−1 ≤
l−1∑

i=1

xvi+1k+i (1)

is valid for P n
TD.

The TDCI do not define facets for P n
TD. However, similarly to the cycle
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inequalities for the ATSP, TDCI define facets of a projection of P n
TD over some

specific variables. Let C =< v1, v2, . . . , vl, vl+1 = v1 >, l ≤ n and k as defined
in Proposition 3.3. We define the following set of variables:

• F1 = {yvlvjk+j−2 = 0 : j = 2, . . . , l − 1}
• F2 = {yvlvjk+l−1 = 0 : j = 2, . . . , l − 1}
• F3 = {yvivjk+j−2 = 0 : i = 3, . . . , l − 1, j = 2, . . . , i − 1}
• F4 = {yvivjk+i−1 = 0 : i = 2, . . . , l − 1, j = 1, . . . , i − 1}
• F5 = {yv1vjk+j−2 = 0 : j = 3, . . . , l},
and P n

TD(C, k) = P n
TD ∩ F1 ∩ F2 ∩ F3 ∩ F4 ∩ F5 as the projected polytope. We

now state the following results.

Theorem 3.4 Let C =< v1, v2, . . . , vl, vl+1 = v1 >, l ≤ n and k as defined in
Proposition 3.3. The dimension of P n

TD(C, k) is n(n−1)(n−2)−(l+1)(l−2).

Theorem 3.5 Let C =< v1, v2, . . . , vl, vl+1 = v1 >, l ≤ n and k as defined in
Proposition 3.3. The TDCI (1) are facet-defining for P n

TD(C, k).

As regards for the separation problem for the TDCI, it can be solved
in polynomial time. The main idea consists on applying a straightforward
implementation of a maximum-path algorithm over the multipartite graph
defined in [8] for each pair of vertices in this graph, starting and ending in the
same v ∈ V , but in different time periods. The following result holds.

Theorem 3.6 The time-dependent cycle inequalities can be separated in poly-
nomial time.

3.3 Lifted time-dependent cycle inequalities

Based on the ideas from Balas and Fischetti [1], from Proposition 3.5 we can
derive facets of P n

TD applying a maximum sequential lifting over the variables
present in F1, . . . , F5. It is well known that the order in which variables are
lifted generates different inequalities. Indeed, we lifted these variables in five
different ways to obtain five families of valid inequalities. Due to space limi-
tations, we only present one of them.

Proposition 3.7 Let C =< v1, v2, . . . , vl, vl+1 = v1 >, l ≤ n and k as defined
in Proposition 3.3. Then, inequality

l∑

i=1

yvivi+1k+i−1 +
l∑

i=3

i−1∑

j=2

yvivjk+j−2 +
l∑

j=3

yv1vjk+j−2 ≤
l−1∑

i=1

xvi+1k+i (2)

defines a facet of P n
TD.
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4 Computational Results

In order to evaluate the strength of these inequalities, we develop a B&C
algorithm for the model PQ. The cutting phase always considers inequalities
from Section 3.1. Due to their similarity, each lifted TDCI inequality is tested
independently from the others, and we report the results for the family that
produces the best overall running time: the one from Proposition 3.7. As
regards the separation of these inequalities, we develop a heuristic based on the
results for the TDCI inequalities. We also incorporate a dynamic programming
based primal heuristic, which generates a feasible integer solution at each node
of the enumeration tree.

For the computational experiments, we consider benchmark instances from
TSPLIB and the ones considered in Rubin and Ragatz [9], and we compare
our B&C algorithm with the default one from CPLEX 10.1.

In Table 1 we show the computational times for the TSPLIB instances,
considered as TSP and TDP instances as well. A cell filled with (∗ ∗ ∗) means
that the instance was not solved within two hours. The main message of
this table is that our B&C algorithm outperforms CPLEX in almost all the
instances considered. This relies on the fact that the inequalities incorporated
to the cutting phase are quite effective, especially the lifted TDCI. The best
gains are obtained at the root node, where the gap with respect to the optimal
solution is considerable reduced.

The most interesting results are the ones regarding instances with 29 ver-
tices or more. CPLEX’s default B&C algorithm is able to solve to optimality
only two of the ten instances (bayg29, bays29, ftv33, ftv35 and ftv38; TSP
and TDP version) within two hours, while our B&C algorithm solves nine of
them. Although it is not reported due to space limitations, the number of
tree nodes explored by CPLEX’s algorithm is extremely higher than the one
for our B&C algorithm.

In Table 2 we show the average computational times for the scheduling
instances from Rubin and Ragatz [9]. The average value is calculated over
eight instances for each n = 15, 25, 35, 45. We slightly modify the original in-
stances by discarding the corresponding due dates, which results in 1|sij|

∑
Cj

scheduling instances (equivalent to TDP). These results are aligned with the
ones from the previous table. Our B&C performs better than CPLEX’s de-
fault algorithm, both in the computational times and the number of nodes
explored. It is important to note that this difference is significantly higher
when n = 45, where the time reductions of our B&C algorithm is close to the
70%. Again, this behavior is due to the strengthening of the bounds produced
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Table 1
Computational times (in seconds) for TSP and TDP instances from TSPLIB.

Instance n
TSP TDP

BC CPLEX BC CPLEX

bayg29 29 1131.5 ∗ ∗ ∗ 3044.92 ∗ ∗ ∗
bays29 29 1289 ∗ ∗ ∗ 1265.32 4296.7

burma14 14 5.14 3.41 0.44 5.01

fri26 26 160.23 1521.31 86.67 1469.88

gr17 17 33.42 423.22 3.21 30.36

gr21 21 4.87 168 9.44 185.01

gr24 24 28.04 362.83 11.75 347.02

ulysses16 16 17.04 6.77 5.44 12.26

ulysses22 22 97.48 160.35 333.49 208.45

br17 17 101.19 34.36 101.83 40.59

ftv33 33 731.43 ∗ ∗ ∗ 807.33 ∗ ∗ ∗
ftv35 35 1440.43 4418.91 965.34 ∗ ∗ ∗
ftv38 38 4756.65 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

by the cutting phase and the primal heuristic.

Table 2
Average computational times (in seconds) for scheduling instances.

Instances n BC CPLEX

PROB40x.TXT 15 0.33 1.75

PROB50x.TXT 25 6.58 10.11

PROB60x.TXT 35 88.53 94.36

PROB70x.TXT 45 439.18 1258.8

5 Conclusions

In this paper we consider the TDTSP formulations of Picard and Queyranne
[8] and Vander Wiel and Sahinidis [10]. We analyze both polytopes, and derive
ten families of valid inequalities for both models. We generalize the idea of the
well-known cycle inequalities for the ATSP, and derive five families of facets
by applying a lifting procedure. We develop a Branch and Cut algorithm in
order to evaluate these inequalities which, together with a primal heuristic,
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prove to be very effective. The overall approach produces good computational
results over different benchmark instances with respect to CPLEX’s default
algorithm. As future research, it would be interesting to analyze the com-
plexity of the separation problems for the lifted TDCI in order to improve
the separation routines implemented so far. In this direction, it would also
be important to develop an initial heuristic and to test different branching
strategies, aiming to speed up the resolution times of the Branch and Cut
algorithm.
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