Synthesis of Thiodisaccharides Bearing N-Acetylhexosamine Residues: Challenges, Achievements and Perspectives

Alejandro E. Cristófalo,[a, b] María Emilia Cano,[a, b] and María Laura Uhrig*[a, b]

Abstract: Carbohydrate-protein interactions are involved in a myriad of biological processes. Thus, glycomimetics have arisen as one of the most promising synthetic targets to that end. Within the broad variety of glycomimetics, thiodisaccharides have proven to be excellent tools to study these processes, and even more, some of them unveiled interesting biological activities. This review brings together research made on the introduction of N-acetylhexosamine residues into thiodisaccharides to date, passing through classic substitution (as S₂N₂, thioglycosylation and ring-opening reactions) and addition (as thiol-ene coupling and Michael-type additions) reactions. Recent and interesting developments regarding addition reactions to vinyl azides, cross-coupling reactions and novel chemoenzymatic methods are also discussed.

Keywords: Biomimetic synthesis, Glycosylation, N-Acetylglucosamine, Thiosugars, Thioglycosides.

1. Introduction

Most biological events mediated by carbohydrates are triggered by carbohydrate-protein recognition processes. Among carbohydrate-binding proteins, the activities and functions of glycosyltransferases, glycosidases and lectins are particularly important, as these are main participants in a refined dynamic equilibrium in the cells. Indeed, interactions between these proteins and glycans take part in a myriad of both normal and pathological biological processes, and many excellent reviews appeared on this subject so far. Nevertheless, it is worth to make reference to cell-cell communication, adhesion mechanisms and cellular signalling, as processes in which the diversity of carbohydrate structures densely present in the cell surfaces, namely the *glycocalyx*, becomes crucial. These interactions have been studied for several decades as part of the essential processes that mediate information transfer in live beings.[8] As examples, we can mention the participation of galectins as promotores of several pathogen infections by an initial multivalent ligation of both, microorganisms and the host cell glycans,[9] and the interplay between hemagglutinins and neuraminidases in influenza virus infections.[10,11]

Thus, the study of carbohydrate-protein interactions is important to understand these processes, and even more, to develop new therapeutic agents capable of modulating them and, eventually, interfering or blocking pathological events. In the field of synthetic carbohydrate chemistry, one of the most studied approaches is the synthesis of glycomimetics. The term ‘glycomimetic’ stands for chemically modified carbohydrates or structurally related compounds that can mimic the natural glycans. As it is known, complex carbohydrates are not sufficiently stable in biological media as they are rapidly hydrolysed by enzymes. So, the relevance of glycomimetics relies in their stability and capacity to interfere in these recognition processes, a fact that consequently converts them into powerful tools to study carbohydrate-protein systems, and moreover to develop new drug candidates. This has been largely documented in the last years.[12-15]
In the search of glycomimetics, a huge number of structural modifications, and concomitantly, readily and useful synthetic methodologies, have been developed, and many excellent reviews appeared on this topic in the last years.[15–17] Among the many approaches to assess glycomimetics, the replacement of either the ring oxygen atom or the glycosidic oxygen atom by carbon, nitrogen or sulphur is one of the most studied. This gives rise to carbasugars, iminosugars, thiosugars and \textit{C}-glycosides, \textit{N}-glycosides, and \textit{S}-glycosides, respectively. In most cases, modification of the interglycosidic oxygen by a different atom is tolerated by biological systems, thus giving more stable products towards acidic or enzymatic hydrolysis.[18,19] Particularly, the potent activity of several iminosugars as inhibitors of glycosidas, encouraged further research on other glycomimetics, strengthening the synthetic carbohydrate field towards the exploration of new therapies based on active small molecules.[20,21]

Within the broad variety of glycomimetics, we are particularly interested in thiodisaccharides, i.e., disaccharides in which the interglycosidic oxygen atom has been replaced by sulphur. Their synthesis have been extensively studied for the last decades,[18,22] and efforts are still being made towards the development of suitable and efficient methodologies to reach them. The particular biological activities of thiodisaccharides rely on the thin balance between the structural similarities with respect to their natural analogues, as mentioned before, and their subtle differences in geometry, conformation, and flexibility. Their distinct physicochemical properties are due to the fact that sulphur is less electronegative and more polarizable than the oxygen atom.[23] It has been demonstrated that thiodisaccharides are more flexible and present more energetically feasible conformers than their oxygenated counterparts. Furthermore, the conformations adopted by thiodisaccharides, this is, the values of the interglycosidic dihedral angles ϕ and α.
ψ, have been studied by spectroscopic and calculation methods to explain its interactions with receptor proteins. By X-ray crystallography, it could be verified that the C–S bond (1.78 Å) is longer than the C–O bond (1.41 Å), whereas the C–S–C angle (99°) is smaller than the corresponding C–O–C angle (116°). Consequently, as bios deterrents of the natural disaccharides, thiodisaccharides are considered as excellent synthetic targets to be used in carbohydrate-protein recognition studies, and as new potential therapeutics. In this respect, it is noteworthy that it has been described the synthesis of a variety of thiodisaccharides having cytotoxic activity against different human cancer cell lines, reason why they have been proposed as anti-cancer drugs.

Our research is focused on glycomimetics, particularly thiodisaccharides, bearing N-acetylhexosamine (HexNAc) residues (mainly N-acetylglucosamine, GlcNAc and N-acetylgalactosamine, GalNAc), as these are fundamental monosaccharides, which are constituent of a wide range of glycans, involved in numerous biological processes. These sugars are part of the N- and O-glycosidic chains of glycoproteins and so, they play important roles in intracellular signalling, cell-cell and cell-pathogen interactions. Also, GlcNAc and GalNAc are the most prevalent sugars in the extracellular matrix polysaccharides, known as glycosaminoglycans (GAGs). They also play structural functions as components of the cell wall of bacteria and fungi, and of the exo-skeleton of insects and crustaceans. Remarkably, the incorporation of GlcNAc into several proteins, has tremendous consequences on cell proliferation and cell death, therefore considering that synthetic methods to obtain thiodisaccharides, through substitution mechanisms within the broad spectrum of reaction conditions have been described to construct a thioglycosidic bond, can be classified into two groups: a) those involving substitution methods, and b) those involving addition reactions. In both cases, the already mentioned reactivity of the −N-acetyl group (if present in any of the substrates), should be particularly taken into consideration, not only because of the presence of the H−N group as a strong hydrogen bonding group, but also because of its bidentate nucleophilic nature. Thus, the need for thioglycosylation bearing HexNAc residues carries a synthetic challenge itself.

2. General Strategies for the Access to Thioglycosylation Reactions

2.1. HexNAc-Containing Thioglycosylation Reactions

For the last decades, different synthetic approaches to obtain thioglycosylation reactions have been explored, i.e., S$_2$N$_2$-like nucleophilic displacement of a good leaving group located at a sugar residue by a thioaldehyde activated in basic medium, Michael additions of thioaldoses to unsaturated acceptors, epoxide and aziridine ring-opening reactions by thioaldoses, and enzymecatalysed thiosugar couplings. Even though in 2006 Szilagyi and Varela reviewed the methods reported so far, we will return on those initial works involving HexNAc residues, in order to globally analyse the pursued strategies in the cases of disaccharides containing such sugars.

As most O- and N-glycans are linked to protein backbones through GlcNAc residues, many thioglycosylation reactions have been developed with the aim to understand the biochemical mechanisms involved. On the other hand, it has been demonstrated that the introduction of S-D-GlcNAc moieties results in enzymatically stable glycoconjugates as glycopeptides and glycoproteins. Even more, its presence can interfere with biosynthetic pathways such as the synthesis of N- and O-linked glycans, as a result of its resistance towards hexosaminidases.

From a synthetic point of view, the incorporation of HexNAc residues in glycans and/or glycomimetics remains a challenging task. It is well known that the presence of the −NH$_2$ group at the 2-position favours the formation of by-products such as both 1,2- and 2,3-oxazolines, and also aziridines. Furthermore, it was demonstrated that this functional group also interacts with neighbouring molecules by establishing a strong H-bond network, an important reason that have a profound impact in glycosylation reactions.

Therefore, considering that synthetic methods to obtain glycomimetics and other thiosugars recently were reviewed elsewhere, in this review we aim to bring together previous as well as recent work and efforts on the introduction of HexNAc residues into thioglycosidic disaccharides. More specifically, we will analyse here the synthetic strategies pursued to overcome the challenges imposed by the N-acetyl moiety in C-2, in order to reach the selected stereochemistry. Interesting recent methods involving addition reactions to vinyl azides, Michael addition to acetyl oximes, as well as chemoenzymatic approaches, will also be included.
bond, considering that simple thioglycosides are common intermediates widely used in glycosylation reactions.\[46–48\]

With respect to GlcNAc-containing thiodisaccharides, this methodology was used by Gelas’ group, in the search of analogues to the natural chitooligosaccharides produced by soil bacteria that induce symbiotic processes in plant roots, known as nodulation factors (Nod factors). Their work included different synthetic approaches to obtain di- and trisaccharide mimetics bearing the β-S-GlcNAc(1→4)GlcNAc fragment, envisaged as inhibitors of chitinases.\[49\]

Thus, they reported thioglycosylation reactions using either a 4-thio-α-GlcNAc derivative (1) or the 1,6-anhydro thiol 4 as acceptors. Their glycosyl donor counterparts were respectively the 2,2,2-trichloroethoxycarbonyl (Troc) N-protected anomeric bromide 2 and the trichloroacetimidate 5. In the first case, the reaction was carried out in anhydrous THF in the presence of NaH to give thiodisaccharide 3 in 64% yield, while in the second, the reaction was promoted by trimethylsilyl triflate (TMSOTf) in anhydrous DCM giving thiodisaccharide 6 in 33% yield (Scheme 1).

The thiotrisaccharide 8\[50\] was also synthesised by base-promoted thioglycosylation reaction of the 4-thiol derivative 1 with the conveniently protected anomeric bromide 7 in 30% yield (Scheme 2).

Later, the synthesis of a trisaccharide having the thio-linkage at the non-reducing end was also reported by Gelas and co-workers.\[51\] They first used the previously synthesised 1,6-anhydro thiodisaccharide 9 to obtain trichloroacetimidate glycosyl donor 10 in a 3-step sequence. In this case, an azido group was placed at C-2, as precursor of the acetamido substituent, a common strategy employed in the synthesis of HexNAc-containing oligosaccharides. Glycosylation of this donor with the acceptor 11 using BF$_3$.Et$_2$O or triethylsilyl triflate (TESTf) as promoters in toluene led to degradation of

Figure 1. Different strategies pursued for the synthesis of HexNAc-bearing thiodisaccharides.

Scheme 1. Synthesis of thiodisaccharides 3 and 6 through thioglycosylation reactions.
the thiodisaccharide imidate and not to the formation of the desired trisaccharide (Scheme 3a). The authors argued that this issue was due to an incompatible protecting group strategy for the thiodisaccharide donor 10. The authors then used thiodisaccharide-based glycosyl donor 12 in a glycosylation reaction with the same acceptor 11 (Scheme 3b). Noticeably, the replacement of the benzoate protecting group present at C-3 in 10 by a benzyl group (12) was crucial for the success of the reaction involving the axial hydroxyl group present at C-4. Varying the reaction conditions, trisaccharide 13 was achieved in a 57% yield as an anomeric mixture with an α:β 1.0:4.7 stereoselectivity.

Besides, Cao and Yu developed the synthesis of a thio-linked heparan sulphate trisaccharide to act as a non-hydrolysable substrate and thus inhibitor of heparanase which may give important insight in the study of this enzyme. As the authors state, this is the first report of the construction of oligosaccharides bearing a thioglycosidic linkage between glucuronic acid (GlcA) and glucosamine-derived (GlcN) units. As they employed a Glc-building block as precursor of the GlcA residue, they rationalised that the oxidation of the 6-OH should be carried out before thioglycosylation, as this step might affect the interglycosidic sulphur. Thus, two strategies were envisaged for the construction of the (1→4) thio-linkage: first, a S_N_2 displacement of a GalN 4-O-triflate derivative with a β-GlcA thiol (βGlcASH 16), and then, a thioglycosylation reaction between a GlcA donor and a 4-SH GlcN acceptor.

While attempting the synthesis of the desired β-(1→4) thiodisaccharide through thioglycosylation reaction using a GlcA trichloroacetimidate (14) no reaction occurred using either TMSOTf or B_F_3·Et_2O as promoters. The displacement of a GalN 4-O-triflate derivative (17) with a GlcA thiolate gave a low 22% yield of the synthetic target 18. Instead, treatment of GlcA anomeric bromide 19 with a 4-thio-GlcN derivative (15) mediated by Cs_2CO_3 in DMF gave a good 56% yield of the desired thiodisaccharide (Scheme 4).

The same procedure using a glycosyl bromide derived from a 4-deprotected GlcA residue (21) and the glucosyl-configured 2-azido-4-thio derivative 15, yielded thiodisaccharide 22, in a very good 67% yield. Furthermore, thiotrisaccharide 24 was obtained by glycosylation of the free 4'-OH of 22 with the conveniently prepared imidate 23, promoted by tert-butyl(dimethyl)silyl triflate (TBSOTf). Finally, the target thio-trisaccharide 26 was prepared by treating 24 with DDQ to remove both 6- and 6'-p-methoxybenzyl groups without altering the thioglycosidic linkage, then reducing both azide groups with 1,3-propanedithiol and Et_3N, simultaneously sulphating 6- and 6'-hydroxyl and 2- and 2'-amino groups with SO_3-pyridine and Et_3N, and last deprotecting both acetyl and benzoyl groups (Scheme 5). Importantly, the authors
remark that this work represents the first synthesis of a heparan sulphate/heparin oligosaccharide bearing a thioglycosidic linkage.

At this point, it should be mentioned that the synthesis of the GlcNAc and GalNAc 1-thioaldoses and thioglycosides can be in general achieved by following the same methodologies recommended for simple monosaccharides.\cite{47,48,53} Early reports on the synthesis of β-1-thioGlcNAc (βGlcNAcSH) were made by Horton and Wolfrom in 1962.\cite{54} As we are going to discuss later the synthesis of thiodisaccharides bearing two thioglycosidic bonds, we want to make a short reference to the thioglycosylation method involving treatment of a peracetylated derivative with BF$_3$·Et$_2$O/thiourea and a good electrophile. Initially reported by Ibatullin,\cite{55,56} a one-pot procedure proved to be useful to obtain 1,2-trans thioglycosides. Moreover, by optimisation of the experimental conditions, the synthesis of thioalkynyl GlcNAc and GlcNPhth derivatives was achieved, although the yields were lower than in the case of Glc, Gal and other simple monosaccharides.\cite{57} Still, it showed to be convenient as the number of reaction as well as purification steps were sensibly reduced, and also was compatible with both, N-acetyl and N-phthalimido (NPhth) groups present at C-2 (Scheme 6). Interestingly, a higher stereoselectivity towards the β-anomer was observed in the case of the NPhth derivative, in comparison with the acetamido group, a fact that can be easily explained by the stronger anchimeric participation effect of the C-2 substituent in the case of the former derivative.\cite{58,59}

This strategy proved to be successful when applied to more complex structures, such as thiodisaccharides, as will be discussed later.

2.1.2. S_N2 Reactions

Taking advantage of the high nucleophilicity of the sulphur atom, the reaction of a thioaldose with a convenient sugar precursor having a good-leaving group, largely proved to be an excellent strategy to obtain thiodisaccharides through S_N2 processes.[44,45,60] The higher stability of the anomeric configuration of 1-thioaldoses with respect to common aldoses is a major advantage.[61] Still, the inherent complexity of sugar chemistry, and the interplay between neighbour group participation and stereochemical aspects should be carefully considered for the success of the reactions, particularly when HexNAc building blocks are involved.

To begin with, the S_N2-approach was used to study the incorporation of α-L-fucopyranosyl residues into HexNAc-bearing thiodisaccharides. The most abundant linkages of L-fucose in glycoproteins and glycolipids are α(1→3), α(1→4) and α(1→6) to d-GlcNAc, so Hashimoto and co-workers explored the synthesis of the corresponding thio-linked disaccharides.[62]

The α(1→6) thiodisaccharide was synthesised by S_N2 displacement of a 6-O-tosylate of GlcNAc (33), which was obtained from the GlcNAc allyl glycoside through classic methods. Fucosyl thiolate, obtained by treatment of α-1-thiofucose (αFucSH) with sodium hydride, was used as nucleophile (Scheme 7). This synthetic sequence efficiently afforded thiodisaccharide 35.

For the synthesis of the α(1→4) thiodisaccharide, the starting material was the allyl 2-azido-2-deoxy-β-L-galactopyranoside 36. First, its 3,6-di-O-TBDMS derivative 37 was obtained and subsequently subjected to triflation to furnish the 4-O-triflate derivative 38. This compound was not isolated but used next to obtain the desired thiodisaccharide by substitution of the triflate group with αFucSH in the presence of sodium hydride. Thus, compound 39 was obtained in a nice 68% yield from 37, and further protecting group manipulation led to the desired thiodisaccharide 42 (Scheme 8).

The construction of the α(1→3) thiodisaccharide required a different synthetic approach and will be described later (Section 2.1.3).

In another pioneering work, Wang and Lee presented for the first time the synthesis of thiochitooligosaccharides. The syntheses of di-, tri-, and tetra-thiosaccharides was reported herein.[63] For the construction of the β-GlcNAc-(1→4)-β-GlcNAc thio-linkage the authors used the S_N2 approach. By

Scheme 6. Reagents and conditions: a) Thiourea, BF_3·OEt_2, CH_3CN (anh.), 82°C, 4–12 h; b) Et_3N; c) propargyl bromide, rt, 18 h.

Scheme 7. Reagents and conditions: a) i) TBDMSCl, imidazole, DMF; ii) Ac_2O, DMAP, py, 61% (2 steps); b) i) 60% AcOH, 70°C, ii) TsCl, py, 60% (2 steps); c) i) αFucSH, NaH, DMF, ii) Ac_2O, DMAP, py, 99%; d) NaOMe, MeOH, 91%.

Scheme 8. Reagents and conditions: a) i) TBDMSCl, imidazole, DMF, 60°C, 58%; b) Tf_2O, py, DMAP, DCM; c) i) αFucSH, NaH, DMF, ii) Ac_2O, DMAP, py, 91% (2 steps); d) i) Bu_4NF, THF, ii) Ac_2O, DMAP, py, 97% (2 steps); e) NaOMe, MeOH, 65%.
displacement of the GalNAc 4-O-triflate 43_β with the 1-thiolate formed from βGlcNAcSH (44) the authors obtained the thiodisaccharide 46_β in 45% yield, with also 23% yield of the E2 product 47. The authors intended to improve the yield of thiodisaccharide 46_β and minimise the formation of the eliminated by-product by treating the anomeric GlcNAc thioacetate (45α) with 43_β in the presence of cysteamine and dithioerythritol (DTE) in DMF. Nonetheless, this method gave 43% yield of the mentioned thiodisaccharide. Direct coupling between triflate 43_β with thiol 44 promoted by cysteamine in DMF gave 52% yield of 46_β. However, the formation of the unsaturated product could not be avoided by none of these approaches. Interestingly, when performing the reaction with α- instead of β-methyl glycoside, 63% yield of the corresponding thiodisaccharide was obtained together with a minimum amount of the eliminated by-product (not quantified). Then, either thiodisaccharide 46_β as well as 46α were subjected to total deprotection and peracetylation to obtain thiodisaccharide 48 (Scheme 9).

Then the authors applied this method to extend the thiochitobiosides to tri- and tetrasaccharides. To that aim, thiodisaccharide 48 was treated with acetyl chloride saturated with HCl to obtain the anomeric chloride which was subsequently displaced with thiourea in acetone and then reduced with aqueous sodium sulphite to furnish the anomeric thiol 49 (Scheme 10). With this building block in hand, the

Scheme 9. Reagents and conditions: a) 44, NaH/DMF, 0 to 20°C, 4 h (46_β: 45%, 47_β: 23%); b) 45, DTE, cysteamine, DMF, 0°C to rt, overnight (46_β: 43%, 47_β: 18%); c) 44, cysteamine, 0°C to rt, 3 h (46_β: 52%, 47_β: 22%); d) 44, cysteamine, DTE, DMF, 0°C to rt, 20 h, 63%; e) NaOMe, MeOH, 20°C; f) Ac$_2$O, py, 20°C; g) Ac$_2$O:AcOH:H$_2$SO$_4$ (8:2:0.1 v/v), 20°C, 7 h, 78% from 46α.

Scheme 10. Reagents and conditions: a) acetyl chloride, DCM, HCl (gas), 0–20°C; b) i) thiourea, acetone, reflux, ii) aq. Sodium sulphite, 20°C, iii) 5% HCl, (49α: 83%, 53α: 78%); c) 43β or 43α, DTE, cysteamine, DMF, 20°C; d) i) NaOMe, MeOH, 20°C, ii) purification by Sephadex G10 column chromatography (50β: 30%, 50α: 35%, 54α: 28%); e) Ac$_2$O, py, 20°C, 95%; f) Ac$_2$O:AcOH:H$_2$SO$_4$ (8:2:0.1 v/v), 20°C, 7 h, 81%.

Wiley Online Library
same \(S_N2\) method was applied by displacement of triflates \(43\beta\) or \(43\alpha\) in the presence of cysteamine and DTE, giving thiotrisaccharides \(50\beta\) and \(50\alpha\), respectively. The same methodology was applied to obtain the thiotetrasaccharide \(54\) (Scheme 10).

In connection with the previously discussed thioglycosylation methods, Gelas’ group also explored \(S_N2\) approaches to reach chitooligosaccharides, in the search of alternative improved conditions.\(^{[49]}\) So, the construction of the thioglycosidic bond was achieved by nucleophilic displacement of either the 4-\(O\)-triflates \(55\) or \(59\) with GlcNAc anomeric thiolate derivatives formed from \(56\) and \(44\) with NaH in anhydrous DMF. Thiodisaccharides \(57, 58\) and \(60\) were successfully obtained in yields ranging from 64 to 74\% (Scheme 11). In these cases, the \(S_N2\) reactions proved to be a better alternative than thioglycosylation, as the yields were considerably higher.

On the other hand, they synthesised thiodisaccharide \(63\) which bears a carboxybenzyl \(N\)-protected GlcN moiety at the non-reducing end and a 3-\(O\)-benzyl GlcN residue at the reducing end. This thiodisaccharide was obtained in 88\% yield by \(S_N2\) displacement of the galacto 1,6-anhydro-triflate \(62\) with the GlcNHBz anomeric thiolate derived from \(61\). Prepared thiodisaccharide \(63\) was then conveniently transformed into imidate \(12\) (Scheme 12), which was used as glycosyl donor in the synthesis of thiotrisaccharide \(13\) (Section 2.1.1, Scheme 3b).\(^{[51]}\)

Furthermore, Rye et al. synthesised the \(S_\beta\)-GalNAc-(1→4)-GlcA thiodisaccharide which is a mimetic of the repetitive unit of the chondroitin chain. The purpose of this synthesis was to obtain a molecule that could act as inhibitor of chondroitin AC lyases for both therapeutic strategies and structural analysis of the active site of this enzyme. Therefore, the authors used an \(S_N2\) approach to reach the thio-linkage by nucleophilic displacement of the conveniently protected galacto 4-\(O\)-triflate \(65\) with the corresponding \(\beta\)-1-thiogalactosamine (\(\beta\)GalNAcSH, \(64\)) anomeric thiolate.\(^{[64]}\) The resulting thiodisaccharide \(66\) was obtained in 43\% yield and treated afterwards with 10\% TFA in DCM to deprotect the 4-methoxybenzyl group giving compound \(67\) in 86\% yield. Successively, the primary alcohol was oxidised under Jones conditions giving compound \(68\) bearing the GlcA moiety in 73\% yield. Remarkably, the oxidising conditions did not alter the thioglycosidic bond. Finally, compound \(68\) was deprotected with NaOMe/MeOH to obtain the free chondroitin mimetic thiodisaccharide \(69\) in 48\% yield (Scheme 13).

Compound \(69\) was subjected to inhibition kinetic studies using the chondroitin AC lyase from Flavobacterium heparinum. This thiodisaccharide surprisingly binds poorly to the enzyme, acting as competitive inhibitor with a \(K_i\) value of 45 mM. The authors conclude that, in this case, differences in bond length and angles between the thioglycosidic bond and its natural \(O\)-counterpart could be the reason for the low binding.

Feng et al. developed a synthetic method to transform \(d\)-GlcNAc into \(d\)-GalNAc derivatives in a straightforward way, as \(d\)-GalNAc is sensitively more expensive to obtain from commercial sources than its 4-epimer.\(^{[65]}\) In an attempt to show the versatility of their synthetic method, the authors used one of their intermediates (triflate \(70\)) to successfully obtain four thiodisaccharides bearing GalNAc residues which are

![Scheme 11. Synthesis of thiachitooligosaccharides by \(S_N2\) method gave better results than thioglycosylation reactions.](image1)

![Scheme 12. Synthesis of thiodisaccharide \(63\) and the imidate derivative \(12\).](image2)
analogues of several sequences of bacteria polysaccharides (75–78, yields ≈60–70%). To this aim, S_{2}2 classic reactions were carried out by reacting a crude triflate with different sugar anomeric thioacetates in the presence of Et_{2}NH at −5 °C in anhydrous DMF (Scheme 14).

As part of a study on the mechanism and inhibition of chitinases, the synthesis and conformational analysis of four O- and S-glycosides of N,N'-diacetylthiochitobiose was reported by Fettke et al.[66] Starting from either GlcNAc anomeric chloride 79 or pentaacetylglucosamine 27β both β-methyl and β-p-methoxyphenyl 3,5-di-O-benzoylated glycosides (80 and 81) were prepared using standard methods. Next, these glycosides were epimerised using the Lattrell-Dax conditions[67,68] giving the GalNAc derivatives 84 and 85. After acetylation of the 4-position of compound 85, this p-methoxyphenyl GalNAc glycoside was used as starting material to

Scheme 13. Synthesis of the chondroitin thiodisaccharide analogue 69.

Scheme 14. Reagents and conditions: a) Et_{2}NH/DMF, −5 °C, overnight.
obtain S-aryl derivatives (88–90) by reaction with aryl thiols and BF$_3$.Et$_2$O. A final triflation of the free 4-position in 84, 85, 91, 92 and 93 was performed to obtain the precursors 43β, 87, 94, 95 and 96 (Scheme 15). This sequence illustrates the big efforts behind the synthesis of most of the thiodisaccharides referred to here, which require protecting group manipulation and often inversion of the configuration of some stereocentres (as also S$_2$N$_2$ processes occurs with inversion of the sp3-carbon). In this context, Lattrell-Dax epimerisation reaction proved to be an excellent resource for a clean C-inversion in mild conditions.$^{[67–69]}$

Then, the authors$^{[66]}$ used the GalNAc 4-O-triflate derivatives to obtain thiodisaccharides through S$_2$N$_2$ displacement with GlcNAc thiolate in DMF. Therefore, thiodisaccharides bearing O- or S-glycosidic linkages at the reducing end were prepared (101–105) (Scheme 16).

The authors$^{[66]}$ also synthesised a thiazoline derivative that mimics the oxazoline produced by several hydrolases (including chitinases and N-acetylhexosaminidases) by hydrolysis of chitin. For this purpose, thiodisaccharide 97 was treated with Lawesson reagent followed by deprotection to afford the thiazoline 107 (Scheme 17). Besides, the authors performed a complete conformational analysis using NMR techniques and molecular modelling. Finally, they tested compounds (101–105 and 107) against chitinases and N-acetylchitinases.

It has been described that Tn (GalNAc1-Ser/Thr) and STn (Neu5Acα2,6GalNAc1-Ser/Thr) are carbohydrate antigens associated with tumorigenesis and tumour progression and pointed research attention since they are not normally expressed but highly expressed on tumour cell surfaces. Consequently, they can be considered as targets for cancer immunotherapy. In this context, Huo and Ye presented the
synthesis of an STn thio-analogue. To synthesise such glycomimetic, the authors started from the GalNAc allyl-glycoside \(108\) which was treated with 2,2-dimethoxypropane and camphorsulphonic acid (CSA) to furnish compound \(109\), where positions 3- and 4- were selectively protected. Compound \(109\) was then treated with \(\text{Tf}_2\text{O}/\text{py}\) in DCM to achieve the GalNAc 6-\(\text{O}-\)triflate \(110\) which was not isolated from the reaction but subsequently treated with the sialyl thioacetate \(111\) in the presence of diethylamine in anhydrous DMF. Thus, the desired (2\(\rightarrow\)6) thiodisaccharide \(112\) was obtained through an \(S_2N_2\) displacement in 40% yield (Scheme 18). The moderate yields can be associated to the axial disposition of the substituent at C-4, which partially blocks the access of the nucleophile to C-6. Further deprotection of compound \(112\) with classic methods afforded the target thiodisaccharide \(114\). Still, the obtention of \(114\) was of great importance due to the previously mentioned relevance of STn antigens. The authors expressed that these results would contribute to the development of carbohydrate-protein conjugates as potential anticancer vaccines.

In a more recent work, Huo et al. addressed \(N\)-acyl modifications of both Neu5Ac and GalNAc residues of thiodisaccharide \(114\) and used all the synthesised compounds to obtain Keyhole Limpet Hemocyanin (KLH) conjugates. Starting from the previously synthesised thiodisaccharide \(113\), both \(O\)- and \(N\)-acyetyl groups were removed by treatment with \(\text{NaOMe}\) in \(\text{MeOH}\) and a subsequent reflux under 2 M \(\text{NaOH}\). The resulting completely deprotected thiodisaccharide was treated with either methyl fluoroacetate, difluoroacetate, trifluoroacetate or propionic anhydride to achieve the \(N\)-acyl modified derivatives \(115\)–\(118\) (Scheme 19).

To ensemble the \(N\)-acyl modified thiodisaccharides to the carrier proteins, the authors assayed a photoaddition reaction of 2-aminoethanethiol to the corresponding allyl glycosides \(115\)–\(118\) followed by treatment with the bifunctionalised linker \(119\). Thus, compounds \(120\)–\(123\) were obtained in moderate to good yields. Finally, all these carbohydrate derivatives were assembled with the carrier proteins by incubation in PBS buffer, affording the KLH conjugates \(124\text{a}–127\text{a}\) and the BSA conjugates \(124\text{b}–127\text{b}\) (Scheme 20).

The authors also prepared a series of analogues in which the \(N\)-acyl modified function was introduced only either at the GalNAc residue or the Neu5Ac residue. In the first case, the \(S\)-linked derivatives having an \(N\)-acyl modified GalNAc moiety were prepared by starting the synthesis introducing a trifluoroacetate.
oacetyl protecting group at the 2-position. In the second case, the S-linked derivatives bearing an N-acyl modified Neu5Ac moiety were synthesised by direct N-transacylation with trifluoroacetic anhydride. The immunogenicity of these glycoconjugates was examined afterwards in a mice model. Mice were vaccinated with KLH conjugates biweekly and the produced antibodies were titrated by ELISA using the corresponding BSA conjugates for the plate coating. All the N-acyl modified STn thio-analogues elicited strong antigen-specific immune responses after the fourth vaccination. The authors used a glycoconjugate bearing thiodisaccharide without N-acyl modifications as a control. They showed that the conjugate 124a bearing an N-acyl thiodisaccharide modified with two fluoroacetyl groups induced an IgG titer 10-fold greater than that of the control. Better results were obtained in all cases when using fluorinated glycoconjugates.

As previously stated, (1→3) thiodisaccharides bearing HexNAc residues at the reducing end are often difficult to obtain due to side reactions leading to 2,3-oxazoline by-products. Thus, we have recently performed some synthetic studies towards the obtention of such thiodisaccharides. Initial experiments starting from the 3-O-triflate derivative of the thiokynyl GlcNAc precursor 128, confirmed that the thioaldose S2 nucleophilic displacement competed with the intramolecular cyclisation caused by the attack of the acetamido carbonyl oxygen. Thus, a low yield of the desired thiodisaccharide 130 was obtained, even at low temperatures,
such as $-45^\circ C$. The oxazoline 131 was also recovered, which was a major drawback as this ring could not be opened under nucleophilic or basic conditions (Scheme 21). Nevertheless, oxazoline 131 was attractive as it can serve as precursor for βAllNAc residues. AllNAc is considered a “rare” sugar, and it is naturally found only in *Streptomyces* sp. as part of the pseudotrisaccharide *allo*samidin, which is the most studied insect endo-chitinase inhibitor. Hydrolysis of 131 in acid conditions led to a thioalkynyl-βAllNAc clickable building block, which was used further to prepare a resorcinarene-scaffolded octavalent glyocluster. Interestingly, the octavalent βAllNAc glyocluster showed affinity towards the wheat germ agglutinin (WGA), a legume lectin extensively studied due to its ability to recognise GlcNAc residues. This was the first report describing the interaction between AllNAc residues and WGA, and may open the possibility to new chemical and biochemical developments.

To reach the envisaged products a redesign of the synthetic strategy was necessary. Thus, the installation of an azido group at the C-2 position of a glucos-configured precursor replacing the 2-acetamido group was crucial to obtain the desired (1→3) thiodisaccharides. So, starting from 132, a known 2-azido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranose precursor, we managed to obtain the *allo*-configured precursor 134 by a standard sequence involving triflation and sodium nitrite treatment (Scheme 22). Gladly, both 133 and 134 showed to be suitable precursors of the (1→3)HexNAc-containing thiodisaccharides, as follows.

On the one hand, treatment of the 3-O-triflate intermediate 133 with βGlcASH 16, led to the AllN$_3$ thiodisaccharide 135 in a good 60% yield, along with an α-S-GlcA derived subproduct (136) (Scheme 23). Even though there is consensus on the enhanced anomeric stability of thioaldoses, as stated before, the formation of this product can only be explained by a fast anomeration of the βGlcASH derivative 16, before the attack to the electrophilic C-3 of the GlcN$_3$ triflate 133. The presence of the electron withdrawing carbonyl group at C-6 makes the ring-opening and the concomitant anomeration more feasible. Valuable reports on the mutarotation of thioaldoses during 1-S-glycosylation and similar reactions can be found in the literature.

Further protecting group manipulation starting from 135 occurred successfully without affecting the thioglycosidic bond, and gave rise to the (1→3) AllNAc thiodisaccharide 138 (Scheme 24), which was obtained as an α:β 3:2 anomeric mixture in 67% yield (2-steps).

In this way, β- and α-S-GlcA(1→3)AllNAc thiosaccharides were obtained, which were afterwards functionalised with thioalkynyl residues by using the one-pot thioglycosylation procedure described above. Thus, the synthesised derivatives 139β and 139α, having two thioglycosidic bonds, are suitably prepared for further click conjugation. Further studies in this respect are on the way (Scheme 25).

On the other hand, triflation of the 2-azido-4,6-O-benzylidene-2-deoxy-β-d-allopyranose precursor 134, led to the *allo*-configured precursor 140 in 82% yield (Scheme 26).
This transformation was fundamental and truly challenging as classic triflation conditions were not successful, probably because the axial disposition of HO-3 diminished its reactivity. Thus, the reaction required microwave irradiation to progress. Further SN2 displacement of the triflate group using suitable protected thioaldoses derived from either glucuronic acid (βGlcASH) and galactose (βGalSH), led to thiodisaccharides 142 and 143, respectively. This SN2 step was also challenging, and the reaction conditions should be carefully optimised. Taking into account the complexity of these molecules, the yields were acceptable (40–45%). Interestingly, together with the desired thiodisaccharides, we could also isolate the vinyl azide 144 and minor amounts of unprecedented (1→2) addition by-products, which will be discussed below.

Protecting group manipulation led to the final pursued thiodisaccharides 146α,β and 148α,β (Scheme 27) which could be thoroughly separated by column chromatography using silica gel, particle sized < 45 μm.

All these results are related to our project concerning the synthesis of defined GAG-derived glycomimetics for both, the study of biological processes involving these biopolymers and the exploration of multivalent architectures. Thus, β-S-GlcA (1→3)GlcNAc, β-S-Gal(1→3)GlcNAc and β-S-GlcA(1→3)AllNAc thiodisaccharides can be considered mimetics of the repeating units of hyaluronan and keratan GAG structures. Indeed, we used the synthesised hyaluronan mimetic thiodisaccharides to construct resorcinarene-based amphiphilic multivalent ligands to assess binding studies towards the C-type lectin Langerin, which is involved in a wide number of critical biological processes (unpublished results).

2.1.3. Ring-Opening Reactions: Aziridines, Sulphamidates and Sulphates as Substrates

In their work on the synthesis of S-fucosyl-containing thiodisaccharides, Hashimoto and co-workers also addressed the synthesis of the α-S-Fuc-(1→3)GlcNAc thiodisaccharide. In their work on the synthesis of S-fucosyl-containing thiodisaccharides, Hashimoto and co-workers also addressed the synthesis of the α-S-Fuc-(1→3)GlcNAc thiodisaccharide.

To overcome the difficulties imposed by the −NHAc group in nucleophilic substitutions at C-3, the authors studied the
nucleophilic ring opening of 2,3-aziridines first described by Yamaguchi. The synthesis started from the 3-"O"-mesyl derivative of GlcNAc, and the 2,3-epimino derivative was obtained by treatment with sodium isopropoxide in isopropanol. The aziridine was tosylated to increase the reactivity of the ring, giving compound and the benzylidene acetal group was removed furnishing compound. The ring opening reaction of the aziridine mediated by αFucSH in NaOMe/MeOH proceeded with good stereo-selectivity from the upper face of the GlcNAc residue, obtaining the thiodisaccharide and its regioisomer in a 2:1 relationship. Further protecting group manipulation afforded the desired (1→3) thiodisaccharide (Scheme 28).

By using p-nitrophenyl-alpha-l-fucopyranoside as substrate, the authors studied the inhibitory activities of the synthesised thiodisaccharide, together with and against alpha-l-fucosidase from bovine kidney and epididymis. The strongest inhibitor was the alpha(1→3) thiodisaccharide with Ki = 0.65 mM in a competitive mode.

In view to synthesise oligosaccharide inhibitors of neural cell division, Fernández-Mayoralas' group also faced the synthesis of an alpha-S-Fuc(1→3)GlcNAc thiodisaccharide. To avoid dealing with 2,3-oxazoline and 3,4-eliminated by-products, Fernández-Mayoralas' group developed a synthetic methodology which consisted in a nucleophilic opening of a cyclic sulphamidate. This was the key step to reach the alpha-S-Fuc(1→3)GlcNAc thiodisaccharide.

To produce the cyclic sulphamidate, it was necessary to count with the allo configured precursor which was obtained through classic synthetic methods. This glycoside was treated with NaH in THF to generate the corresponding 3-alkoxide, which subsequentially reacted with 1,1'-sulphonyldiimidazole to give the 2,3-sulphamidate. In these conditions, the recovered compound was N-deacylated, so it required a further N-acetylation step by treatment with acetyl.
chloride and pyridine, furnishing compound 161 (Scheme 29). Next, the authors studied nucleophilic opening reactions of the cyclic sulphamidate with nucleophiles of different nature (i.e., S-, N-, O-, and C- nucleophiles). Compound 161 possess several electrophilic centres, namely both H-2 and H-4, C-3 and the N-acyl group. In some cases, mostly with C-nucleophiles as for example Grignard or organolithium reagents, 2,3- or 3,4-elimination and/or N-deacetylation occurred (Scheme 29).

When treating the cyclic sulphamidate 161 with αFucSNa 162, the pursued α-S-Fuc(1→3)GlcNAc thiodisaccharide derivative 163 was obtained in very good yield (79 %) (Scheme 30).

Later, the authors applied this synthetic method to obtain Lewis X trisaccharide glycomimetics. Thus, by acid hydrolysis of the benzylidene acetal in 163 the diol 164 was first obtained. Next, the 6-position was selectively protected, and the authors intended to glycosylate the 4-position with a Gal residue. All the attempts made were unsuccessful (Scheme 31).

Instead, the authors decided to synthesise in first place the Gal(1→4)AllNAc disaccharide and to incorporate the α-thioFuc residue in later steps. Thus, starting from the AllNAc glycoside 159, thiodisaccharide 175 was obtained, in which the 3-position was free to react giving the 2,3-sulphamidate 176. Nucleophilic displacement of the sulphamidate in 176 gave thiotrisaccharide 177 which was further deprotected furnishing thiotrisaccharide 178 as the desired Lewis X mimetic (Scheme 32).

The same sulphamate-opening reaction was successfully employed later by Chen and Withers to obtain 2-acetamido-2-deoxy-3-thio-β-D-glucose and β-D-galactopyranoside derivatives, which were then used as substrates for chemo-enzymatic thiodisaccharide synthesis (see below, Section 2.3). Besides, in 2014, Megia-Fernandez et al. reported the ring-opening reaction of a cyclic sulphate mediated by a thioaldose, as a key reaction for the synthesis of thiodisaccharides. Like cyclic sulphamidates, cyclic sulphates proved to be versatile synthons as epoxide equivalents in organic synthesis. Interestingly, the authors thoroughly studied the synthesis of S-pyranosyl-β-monooalkyl dithiocarbamates (DTC) as precursors of thioaldoses, which can be gradually released in the presence of Et3N and then trapped by different electrophilic species. These derivatives were synthesised by reaction of per-O-acetylated-α-bromoaldoses with the N-benzyl dithiocarbamate sodium salt 180 in mild conditions (Scheme 33).
Thus, by treating the DTC precursor 181 with the 5,6-cyclic sulphate 182 derived from glucofuranose in the presence of Et₃N, the nucleophilic attack selectively occurred on the primary carbon C-6, to produce the sulphated thiodisaccharide 183. This was the first report of a thiodisaccharide bearing a GlcNAc residue attached to a glucofuranose derivative.

2.1.4. Cross-Coupling Reactions

2-Iodoglycals have been used before as acceptors in different cross-coupling reactions to introduce an alkyl or aryl substituent at C-2,[92,93] but it was Messaoudi and co-workers[94,95] who used a S-nucleophile in this reaction for the first time to synthesise thiodisaccharides. The authors tested first the coupling using alkenyl or aryl halides and glycosyl thiols to form thioglycosides obtaining excellent results.[94] A few years later, they reported the synthesis of different thiodi-, tri- and tetrascarharides using 2-iodoglucal 184 and 2-iodogalactal 185 as acceptors.[95] In this example, they used βGlcNAcSH and Pd–G3-XantPhos precatalyst to perform the Buchwald-Hartwig-Migita cross-coupling (Scheme 34). In comparison with classical iodoalkenes, 2-iodoglycals 184 and 185 showed to be less reactive. Still, by optimisation of the reaction conditions, the authors found that, when using dioxane as solvent, after 90 minutes at 60°C, the (1→2) substituted glycals could be obtained in good to very good yields.
2.2. HexNAc-Containing Thiodisaccharides by Addition Reactions to an Unsaturated Sugar Precursor

2.2.1. Thiol-Ene Reactions through Radical Mechanisms

Thiol-ene coupling (TEC), or hydrothiolation reaction, is a well-known reaction which has been largely used to couple a thiol to an olefin to produce a thioether. In the last two decades, this reaction has re-emerged as it can be used in the presence of a wide variety of functional groups with high efficiency under mild reaction conditions. As a result, it has been included in the renowned click reaction group.\[96,97\]

The reaction proceeds by a classic radical mechanism initiated by a thiyl radical, as it is shown in Scheme 35.

In the carbohydrate field, thiyl radicals derived from thioaldoses can be successfully generated in the presence of a radical initiator, but the finding that they could be obtained by a photoinduced process through UV-irradiation in the presence of a photosensitised ketone, rapidly promoted the synthesis of a variety of thiodisaccharides having interesting structures and particular stereochemistry.

In 2009, Fiore, Marra and Dondoni reported the thiol-ene radical reaction between 1-thiosugars and exocyclic alkenes to obtain 1,6-thiodisaccharides by UV-light irradiation (at 365 nm) using 2,2-dimethoxy-2-phenylacetophenone (DPAP) for the first time.\[98\] This click reaction performed under mild conditions, proved to be highly efficient and diastereoselective. On the one hand, the authors first optimised the reaction conditions using βGlcSH and the diacetonide \(188\) and found that in MeOH the disulphide GlcS-SGlc appeared as undesirable by-product. On the other hand, while using CH\(_2\)Cl\(_2\) as solvent, disulphide formation was not observed. With the best conditions in hand, the authors tested the reaction with a variety of per-O-acetyl 1-thiosugars, including βGlcNacSH \(44\), which successfully reacted with different unsaturated sugars (Scheme 36).

Two years later, the same group published the first reported TEC reaction using glycals as starting materials. Compared with the exocyclic double bond, the glycals needed a higher proportion of \(44\) (1.2 eq and 6 eq, respectively) to obtain good yields. When \(44\) was treated with glucal \(194\) and galactal \(195\), the reaction was regioselective. The thiol binds to

![Scheme 34](image-url)
Scheme 34. Synthesis of 186 and 187 via a cross-coupling reaction.

![Scheme 35](image-url)
Scheme 35. Radical cycle of thiol-ene coupling using a protected 1-thiosugar and DPAP as initiator.
the C-2 of the glycal since the anomeric radical intermediate is stabilised by the adjacent oxygen atom. Additionally, the reaction proceeded with very good yields, although it was not stereoselective (Scheme 37).

Borbás and co-workers[100–102] also made important contributions in this field. They reported the synthesis of $\alpha(1\rightarrow1)$ and $\alpha(1\rightarrow2)$ hexosamine-bearing thiodisaccharides, among others, by TEC reaction, using endocyclic enoses and 2-acetoxyglycals as starting materials. They demonstrated that thiol addition to 2-acetoxyglycals and a 2,3-unsaturated glycoside proceeded with total selectivity (Scheme 38).[100] 2-Acetoxyglycals, in turn, led stereoselectively to 1,2-\textit{cis}-α-linked thiodisaccharides, which are difficult to obtain through other methods. Borbás[103] showed that many short cycles of

Scheme 36. Free radical thiol-ene reaction with exocyclic double bonds, dr: diastereomeric ratios.

Scheme 37. Thiodisaccharide synthesis by TEC reaction using glycals as acceptors.

Scheme 38. Synthesis of $\alpha(1\rightarrow1)$ and $\alpha(1\rightarrow2)$ thiodisaccharides by TEC reaction.
irradiation with repeated additions of the photosensitiser resulted more beneficial than long-time irradiation periods.

Using the same strategy, this group synthesised a variety of thiodisaccharides having β-1-thioGlcNAc moieties. Interestingly, the GlcNAc-derived glycal 204 resulted a good substrate for the reaction (Scheme 39). Particularly, Eszenyi et al. demonstrated that the conversion increases by diminishing the reaction temperature. They assumed that the stability of the radical intermediate in the thiol-ene reaction increased in these conditions. Another advantage of this method is that the amount of disulphide formed as by-product was substantially diminished.

One year later, the same group optimised the photo-induced hydrothiolation of different glycals, and a trisaccharide 214 was successfully synthesised, among a great number of other thiodisaccharides (Scheme 40). The optimal temperature conditions for these reactions showed to be −80 °C. However, for trisaccharide 214, the reaction gave better results at −40 °C (33 % and 65 % yield, respectively).

It should be mentioned that Borbás recently published an excellent review which collects all the latest results on the photoinitiated thiol-ene reactions involving unsaturated sugars as precursors, portraying this method as a powerful tool for the construction of thiodisaccharides.

2.2.2. Michael and Michael-Type Addition Reactions

Witczak and Varela groups made relevant contributions to the field of thioligosaccharide synthesis, using Michael addition reactions. They explored the reactivity of α,β-unsaturated derivatives, mainly the popular levoglucosenone and dihydropyran-2-ones as substrates, and thioaldoses as nucleophiles. Many of the resulting thiodisaccharides proved to be interesting enzyme inhibitors. Moreover, promising anti-cancer activities were also described for some of them.

In 1995, Witczak described the synthesis of two α(1→4) thiodisaccharides via Michael addition, one of them bearing a GlcNAc moiety. Particularly, the authors synthesised α-S-Fuc (1→4)-3-deoxy-Glc 220 and α-S-Fuc(1→4)-3-deoxy-GlcNAc 221 from αFucSH 215 and levoglucosenone 216 (Scheme 41).

Due to the presence of the anhydro bridge in levoglucosenone, the Michael addition of αFucSH resulted completely stereoselective from the opposite face of the 1.6-anhydro ring. Interestingly, Witczak achieved the conversion of the 2-keto group into a N-acetamido through the acetoxime group in intermediate 219, by treatment of 217 with hydroxylamine, followed by acetylation, and further treatment with 9-BBN (Scheme 41). Final treatment with BF₃ to provoke the opening of the 1.6-anhydro bridge followed by deacetylation, led to the 3-deoxy thiodisaccharide 221.
Recently, Varela and co-workers[113] also described the synthesis of 2-acetamido-2,3-dideoxy-(1→4)-thiodisaccharides through a Michael addition reaction of β\textsubscript{Gal}SH to the α,β-unsaturated ketoximes 222 and 226. These reactions occurred with remarkable stereoselectivity as the thiol attacked from the opposite side of the benzyloxy group (Scheme 42). Z-Acetyl oximes were better acceptors and gave higher yields than \(\text{E-oximes} \), a fact that can be explained by the steric hindrance imparted by the OAc groups in the \(\text{E-isomer} \). Interestingly, it was observed that the \(\text{E-configured} \) oxime double bond isomerizes upon addition, as 222E led to the 223Z adduct.

The authors finally studied the reduction of the obtained oximes 223E,Z and 227E,Z using a variety of reducing agents. On the one hand, when reducing 223E,Z, the use of NaBH\textsubscript{4}/I\textsubscript{2} gave high yields, but the reaction was not diastereoselective and an unresolved mixture of 224 and 225 was obtained. On the other hand, treatment with LiAlH\textsubscript{4} at \(-18°C\) led to the 4-thio-\(\beta \)-\(\text{d-threo} \)-pentopyranoside 225 as a single stereoisomer. Reduction of 227E,Z led to the 2-acetamido-2-deoxy-thiodisaccharides 228 (\(\text{d-lyxo} \)) and 229 (\(\text{d-xylo} \)) in approximately 1:1 ratio (Scheme 43).

Thiodisaccharides 225, 228 and 229 were deacetylated by treatment with NaOMe/MeOH and the products were tested...
as inhibitors of the β-galactosidase from *E. coli*. Interestingly, 230 showed to be a potent inhibitor of the enzyme with a *K*$_i$ = 70 μM.

In connection with Michel-type additions, we can mention here a report by Kroutil et al.\cite{115} based on a nucleophilic rearrangement which led to a GlcNAc-bearing thiodisaccharide. The authors described the synthesis of compound 233, by reaction of per-Ο-acetyl βGlcNAcSH 44 with an unsaturated 1,6-anhydro tosyl hexenose 231, derived from levoglucosenone (Scheme 44). The reaction proceeded with high stereo and regioselectivity. Final opening of the anhydro bridge led to the final product 233, which is an interesting precursor of more complex glycomimetics by further functionalization of the double bond.

2.2.3 Addition of Thioaldoses to a Vinyl Azide Sugar Precursor

Vinyl azides are valuable precursors in organic synthesis, mainly in the synthesis of heterocycles. Despite some of their applications in heterocycle synthesis are known from decades ago, recently, vinyl azides have been the subject of several works on new and interesting synthetic developments.\cite{116,117} These compounds constitute widely versatile synthons since, aside from the classic reactivity of azides, they can react as radical acceptors, nucleophiles and electrophiles, among other types of reactions (Scheme 45).\cite{117} In 1968, Hanessian described for the first time carbohydrate-based vinyl azides.\cite{118} These were obtained as undesired E2 elimination by-products in a series of S$_2$2 reactions of triflyl derivatives bearing an azido vicinal group.\cite{119-121} Nonetheless, carbohydrate-derived vinyl azides had not been explored as synthetic precursors of modified sugars until 2020, when we reported the addition reaction of 1-thiosugars to the double bond, as discussed below.

![Scheme 43](image1.png)

Scheme 43. Deacetylation of compound 225.

We have already mentioned that, on our way to reach (1→3) thiodisaccharides, the vinyl azide derivative 144 was also recovered as a side product from the reaction mixture, in variable yields which depended on the reaction conditions. Also, we detected two other secondary products of intriguing structures, having both the thioaldose and the electrophile fragments, which required further exploration. On the one hand, we could easily demonstrate that the vinyl azide 144 was formed by elimination of the axially disposed triflate substituent placed at the 3-position. On the other hand, we hypothesised that the two other minor products could arise from an addition reaction of the thioaldoses to the double bond present in 144. Thus, by treatment of 144 with either 141 or 16, we recovered products 234–236, whose structures were unambiguously determined by a combination of NOE-SY-NMR experiments together with conformational search molecular modelling (Scheme 46). The selectivity observed may be ascribed to both, electronic and steric effects.

Considering the chemistry and reactivity of vinyl azides, we also were able to propose a mechanism for this addition reaction, involving an iminodiazonium cation intermediate (Scheme 47).\cite{84} Remarkably, the rigidity of the sugar ring, must in some way preclude the classic 1,2-substituent migration observed in iminodiazonium ions with the concomitant loss of N$_2$, (known as the Schmidt reaction, Scheme 45, path b). Similar results on the addition of nucleophiles to this unsaturated bond were obtained by Wang and co-workers by

![Scheme 44](image2.png)

Scheme 44. Synthesis of thiodisaccharide 233.

Scheme 45. Reactions of vinyl azides with a) nucleophiles, b) electrophiles, and c) radicals.
treating some aliphatic vinyl azides with alcohols in the presence of SelectFluor, as source of electrophilic F^+.[122]

The formation of compounds 234–236, as 2,3-dideoxy-2-azido-(1→2)-thiodisaccharides, revealed the interest in sugar-derived vinyl azides as precursors of new glycomimetics of unprecedented structures.

2.3. Alternative Chemoenzymatic Methods

Withers and co-workers explored the development and use of thioglycoligases, as mutant glycosidases lacking the catalytic acid/base amino acid residue involved in the activity displayed by these retaining-hydrolytic enzymes.[123–125] The successful construction of the thioglycosidic bond relied on the use of suitable donors, such as p-nitrophenyl glycosides or glycosyl fluorides, and an appropriate sugar bearing a thiol group as an acceptor, which presents better nucleophilic properties than alcohols. Thus, importantly, the formation of a S-glycosidic bond occurs in aqueous medium, avoiding the use of protecting groups. As thiodisaccharides are resistant to enzymatic hydrolysis the reverse reaction does not occur. It should be noted that this approach still requires the preparation of sugar derivatives having the SH functionality in specific positions.

GlcNAc-bearing thiodisaccharides have been synthesised by using this chemoenzymatic method.[126] An enzyme having thioglycoligase activity related to the Xanthomonas manihotis β-galactosidase was used, together with 2,4-dinitrophenyl β-D-galactopyranoside as donor and a variety of sugar thioles as

![Scheme 46. Synthesis of (1→2) thiodisaccharide 234, 235 and 236 from vinyl azide 144.](image1)

![Scheme 47. Proposed mechanism for the obtention of (1→2) thiodisaccharides through addition to vinyl azides involving the iminodiazonium cation intermediate III.](image2)
acceptors. Glc or Gal residues having SH-groups in C-3 or 4 led to the corresponding thiodisaccharides in very good yields (79–85%). When their 2-deoxy-2-acetamido counterparts were used as acceptors, an increase in the amounts of both the donor and the enzyme was required and the yields were lower. The best results were obtained when 3-thio-GlcNAc was tested, giving a 79% yield of thiodisaccharide 237, while the 3-thio-GalNAc derivatives were inactive as acceptors (Scheme 48). These results were ascribed to the fact that the bulky acetamido group probably does not fit properly within the active site of the enzyme.

Variants of the α-N-acetyl-glucosaminidase from Clostridium perfringens have also been obtained and studied. These modified enzymes proved to catalyse the transfer of an α-GlcNAc residue from a 2-nitrophenyl α-N-acetylα-d-glucosaminide to a variety of thiols. When the 4-thio-Glc derivative 241 was used, thiodisaccharide 242 was obtained (Scheme 49).[127]

In a recent report, Withers and co-workers[128] used also an hexosaminidase to produce a thioglycoligase. In this case, the authors generated a variant of a glycosidase (GH20) from Streptomyces plicatus (SpHex) replacing the Glu314 by an alanine in the active site (SpHex E314A).

As the oxazoline is an intermediate in the catalytic process, either GlcNAc oxazoline 243 or 4-nitrophenyl GlcNAc 244 were used as donors with a wide range of SH-acceptors (including d-GlcNAc, d-Glc, t-GalNAc, p-ManNAc and d-Man configurations) in the thioligation reaction to give thiodisaccharides 245–253 (Scheme 50).

The authors[128] also showed that 4-nitrophenyl-β-GalNAc 254 was an excellent donor obtaining thiodisaccharide 256 in 98% yield (Scheme 51). Importantly, the authors were able to synthesise, in this way, a thiodisaccharide bearing two GalNAc moieties.

Scheme 48. Chemoenzymatic reaction for the synthesis of thiodisaccharides bearing HexNAc residues. a) Mechanism for WT enzymatic hydrolysis, b) Thioglycoligase-mediated mechanism, c) Target thiodisaccharides
3. Summary and Outlook

The increasing knowledge of the importance of carbohydrate-mediated biological processes demands nowadays solid strategies to successfully construct modified sugars which can contribute to this research field. As isosteres of O-disaccharides, thiodisaccharides result particularly attractive.

Although reported for the first time many decades ago, classic thioglycosylation and S_N2 approaches are still fruitful, considering the high nucleophilic power of sulphides and that suitable techniques to transform hydroxyls into thiols or good leaving groups and also to obtain glycosyl donors are continuously being developed. Also, the stereoselectivity of the concerted substitutions allows a direct planification of the
reaction sequences keeping in mind the stereochemistry of the target molecule. Thus, (1→6) and (1→4) thiodisaccharides having HexNAc residues at the reducing end have been easily prepared in this way. The more challenging (1→3) thiodisaccharides could also be obtained under controlled conditions and in the presence of additives, while strategically designing the synthetic sequence to avoid side reactions involving the −NHAc group. Alternatively, aziridine and cyclic sulphamidate ring-opening approaches offered excellent possibilities to reach them. Particularly, cyclic sulphate ring-opening reaction provided an interesting example for the access of thiodisaccharides of unusual structures. We consider that further investigation on this topic is still required. Interestingly, cross-reactions with regiochemical control, as mild conditions under UV-light irradiation in the presence of the DPAP ketone are effective for the construction of the thioglycosidic bond between a thioaldehyde and a sugar-derived alkene. Thus, glycols, 2-acetoxyglycals, 2,3-enuloses and other unsaturated sugars showed to be suitable precursors, although mixtures of stereoisomers are usually obtained. Furthermore, addition reactions of thioaldoses to sugar enone-derivative acetoxy- or to vinyl azides, arose recently as alternative methods through ionic intermediates.

Finally, elegant methods based on genetic manipulation of common glycosidases led to enzymes having unique thioglycoligase activities. Despite the chemoenzymatic approach offers the possibility to build the thioglycosidic linkage in a straightforward manner, it is necessary to mention that in all cases a deep synthetic background is needed to reach appropriate sugar acceptors having an SH group in specific positions. Nonetheless, the enzyme specificity and other advantages strongly contribute to strengthen the development of methods for the synthesis of thiodisaccharides which are difficult to obtain otherwise.

Throughout this review we intended to show the importance of thio sugar derivatives in carbohydrate synthetic chemistry as a key part of Glycobiology, mainly focusing on the development of methods to assess HexNAc-containing thiodi- and oligosaccharides.

Acknowledgments

Support for this work from the Universidad de Buenos Aires (UBA), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, are gratefully acknowledged. AEC is a fellow member of CONICET. MEC is a research member of UBA. MLU is a research member of CONICET.

References

In this review, we collected all the excellent reports made to date on the synthesis of HexNAc-containing thiodisaccharides. We organised them into three groups taking into consideration the reactions involved in the construction of the thioglycosidic bond: substitution reactions, addition reactions and chemoenzymatic methods.

A. E. Cristófalo, M. E. Cano, M. L. Uhrig*
1 – 30

Synthesis of Thiodisaccharides Bearing N-Acetylhexosamine Residues: Challenges, Achievements and Perspectives