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INTRODUCTION 

 

The existence of toxic metal ions in polluted comprising 

wastewater displayed an inhibition influence on the bacterial 

growth and utilization of toxic substance. The presence of heavy 

metals can inhibit biodegradation and ultimately inhibit the 

bioremediation process. It is because of the fact that in contrast 

to a number of other inhibitors, heavy metal ions cannot be 

degraded and once accrued by microorganisms to a poisonous 

amount, this results in inhibition to the microorganism’s growth 

rate. Therefore, modifications to the substrate inhibition model 

can be used to examine the inhibitory parameters caused by toxic 

ions. Numerous models such as  the modified Han-Levenspiel 

[1], Wang [2], Liu [3], modified Andrews [4], Amor [5] have 

been utilised [6] to evaluate the result of heavy metal on the 

bacterial degradation of toxic substance. From these models 

inhibition related constants, which include C, Ccrit, µ, µmax, Kc, 

Ks, Ki and m which represent heavy metal ion concentration (g/l), 

critical heavy metal ion concentration (g/l), initial growth rate 

(g/l h), maximum growth rate (g/l h), inhibition constant (g/l), 

Monod constant (g/l), metal inhibition constant (g/l) and 

empirical constant values, respectively, can be found. 

 

 

    

HISTORY 

 

Received: 14th March 2017 

Received in revised form: 24th of May 2017 

Accepted: 11th of July 2017 

 

 ABSTRACT 

Molybdenum reduction by the Antarctic bacterium Pseudomonas sp. strain DRY1 is strongly 

inhibited by copper. Mo reduction by this bacterium at 10 mM sodium molybdate shows a 

sigmoidal pattern with lag periods ranging from 7 to 10 h at various concentrations of copper. As 

the concentration of copper was increased, the overall Mo reduction rate was inhibited with 1.2 

mg/L causing the cessation of Mo reduction rate. The modified Gompertz model was utilized to 

obtain Mo reduction rates at different concentrations of copper. The Mo reduction rates obtained 

from the modified Gompertz model was then modelled according to the modified Han-

Levenspiel, Wang, Liu, modified Andrews and the Amor models. Out of the five models, only 

Wang, modified Han-Levenspiel and the Liu models were able to fit the curve, whilst the 

modified Andrews and Amor models were unable to fit the curves. Both the Wang and modified 

Han-Levenspiel models show acceptable fitting while the Liu model shows poor fitting. Results 

of the statistical analysis showed that the modified Han-Levenspiel model was the best model 

based on the lowest values for RMSE and AICc, highest adjusted correlation coefficient (adR2) 

and values of AF and BF closest to unity. The parameters obtained from the modified Han 

Levenspiel model, which were Ccrit, µmax and m which represent critical heavy metal ion 

concentration (mg/l), maximum reduction rate (nmole Mo blue/h) and empirical constant values 

were 0.225 (95%, confidence interval from 0.198 to 0.251), 1.200 (95%, confidence interval from 

1.180 to 1.220) and 0.443 (95%, confidence interval from 0.261 to 0.626). The modified Han-

Levenspiel accurately predicted the critical copper concentration that completely inhibited 

molybdenum reduction rate in this bacterium.  
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To date aside from these reports, there are almost no other reports 

on the effect of heavy metals on the growth rate of 

microorganisms as most reports on the effect of heavy metals on 

the primary models of the growth of microorganisms and not on 

secondary models. Furthermore, there is no report on the use of 

the above models in modelling the effect of metals on the rate of 

Mo reduction, a phenomenon that can be utilized for 

molybdenum bioremediation. As numerous Mo-reducing 

bacteria are affected strongly by coper [7–18], the aim of this 

study is to model the effect of this metal on the rate of reduction. 

A previously isolated Mo-reducing Antarctic bacterium was 

chosen for this study. 

 

MATERIALS AND METHODS 

 

Growth and maintenance of Mo-reducing bacterium 

The Mo-reducing bacterium—Pseudomonas sp. strain DRY1 has 

been previously reported [19]. The growth and Mo reduction 

were carried out in a microplate format as before [20] utilizing 

the low phosphate molybdate medium (LPM) [19]. The 

microplates (Corning® microplate) were incubated and sealed at 

15 oC and the absorbance after 72 h was read at 750 nm (BioRad 

reader, model 680, Richmond, CA).  

 

Primary modelling on the rate of Mo reduction 

The modified Gompertz model was utilized to obtain specific 

reduction rates and lag periods, all of which are important 

parameters that can be further used in modelling the effect of 

copper on the reduction rate [21–23,23–28]. The equation (Eqn. 

1) is as follows; 
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    (Eqn. 1) 

 

The value obtained from this primary modelling exercise was 

then used to model the effect of metal as follows; 

 

 

Models to study the Effect of metal on Mo reduction rate 

The models (Table 1) utilized in this study are as follows; 

 
Table 1. Various metal inhibition models. 
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Fitting of the data 

The nonlinear equations were fitted with a Marquardt algorithm 

using CurveExpert Professional software (Version 1.6). The 

algorithm searches the best method that minimizes the sum of the 

squares between predicted and measured values. The software 

calculates the starting values automatically via the steepest ascent 

method. 

 

Statistical analysis 

The use of numerous statistical methods such as the corrected 

AICc (Akaike Information Criterion), Root-Mean-Square-Error 

(RMSE), bias factor (BF), accuracy factor (AF), and adjusted 

coefficient of determination (R2) is important as a criterion to 

select for the best model, and these statistical discriminatory 

functions will be used throughout this study [24]. 

 

RESULTS AND DISCUSSION 

 

Molybdenum reduction by the bacterium exhibits a sigmoidal 

profile, which is a common theme seen in many Mo-reducing 

bacteria [29–31].  As the concentration of copper was increased 

a significant decrease in the maximum Mo reduction was 

observed together with the increase in lag periods (Fig. 1). A 

concentration of copper at 1.0 mg/L leads to a complete cessation 

of reduction. This was also observed in many Mo-reduction 

works [32–41].  

 

To obtain Mo reduction rates at different concentrations of 

copper, the modified Gompertz model was utilized (Fig. 2), 

which shows close fitting to the model with adjusted correlation 

coefficients of between 0.96 and 0.99 indicating good fittings. 

The modified Gompertz model has been successfully utilized to 

model Mo reduction in various bacteria [30,41–43] and is much 

more accurate than the normal method of linearizing and 

otherwise sigmoidal model through log or natural log 

transformation. The model also shows that as the concentration 

of copper was increased, this led to a decrease in Mo reduction 

rates and an increase in the lag period as well. 

 

 
 
Fig. 1. Mo reduction rate by Pseudomonas sp. strain DRY1 at 10 mM 

sodium molybdate under various concentrations of copper (from 0.2 to 

1.2 mg/L). The error bars represent the mean ± standard deviation of 

triplicates. 
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Fig. 2. Mo reduction rate (log transformed) of Pseudomonas sp. strain 

DRY1 at 10 mM sodium molybdate under various concentrations of 

copper (from 0.2 to 1.2 mg/L) as modelled using the modified Gompertz 

model.  

 

The Mo reduction rates were then modelled using the 

available metal inhibition models at various copper 

concentrations. Wang, modified Han-Levenspiel and the Liu 

models were able to fit the curve, whilst the modified Andrews 

and Amor models were unable to fit the curves (Figs. 3 to 5). The 

Liu model shows poor fitting while both the Wang and modified 

Han-Levenspiel models show visually acceptable fitting. Results 

of the statistical analysis showed that the modified Han-

Levenspiel model was the best model based on the lowest values 

for RMSE and AICc, highest adjusted correlation coefficient 

(adR2) and values of AF and BF closest to unity (Table 2). 

 
Table 2. Statistical analysis of the metal inhibition model. 

 

Model p RMSE adR2 AF BF AICc 

mod H-L 3 0.012 0.879 1.041 0.973 -47.20 

Wang 3 0.014 0.837 1.063 0.979 -44.28 

Liu 2 0.028 0.453 1.117 0.937 -43.78 

Andrews 4 n.a. n.a. n.a. n.a. n.a. 

Amor 3 n.a. n.a. n.a. n.a. n.a. 
 

 

Note:  

p no of parameter 

mod H-L modified Han-Levenspiel 

adR2 adjusted correlation coefficient 

RMSE Root mean square error 

AF Accuracy factor 

BF Bias factor 

AICc corrected Akaike Information Criteria 

n.a. not available 

 

 

 
Fig. 3. Mo reduction rate by Pseudomonas sp. strain DRY1 at 10 mM 

sodium molybdate under various concentrations of copper (up to 1.2 

mg/L) as modelled using the modified Han-Levenspiel model.  

 

 
Fig. 4. Mo reduction rate by Pseudomonas sp. strain DRY1 at 10 mM 

sodium molybdate under various concentrations of copper (up to 1.2 

mg/L) as modelled using the Wang model.  

 

 
Fig. 5. Mo reduction rate by Pseudomonas sp. strain DRY1 at 10 mM 

sodium molybdate under various concentrations of copper (up to 1.2 

mg/L) as modelled using the Liu model.  

 

The parameters obtained from the modified Han Levenspiel 

model, which were Ccrit, µmax and m which represent critical 

heavy metal ion concentration (mg/l), maximum reduction rate 

(nmole Mo blue/h) and empirical constant values were 0.225 

(95%, confidence interval from 0.198 to 0.251), 1.200 (95%, 

confidence interval from 1.180 to 1.220) and 0.443 (95%, 

confidence interval from 0.261 to 0.626). The modified Han-

Levenspiel accurately predicted the critical copper concentration 

that completely inhibited molybdenum reduction rate in this 

bacterium. Previous researches have shown that the modified 

Han-Levenspiel model is the best model to fit the effect of 

inhibitor including salts and heavy metals on the growth or 

product formation rates [1,6]. 

 

In a related study, the growth rate of the bacterium 

Enterobacter sp. strain Neni-13 on SDS in the presence of 

various concentrations of mercury was modelled according to the 

various metal inhibition model similar to this study [42]. The best 

model was Wang.  The Wang model can predict the critical 

mercury concentration that completely inhibited bacterial growth 

on SDS. The parameters obtained which are Ccrit, µmax and m, 

representing critical heavy metal ion concentration (mg/l), 

maximum growth rate (g/l h) and empirical constant values were 

0.216, 1.05 and 0.389, respectively.  

 

The usage of metal inhibition models is inadequately 

depicted in the literature regardless of the significance of such 

research considering the reality that heavy metals are 

ubiquitously found in contaminated waters together with organic 

pollutants. A number of research has investigated on the 
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inhibitory effect of heavy metals of the growth rate of bacteria 

growing on toxic substances. In one such study,  zinc and nickel 

inhibit the biodegradation rate of monoaromatic hydrocarbons by 

Bacillus sp. and Pseudomonas sp. and the Andrews model was 

successfully utilized to model the inhibition [5].  

 

These heavy metals including copper inhibit the degradation 

pathway by binding to functional groups of proteins and 

enzymes, rendering these enzyme inactive [6]. In order to reduce 

metal ions toxic effect, bacteria use a battery of mechanisms 

including complexation with the binding of metal ions to cell 

surfaces, metallothionen, biomethylation, development of efflux 

pumps, and the removal of metal ions by precipitation [43]. These 

strategies are important for bacterial resistance against toxic 

metal ions in future selection of copper tolerant Mo-reducing 

bacteria. 

 

 

In order to reduce metal ions toxic effect, bacteria use a 

battery of mechanisms including complexation with the binding 

of metal ions to cell surfaces, metallothionen, biomethylation, 

development of efflux pumps, and the removal of metal ions by 

precipitation [45]. These strategies are important for bacterial 

resistance against toxic metal ions in future selection of copper 

tolerant Mo-reducing bacteria. 

 

CONCLUSION 

 

To conclude, the usage of metal inhibition models to model the 

result of metal ions to the rate of growth of bacteria or rate of 

transformation including metal reduction rate on toxic substances 

is extremely uncommon and generally overlooked regardless of 

the significance of these kinds of study. In this study, the effect 

of copper on the molybdenum reduction rate was modelled in 

accordance with several metal inhibition models, with the 

modified Han-Levenspiel model identified as the most effective 

model. The model permits the forecast of the crucial copper 

concentration which can totally inhibit the rate of molybdenum 

reduction. It is anticipated that in the existence of heavy metals, 

the reduction rate is going to be actually highly afflicted as the 

bacterium need to withstand the toxicity of both kind of toxicants 

simultaneously. The outcomes out of this study can be quite 

essential in field trial works where molybdenum reduction for 

bioremediation is desired in areas co-contaminated with copper. 
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