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We consider a brane-world cosmological model coupled to a bulk scalar field. Since the
brane tension turns out to be proportional to Newton’s coupling G, in such a model
a time variation of G naturally occurs. By resorting to available bounds on the varia-
tion of G, the parameters of the model are constrained. The constraints coming from
nucleosynthesis and CMB result to be the severest ones.
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1. Introduction

The first ideas of a varying Newton’s coupling G come from 1937, when P. A. M.
Dirac introduced his famous Large Numbers Hypothesis.1,2 In the 1960’s, in
an attempt to reconciliate Mach Principle with General Relativity (GR), Brans
and Dicke developed their well-known scalar–tensor theory of gravity.3 Follow-
ing Jordan’s ideas, Brans and Dicke generalized GR including a varying G, whose
dynamics was governed by a scalar field. See Ref. 4 for a detailed review on varying
fundamental constants.

In addition to the effects of introducing a dynamical coupling constant, we know
that gravitational interaction is also sensitive to the existence of extra dimensions,
which could manifest themselves at short distances. In this paper, we will be con-
cerned with models that incorporate both a varying G and a higher-dimensional
setup.

Although the idea of extra dimensions is not new either,5,6 the advent of modern
(string) theories has brought to the fore the higher-dimensional scenarios more
recently. One of the string inspired models that have attracted much attention in
the last decade is the Randall–Sundrum model (RS), which consists of an effective
brane-world embedded in an orbifold of AdS5 space.7 The property of the RS-like
models that is interesting for our purpose is the relation between the tension of the
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brane, and the Newton’s constant of the four-dimensional effective theory. Models
with nonconstant brane tension thus lead to a time-varying G, as we will discuss
below.

The idea of this paper is to confront particular brane-world models with con-
straints coming from observational cosmological data. The particular model we will
consider here is that of Ref. 8, which is motivated by supergravity in singular spaces.
We will consider this model as a working example to show how observational data
could be used to constrain parameters of this type of scenarios.

The observational data we will use to constrain the model are of rather dif-
ferent types. For instance, we have data coming from planetary/geological scale:
observations due to space missions to Mercury, Mars, Venus and the Moon in the
1970’s, determined that if G varies in time, its variation is less than 10−11 per year.
On the other hand, in the late 1970’s, many works appeared relating the relative
variation of G with planetary radius.9,10 McElhinny et al. studied the evolution of
the Earth’s radius and extended their study to the Moon, Mars and Mercury, and
constrained ∆G/G in specific moments close to Solar System formation.

At cosmological scale, a variation of G leads to modifications in the Friedmann
equation. The direct consequences of these variations are changes in the cooling rate
of the universe and in the computed primordial abundances of He and Li. In Ref. 11,
Accetta et al. used this relation between varying G and light elements abundances
to give a bound to the relative variation of G. This variation (its absolute value, in
fact) turns out to be less than 40% since Big Bang nucleosynthesis (BBN). CMB
anisotropies are also sensitive to a varying G. Chan et al. concluded in Ref. 12 that
the relative variation of G since recombination is less than 10%.

In this work, we explore a five-dimensional (5D) gravitational model, alla RS,
with a scalar field in the bulk that modificates the brane tension, which induces
a variation in G. The variations of G predicted by the model, depending on two
parameters, will be then compared with the observational data mentioned above.
That is, the aim is to constrain the possible values of these parameters, using
experimental bounds.

This paper is organized as follows. In Sec. 2, we discuss the RS-like model cou-
pled to a scalar field, which induces variation of effective Newton’s constant in four
dimensions. In Sec. 3, we survey bounds on the variations of G and the observa-
tions. In Sec. 4, we combine observational data of Sec. 3 with the predictions of the
model, and use this to constrain the parameters. In particular, we give bounds on
the 5D Planck mass, supersymmetry breaking scale, and the cosmological constant
in the bulk. In Sec. 5, we draw some conclusions.

2. A Brane-World Scenario

2.1. Field equations

The RS-like scenarios propose that our universe is a 3-brane embedded in a curved
asymptotically hyperbolic 5D bulk, or an orbifold of it. One can also include matter
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in the brane as well as in the bulk;8 here we consider a scalar field φ. The brane
is located at the origin of the fifth dimension, which we denote x5. This dimension
has Z2 symmetry in our case.

Fields of the Standard Model live on the brane, while gravitational interaction
(and the scalar field) is free to propagate in the bulk. Bulk action is given by

Sbulk =
1

2κ2
5

∫
d5x

√−g(5)
(
R− 3

4
((∂φ)2 + U(φ))

)
, (1)

where R is the curvature scalar associated to the 5D metric g(5)
AB; U(φ) is the bulk

potential, which depends on the scalar field φ, and κ2
5 = 1/M3

5 , being M5 the Planck
mass in 5D.

The action of the brane depends on its tension UB(φ) (brane potential). In our
case, it is a function of the scalar φ and of the confined matter; namely

Sbrane =
∫
d4x
√−g(4)

(
− 3

2κ2
5

UB(φ(x5 = 0)) + Lmatter

)
, (2)

with gµν
(4) = δµ

Mδν
Ng

MN
(5)

∣∣
x5=0

. In this paper, Latin indices in capital letters go from
0 to 5 (excluding 4), Greek indices go from 0 to 3, and Latin indices in regular
letters, from 1 to 3.

The matter content of the 5D space is characterized by the energy–momentum
tensor, which can be derived from the total action and has the bulk and brane
contributions; namely

TAB = T bulk
AB + T brane

AB , (3)

with

T bulkA
B =

3
4

(
∂Aφ∂Bφ− 1

2
g
(5)A

B(∂φ)2
)
− 3

8
g
(5)A

BU(φ) , (4)

T braneA
B =

(
− 3

2
g
(5)A

BUB(φ) + τmatter A
B

)
δ(x5) , (5)

and

τmatter A
B = diag(−ρm, pm, pm, pm, 0) . (6)

Tensor τmatter is related to the ordinary matter on the brane.
The energy density ρm and the pressure pm are independent of the position

in the brane, so one recovers an homogeneous cosmology in four dimensions. The
equation of state that relates these quantities is taken to be pm = ωmρm.

Einstein equations reads

GAB ≡ RAB − 1
2
Rg

(5)
AB = κ2

5

(
T bulk

AB + T brane
AB

)
= κ2

5TAB . (7)

Let us propose the following ansatz for the metric:

ds2 = −A2(t, x5)dt2 +B2(t, x5)dxi dx
i + C2(t, x5)dx2

5 . (8)
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We are interested in cosmological scale solutions, so we assume an isotropic and
homogeneous metric in the three spatial coordinates. That is

ds2 = a2(t, x5)b2(x5)(−dt2 + dx2
5) + a2(t, x5)Ωij dx

i dxj , (9)

where Ωij is the metric of a 3D space with constant curvature:

Ωij = δij

(
1 +

K

4
xlxmδlm

)−2

, (10)

where the values K = 0, 1, −1 correspond to a (spatially) flat, closed or open
universe, respectively. Since observational evidences are consistent with a spatially
flat universe,14 then we assume K = 0.

It is important to note that in (9) we chose a conformal gauge for the (0–5) part
of the metric. In this gauge, the brane is placed in a fixed position, x5 = 0, i.e. the
fixed point of the Z2 symmetry in the fifth dimension. Function b only depends on
the spatial coordinate x5.

To derive the brane dynamics, one must verify that, although the equations of
motion must be restricted to it, these equations have to be satisfied in the bulk as
well. The brane “proper time” is

dτ = ab|x5=0 dt , (11)

and the differential of the normal vector to its surface is given by

dy = ab|x5=0 dx5 . (12)

From now on, we write ḟ = df
dτ , f ′ = df

dy .
The Israel–Darmôise junction conditions describe how a brane with a given

energy–momentum tensor can be embedded in a higher-dimensional space–time.
These equations yield

a′

a

∣∣∣∣
y=0

= −1
6
κ2

5ρ , (13)

b′

b

∣∣∣∣
y=0

=
1
2
κ2

5(ρ+ p) , (14)

where equations ρ is the energy density, and p is the pressure on the brane.
On the other hand, the boundary condition for the scalar φ is15

φ′|y=0 =
∂UB

∂φ

∣∣∣∣
y=0

. (15)

The total energy density and pressure on the brane can be written as a sum of
two contributions: a term related to confined matter, and a second one, related to
the tension, which in this case depends on the scalar field. Thus, we have

ρ = ρm +
3

2κ2
5

UB , p = pm − 3
2κ2

5

UB . (16)
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In what follows, all quantities will be evaluated on the brane, i.e. at y = 0.
Restricting the (0–5) component of the Einstein equations to the brane, and using
boundary conditions (13) and (14), we obtain the energy conservation equation

ρ̇ = −3H(ρ+ p) − 2T 0
5 , (17)

where H ≡ ȧ
a

∣∣
y=0

is the Hubble parameter on the brane.
Using the explicit form for ρ and p from (16), total energy density conservation

law transforms into a conservation law for the energy of the brane; that is,

ρ̇m = −3H(ρm + pm) . (18)

Time variation of the scalar field energy density 3UB/2 cancels the term involving
T 0

5, since the latter can be written as T 0
5 = − 3

4φ
′φ̇ = − 3

4 U̇B.
The solution for the brane energy conservation is

ρm = ρ0a
−3(1+ωm) , (19)

as in standard cosmology.
On the other hand, the Friedmann equation on the brane is a consequence of

the (5–5) component of Einstein equations. For a brane containing matter coupled
to a scalar field φ, Friedmann equation reads

H2 =
κ4

5

36
ρ2
m +

κ2
5

12
UBρm − 1

16a4

∫
dτ
da4

dτ
(φ̇2 − 2V )

− κ2
5

12a4

∫
dτ a4ρm

dUB

dτ
+
A

a4
, (20)

with

V =
1
2

(
U2

B −
(
∂UB

∂φ

)2

+ U

)
. (21)

The set of equations is completed by the Klein–Gordon equation for the scalar
field;16,17 namely

φ̈+ 4Hφ̇+
1
2

(
1
3
− ωm

)
ρm

∂UB

∂φ
κ2

5 = −∂V
∂φ

+ ∆Φ , (22)

where

∆Φ =
∂2φ

∂y2

∣∣∣∣
y=0

− ∂UB

∂φ

∣∣∣∣
y=0

∂2UB

∂φ2

∣∣∣∣
y=0

. (23)

Following Refs. 16 and 17, we consider

∆Φ = 0 . (24)

Einstein equations have been used to write (22) in this form (see Ref. 16).
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2.2. Physical considerations

Friedmann equation (20) is not conventional. In contrast to the standard one, (20)
presents terms that depend on the field φ, a quadratic term in the energy density
on the brane (present also in absence of the scalar), and an additional term that
goes like a−4.

By the time of primordial nucleosynthesis, corrections coming from brane
models, including the term proportional to the square of the energy density in
Friedmann equation, must be negligible. Otherwise, the rate of expansion would be
modified and the computation of light elements abundances would be inconsistent
with observations. In this nonconventional scenario, the freezing temperature of
proton to neutron ratio TC would be of the order of (2–3) MeV, while in standard
cosmology it is TC ∼ (0.7–0.8) MeV, consistent with He abundance. The difference
between both temperatures is a direct consequence of the fact that Hubble parame-
ter is linear with T 4, and not with T 2, generating a slower cooling of the universe.18

However, corrections might be important during the inflationary period.
Let us be reminded of the fact that in standard cosmology Friedmann equation is

H2
stand =

8πG
3

ρm +
Λ4

3
, (25)

where Λ4 is the cosmological constant in four dimensions. Then, the quadratic term
in ρm in (20) can be identified with the first term in (25); that is

UB(φ)
12

κ2
5 =

8πG
3

. (26)

It is clear that in our model, Newton’s constant in 4D varies as it depends on
φ; i.e. it is possible to find time variation of G.

2.2.1. Bulk and brane potentials

We consider a functional form for the potential U(φ) coming from the supergravity
models in singular spaces studied in Ref. 15. Following these results, one finds

U =
(
∂W

∂φ

)2

−W 2 , (27)

where W (φ) is the so-called superpotential.
We study the case in which the superpotential in an exponential function of the

field

W (φ) = 4keαφ , (28)

where [k−1] = L and α is a real number.
The brane potential is defined through the superpotential by

UB = TW , (29)

where T is a real number related to the scale of supersymmetry breaking.19
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Having the functional relation between UB and the scalar field, given by (28)
and (29), one can find G(φ) using (26); thus,

G(φ) =
k

8π
κ2

5Te
αφ . (30)

The expectation value of today’s φ is assumed to be zero by convention as a
boundary condition. Then, Newton’s “constant” would be given by

Gtoday(φ) =
k

8π
κ2

5T . (31)

2.2.2. Working hypothesis

The form of the Friedmann equation with all the new contributions is quite abstruse.
Then, in order to solve the model, some approximations and assumptions have to
be taken into account. We discuss these below.

First, the term proportional to a−4, can be considered as a correction to the
radiation density. This term is usually referred to as dark radiation. Here, we assume
A = 0 in (20). We also consider a low energy regime, i.e. we neglect the term
proportional to ρ2

m in (20). It is possible to do this under the condition ρm � ρcrit,
with

ρcrit =
3UB

κ2
5

=
12
κ2

5

kT ∼ 4.6 × 1033 g
cm3

, (32)

where (28), (29), and bounds on k, κ2
5 and T consistently found a posteriori in

Secs. 3 and 4, have been used. In the studied period (between BBN and today) the
density remains below this critical density. We also assume that the time evolution
of the scalar field φ in the brane proper time τ is much slower than the one of
the scale factor a. It is possible to extract φ̇2 from the first integral in (20) in this
adiabatic regime.

A nondissipative approximation of the potential will also be considered. The
brane potential UB is basically Newton’s constant on the brane, up to multiplicative
constants. Following the adiabatic approximation, it is reasonable to suppose that
the contribution correspondent to this term might be negligible. The term dUB/dτ ,
as well as the other terms of order φ̇ and ȧ, contribute to higher-order estimation
of G(φ) than the one we study here.

Finally, and consequently with the assumptions above, the square of the time
derivative of φ, i.e. the kinetic energy of the field, is lower than other terms in
Friedmann equation. It is possible to make a simply calculation to constrain the
current value of the time derivative of the scalar field: following the approximations,
today’s Friedmann equation, divided by H2

0 is

1 = ΩM + ΩR + ΩΛ + Ω∂φ , (33)

where Ω∂φ = φ̇2(τ0)/16.
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Recent data14 implies that the sum of the first three contributions is close to
0.996, which fixes a limit to the absolute current value of the time derivative of φ;
namely ∣∣∣∣ φ̇H0

(τ0)
∣∣∣∣ < 0.22 . (34)

This heuristic argument supports our approximation hypothesis.
In addition, the exponential dependences appearing in Friedmann and Klein–

Gordon equations will be approximated to 1 since φ is small.
With all the approximations described above, Friedmann equation takes the

form

H2 = T
k

3
κ2

5ρm +
Λeff

3
, (35)

with
Λeff

3
:= k2(T 2 − 1)(1 − α2) . (36)

On the other hand, Eq. (19) says that, for radiation,

ρR = ρ0RH
4
0a

−4 , (37)

and for nonrelativistic matter,

ρM = ρ0MH
4
0a

−3 , (38)

with ρ0M,R dimensionless constants.
Thus, Friedmann equation can be rewritten as follows:

H2 = T
k

3
κ2

5

(
ρ0M

a3
+
ρ0R

a4

)
H4

0 +
Λeff

3
. (39)

After making the identifications

T
k

3
κ2

5ρ0M,RH
2
0 = ΩM,R , (40)

Λeff

3H2
0

= ΩΛ , (41)

we obtain the familiar form for the equation

H2

H2
0

=
ΩM

a3
+

ΩR

a4
+ ΩΛ . (42)

Then, the equation for φ is

φ̈+ 4Hφ̇+ 2
(

1
3
− ωm

)
ρmκ

2
5αkT = −16α

Λeff

3
. (43)

The system of equations above can now be solved in two different epochs: one
dominated by radiation and matter, and the other governed by matter and cosmo-
logical constant.
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2.3. Solution to the field equations

2.3.1. Radiation and matter dominated epoch

In this epoch, the term proportional to Λeff can be neglected. Then, the Friedmann
equation takes the forma

H2
1

H2
0

=
ΩM

a3
1

+
ΩR

a4
1

, (44)

whose solution is

a1(η) =
ΩM

4
(η − η0)2 − ΩR

ΩM
, (45)

where the integration has been performed in the conformal time η, being dτ =
a1(η)
H0

dη.
The equation of state for radiation is prad = ρrad/3, while pmat = 0 is the equa-

tion for nonrelativistic dust. Then, KG equation reads:

φ̈1 + 4H1φ̇1 + 2αH2
0

ΩM

a3
1

= −16αH2
0ΩΛ , (46)

where we used Eqs. (40) and (41). The solution to the differential equation is (see
Appendix)

φ1(a1) = B − A

2
√

ΩRa2
1

− 2ΩMα

3ΩR
a1 , (47)

where it has been taken into account that scale factor remains small during this
regime.

2.3.2. Matter and cosmological constant dominated epoch

During this regime, the term proportional to the inverse of the fourth power of
the scale factor a is negligible when compared to the other two terms. Then, the
Friedmann equation readsb

H2
2

H2
0

=
ΩM

a3
2

+ ΩΛ . (48)

Integrating, one obtains the scale factor during this epoch, namely

a2(τ) = a0 sinh
2
3

(√
ΩΛ

2
H0(τ − C0)

)
. (49)

In this regime, the Klein–Gordon equation is

φ̈+ 4H2φ̇+ 2αH2
0

ΩM

a3
2

= −16αH2
0ΩΛ . (50)

aSubindex 1 refers to the radiation–matter regime.
bSubindex 2 refers to the matter–Λ regime.



July 28, 2010 13:56 WSPC/139-IJMPA S0217751X10049700

3844 L. Amarilla & H. Vucetich

In order to solve this equation, it is convenient to consider two cases: a2 � 1,
that occurs for times close to union time (τ ∼ τu); and a2 ∼ 1, that is, times near
today (τ ∼ τ0):

• a2 � 1:

φ2(a2) = D − 2C

5
√

ΩMa
5
2
2

− 4
5
α ln(a2) , (51)

• a2 ∼ 1:

φ3(a2) = G− F

3
√

ΩΛ + ΩMa3
2

− α

5(ΩΛ + ΩM)
(8ΩΛ + ΩM)a2

2 , (52)

where G and F are integration constants. Details of this calculation can be found
in the Appendix.

2.3.3. Boundary conditions for the scale factor

To find the integration constants in (45) and (49), one must define the boundary
conditions. We take the convention

a2(τ0) = 1 , (53)

where τ0 is the current value of τ . We also have the matching conditions

H2(τ0) = H0 (54)

and

H1(τu) = H2(τu) , (55)

where τu is the junction time between both regimes. In addition, we have

a1(τu) = a2(τu) = au . (56)

Constants a0 and C0 can be obtained from (53) and (54). Consequently, we have

a2(τ) =
(

1
ΩΛ

− 1
)1

3

sinh
2
3

(
3
√

ΩΛ

2
H0

(
τ − τ0 +

2
3H0

√
ΩΛ

sinh−1

(√
ΩΛ

1 − ΩΛ

)))
.

(57)

The constant of integration must be chosen to satisfy the condition a1(τ = 0) = 0.
Then

τ(a1) =
2

3H0Ω2
M

(ΩMa1 − 2ΩR)
√

ΩMa1 + ΩR +
4Ω

3
2
R

3H0Ω2
M

. (58)
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Fig. 1. Plots for τ vs a1 and τ vs a2.

2.3.4. Boundary conditions for the scalar field

Since the scalar field must be smooth, φ1 (and its derivative) must be equal to φ2

(resp. to its derivative) in the junction time τu, when a = au = ΩR/ΩΛ. That is,

φ1(au) = φ2(au) , (59)

dφ1

da1
(au) =

dφ2

da2
(au) . (60)

The field φ2 must be equal to φ3 (as well as their derivatives) in an intermediate
time τI between τu and τ0. We take τI as the time equidistant to τu and τ0. Thus,

φ2(aI) = φ3(aI) , (61)

dφ2

da2
(aI) =

dφ3

da2
(aI) . (62)

The last boundary conditions we need are the values of the field and its today’s
derivative, i.e. at τ0 (a(τ0) = a0 = 1):

φ3(a0) = 0 , (63)

dφ3

da2
(a0) =

φ̇0

H0
:= p0 . (64)

Using (59)–(64) and the values for H0, ΩM, ΩR and ΩΛ listed in App. A.3, one
obtains the constants of integration A, B, C, D, F and G. Table 1 shows the values
of the constants as linear combinations of α and p0.

The final expression for the fields can be found in the Appendix. In Fig. 2,
the behavior of the field for different allowed valuesc of α and p0 are observed.
Figure 2(a) corresponds to α = 1/

√
20078 and p0 = −0.02164, which is the value

for p0 when α has the pointed value. Figure 2(b) shows the graphic for the field,
for a null value of α and p0 = 0.22, which is the upper limit for p0 coming from

cAllowed values for α and p0 are given in detail in Sec. 4.
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Table 1. Values of the integration con-

stants of the fields which are linear com-
binations of the parameters α and p0.

Constant α p0

A 0.09469 0.0309

B 682.718 57.114

C 1.745 0.719

D 2.212 0.752

F 2.408 0.998

G 2.0104 0.333

(a) (b) (c)

Fig. 2. Different behaviors of φ vs a. (a) α = 1/
√

20078 and p0 = −0.02164; (b) α = 0 and
p0 = 0.22; (c) α = −0.326062p0 and p0 = 0.22. In this case, the field has no divergence at the
origin, and its value there is −36.4087.

Friedmann equation. Finally, Fig. 2(c) shows the unique case in which the field does
not diverge at the origin, due to the fact that the value of α is such that the linear
term in a−2 in φ1 (see Eq. (A.17) in the Appendix) is zero for all p0.

3. Experimental and Observational Data on G(φ)

3.1. Corrections to Newtonian potential

Theoretical speculations predict new effects at distances of order less than 1 mm. In
particular, models with spatial noncompact extra dimensions are of interest because
these “internal” dimensions could alter the form of the Newtonian potential.

If the extra dimension is noncompact, as in the case of RS model, there is
a continuous of Kaluza–Klein (KK) modes for the gravitational field. The conti-
nuous spectra of KK modes leads to a correction to the force between two static
masses in the brane. The potential for two point-like masses confined to the brane
reads7

VRS(r) = G
m1m2

r

(
1 +

1
r2k2

)
, (65)

where k−1 should be of order of the distance of available gravitational tests (∼1 mm)
or smaller.
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Table 2. Bounds on

|βj | for j = 2, 3, 4,
5 obtained by Adel-
berger et al.20

k |βj |(<)

2 4.5 × 10−4

3 1.3 × 10−4

4 4.9 × 10−5

5 1.5 × 10−5

Thus, in order to bound the deviation from the Newtonian potential, one must
constrain parameter k. Adelberger et al.20 performed experiments with torsion
balances to model the correction to Newtonian potential using a power law of the
form

∆V j
12 = −Gm1m2

r
βj

(
1 mm
r

)j−1

, (66)

where the values of j and |βj | are shown in Table 2.
For j = 3 the extra term is

∆V 3
12 = G

m1m2

r
|β3|
(

1 mm
r

)2

, (67)

while the deviation predicted by RS model is

∆V RS
12 = G

m1m2

r

(
1

r2k2

)
. (68)

Thus, the value of k is constrained comparing ∆V 3
12 with ∆V RS

12 . Then, the
characteristic scale at which the effects due to the presence of an extra dimension
become important is

1
k
< 0.01 mm . (69)

3.2. Observational bounds on G variation

Bounds on the variation of the Newton’s constant are obtained from local and
cosmological observations. Local observations are related to the solar system, as
well as nearby stars. Geological and paleontological data, as well as planetary orbits,
stellar densities, and luminosities, are of great importance when studyingG, because
they are affected by its variation.

3.2.1. Bounds on ∆G/G

Planetary radius variation. In 1961, Egyed proposed that paleomagnetic data
could be used for the calculation of Earth paleoradius (past to current planetary
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Table 3. Paleoradius (Ra) of the Earth, the Moon, Mars (a) and (b) and Mercury,
and bounds on relative variation of G.

Planet Ra γ Time [109 years] |∆G/G|(<)

Earth 1.020 ± 0.028 0.085 ± 0.02 0.4 0.62

Moon 1.0000 ± 0.0006 0.0004 ± 0.001 3.9 1.5

Mars (a) 0.9944 0.03 ± 0.01 3.6 0.12

Mars (b) 1.0000 ± 0.0003 0.03 ± 0.01 1.0 0.01

Mercury 1.0000 ± 0.0004 0.02 ± 0.005 3.5 0.02

radius ratio) in different geological eras. Starting from the hypothesis that the
continental material area remained constant during planetary expansion, Egyed
found that the ratio between current and past angular separation (paleolatitud)
of two given sites is proportional to the paleoradius.9 A few years later, in 1978,
McElhinny et al. related Earth radius variation to time evolution of gravitational
constant, and extended the analysis to the Moon, Mars and Mercury.10 According
to their work,

∆R
R

= −γ∆G
G

, (70)

where ∆R is the variation of the radius R and γ is a constant that depends on the
planet structure.

On the other hand, there is another way to write this relation using the paleo-
radius Ra:

∆G
G

=
Ra − 1
γ

. (71)

Table 3 summarizes the results for the Earth, the Moon, Marsd and Mercury.
These results assumes that the surface of each studied planet acquired its current
shape by the time indicated in the fourth column.

Big-Bang nucleosynthesis. Bounds of a different sort come from cosmology. In
1990, Accetta et al. studied bounds on gravitational constant value during primor-
dial nucleosynthesis, considering neutron mean life measurements.11 They deter-
mined D, 3He and 7Li abundances while varying G, and how this variation affects
barion to photon ratio. On the other hand, Copi et al. recalculated relative varia-
tion of G since BBN, but using only primordial D abundance in quasars.21 In both
works, the constraint on relative variation of G is∣∣∣∣∆GG

∣∣∣∣
BBN

< 0.4 , (72)

dThere are two different analyses for Mars: (a) assumes a 19 km expansion during the last 3600
million years; (b) supposes a 1 km variation on martian radius in the past 1000 million years. See
Ref. 10 for details.
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which means that the relative variation of gravitational constant since BBN is less
than 40%, at the 95% confidence level.e

Cosmic background anisotropies. Power spectra of cosmic microwave back-
ground anisotropies (CMBA) can be useful while constraining G variations in
cosmological scales. In Ref. 12, gravitational constant stabilization (convergence
to its current value) and its relation to CMBA are studied in detail. Two pos-
sible parametrizations of G are considered: one, corresponding to an instantaneous
stabilization, and the other to a stabilization linear with the scale factor a.

If the stabilization is linear, the relative variation of G since recombination
(z ∼ 1000) is ∣∣∣∣∆GG

∣∣∣∣
CMB

< 0.1 (73)

at the 95% confidence level.f Thus, the relative variation of G (its absolute value)
since recombination is less than 10%.

3.2.2. Bounds on Ġ/G

Lunar Laser Ranging (LLR) has been measuring the position of the Moon with
respect to the Earth during more than 30 years, with a precision of 1 cm. The
missions Appolo 11, 14 and 15, and Russian–French Lunakhod 1 and 4 carried
retro-reflectors to the Moon, which reflect laser pulses sent from the Earth. LLR
data are used to constrain Weak Equivalence Principle, post-Newtonian parameters
and Ġ/G.

According to the 2004 data in Ref. 22, the maximum variation allowed for
today’s gravitational constant is

Ġ

G
(τ0) = (4 ± 9) × 10−13 yr−1 . (74)

3.2.3. Bound on G̈/G

Now, let us discuss the constraints coming from observational bounds on G̈/G. For
that purpose, we consider a model slightly different from brane cosmology.

eIt is important to note that the constraint is for the absolute value of ∆G
G

|BBN. In Ref. 21 the

constraints are: 0.85 < GBBN
G0

< 1.21, at the 68.3% confidence level, and 0.71 < GBBN
G0

< 1.43, at

the 95% confidence level. G0 is the present value of the Newton’s constant. In this work we made
use of the last constraint.
fAgain, we aware the reader that the constraint is for the absolute value of ∆G

G
|CMB. In Ref. 12,

the constraints are: 0.95 < GCMB
G0

< 1.05, for a G variation modeled by a step function, and

0.89 < GCMB
G0

< 1.13, for a variation modeled by a linear function of the scale factor. Both

constraints are at the 95% confidence level. In this work we made use of the last constraint.
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Other model which considers scalar fields is the scalar-tensorial theory of Brans
and Dicke of 1961. This theory contains a scalar field governing G dynamics. In
usual notation, we have3

G(ϕ) =
1
ϕ
. (75)

G time dependence is described by

G(τ) ∼ τ−n , (76)

where n = 2/(4 + 3ω), and ω is a model parameter,g which measures the deviation
from GR. GR results are reobtained when ω goes to infinity. Considering (76), it
can be shown that

G̈

G
(τ) = n(n + 1)τ−2 . (77)

Benvenuto, Althaus and Torres in Ref. 23 give a bound to the absolute value of ω,
coming from white dwarfs evolution and its relation with a varying G. According to
their results, the calculated luminosities differ from the observed ones for |ω| < 5000.
Then, the allowed values range is |ω| > 5000.

Equation (77) evaluated today (τ0 = 13730 million years) together with the
constrain on ω, give a bound on the variation of the second time derivative of G:

− 3.55648× 10−40 s−2 <
G̈

G
(τ0) < 7.11082× 10−40 s−2 . (78)

At this point, one could ask about the relation between Brans–Dicke model
and the one studied in this work. The explanation is the following: Brans–Dicke
theory in the limit ω → ∞ gives back GR; while GR and brane cosmology should
be equivalent in the studied limit. Then, at first order, Brans–Dicke and brane
cosmology are equivalent and constraints on ω can be translated into constrains
on brane model parameters. However, it is not clear that the differences between
Brans–Dicke and brane cosmology lead to a great discrepancy on the limit (78).
Then, we study the inclusion and exclusion of this bound in following analysis.

4. Constraining Model Parameters

4.1. Parameters α and φ̇(τ0)

G variations, i.e. ∆G/G, Ġ/G and G̈/G, can be written in terms of φ as follows:

∆G
G

(a) = −αφ(a) , (79)

Ġ

G
(a) = αφ̇(a) , (80)

G̈

G
(a) = α2φ̇2(a) + αφ̈(a) . (81)

gIn Brans–Dicke work, ω = const, but there are more complex models where ω = ω(φ).
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Fig. 3. (Color online) Allowed values for α and p0. The figure on the right is a zoom-in of the
left one. Allowed values are located inside the dark gray contour, and satisfy |α| < 0.007 and
|p0| < 0.22. The black (blue) lines in the left figure at |p0| = 0.22 establish the bound for the
largest value for |p0|, a condition coming from today’s Friedmann equation.

Then, observational bounds discussed above restrict the possible values of α and
p0. The strongest restrictions on α and p0 come from BBN and recombination. The
largest value for the modulus of α is fixed by the combination of BBN and CMB
restrictions; that is

|α| < 1√
20078

= 0.007 , (82)

while |p0| < 0.22.
The allowed values are shown in Fig. 3. Allowed values are inside the dark gray

surface (right panel).
In Ref. 24, Brax and Davis find two theoretical values for α, emerging from

supergravity in singular spaces. These values are α = 1/
√

3 and α = −1/
√

12. From
the analysis we have just done, based on observational constraints, the absolute
value of α is bounded by (82) and then, it excludes these theoretical values.

4.1.1. Statistical analysis

Now, we would like to investigate how robust our constraints are. That is, we will
study how the constraints change if one excludes ones or others data.

Excluding G relative variation since BBN data, and using the other data, i.e.
∆G/G|CMB, ∆G/G|paleoradii, Ġ/G|today, G̈/G|today and |p0| < 0.22, it can be de-
duced that the strongest constraint on α absolute value is given by the combination
of ∆G/G|CMB and G̈/G|today.

In this case, we have

|α| < 1√
1787

= 0.024 . (83)

If we exclude CMB data, in addition to BBN data, and make a similar analysis,
we have that the constraint on |α| is fixed by the combination of G̈/G|today and
Ġ/G|today:

|α| < 1√
237

= 0.065 . (84)
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Table 4. Constraints on α obtained combining G varia-

tions observational data. The first two values are equalities
found with supergravity (SUGRA) in singular spaces. The
other values are cotes and should be read “|α| < · · · .” The
severest constraint is given by BBN and CMB. All the con-
strains, except the last one, exclude the first two values.

|α| Obtained with

1/
√

3 = 0.577 SUGRA

1/
√

12 = 0.289 SUGRA

1/
√

237 = 0.065 G̈/G|today; Ġ/G|today

1/
√

243 = 0.064 CMB; Ġ/G|today

1/
√

1787 = 0.024 CMB; G̈/G|today

1/
√

20078 = 0.007 BBN; CMB

No limit G̈/G|today; Mercury paleoradius

Omitting observational data of the second derivative of G, we obtain the same
results that those at the beginning of this subsection. This is because the severest
constraint on |α| is given by the combination of BBN and CMB data.

If we exclude BBN data, in addition to G̈/G|today, α is constrained by the
combination of ∆G/G|CMB and Ġ/G|today bounds, being

|α| < 1√
243

= 0.064 . (85)

Finally, if we only take into account the bounds coming from today’s value
of G derivative, and those related to planetary paleoradius (i.e. BBN, CMB and
G̈/G|today limits, excluded), |α| has no bound. Table 4 summarizes the results
obtained in data analysis.

In the studied cases, the upper bound on |p0| is fixed by Friedmann equation
evaluated today, i.e. |p0| < 0.22. In addition, it should be said that |α| is always
below 0.065, except in the last case, where its value has no bound.

Analog analysis can be done, but assuming a different bound on BD parameter:
|ω| < 500 (instead of |ω| < 5000). Table 5 shows the results.

Table 5. Constrains on α when combining observational

data of G variation, in the case |ω| < 500.

|α| Obtained with

1/
√

231 = 0.066 G̈/G|today; Ġ/G|today

1/
√

243 = 0.064 CMB; Ġ/G|today

1/
√

178 = 0.075 CMB; G̈/G|today

1/
√

20078 = 0.007 BBN; CMB

No limit G̈/G|today; Mercury paleoradius
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Table 6. Constrains on 5D param-

eters, T and Λeff .

Parameter Bound

κ2
5 < 2.8 × 10−99 s3

M5 = 1/κ
2
3
5 > 4.7 × 108 GeV

Λ5 < −4.2 × 1027 s−2

|T | < 1 + 3.05 × 10−63

Λeff = 4.8 × 10−18 s−2

The difference with respect to the results obtained with |ω| < 5000 lies in the
constraint of |α| found combining CMB data and G̈/G|today bound. In this case,
the constraint on |α| is less restrictive since it is three times bigger.

4.2. 5D parameters, T and Λeff

The 5D parameters of the model can also be constrained, as well as the 4D cosmo-
logical constant Λeff . Using H0 and ΩΛ from App. A.3, the constraint on k from
(69), and |α| < 1/

√
20078, we have the results shown in Table 6.

The same results are obtained when the other constraints on α from Tables 4
and 5 are used. Constraints on κ2

5 and M5 are in accordance with the ones predicted
in Refs. 25–27.

5. Conclusions

In this work, we studied a brane-world cosmological model in which variation of
the Newton’s coupling G emerges naturally. This model is inspired in supergravity
in singular spaces.24 By resorting to available observational data, we manage to
constrain the parameters of the theory. Light elements abundances, coming from
BBN (He, Li and D) (Eq. (72)), CMB (Eq. (73)) and, near in time, planetary
radii variations, allowed us to constrain the relative variation of G, i.e. ∆G/G (see
Table 3). Measurements of Lunar position with respect to the Earth with LLR
offered us a bound on today’s value of the G time derivative to G ratio (Eq. (74)).
Combining the severest constraints on G variations, i.e. those coming from BBN
and CMB, a bound for the absolute value of the parameter α was obtained. In
fact, this parameter must be less than 0.007, and the value of |p0| is bounded while
evaluating today’s Friedmann equation.

Statistical analysis was performed on the results to analyze how robust the
bounds are against the exclusion of particular set of data. That is, we studied how
the upper bound of |α| gets affected if one excludes different sets of data. Results
are shown in Tables 4 and 5. It is worth mentioning that the upper bound for |α|
is always less than 1/

√
178 ∼ 0.07 (except in the case where BBN and CMB data

are excluded, which turn out to be the most important ones).
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Our analysis presents a method to investigate the phenomenological viability
of models that, among other features, predict time variation of the fundamental
couplings. It could be interesting to extend our analysis to other brane-world-type
scenarios.
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Appendix A. Field Equations for the Scalar Field

A.1. Matter and radiation regime

During matter and radiation epoch, Klein–Gordon equation reads

φ̈1 + 4H1φ̇1 + 2αH2
0

ΩM

a3
1

= −16αH2
0ΩΛ , (A.1)

in which (40) and (41) have been used.
Differentiating with respect to a1, we have

dψ1

da1
+

4
a1
ψ1 =

−2αH0√
ΩMa1 + ΩR

(
ΩM

a2
1

+ 8ΩΛa1

)
, (A.2)

where we have used (44) and ψ1 = φ̇1.
Being reminded of the fact that during this regime a1 is small, the function on

the right-hand side can be approximated by its first term in power expansion for
a1 ∼ 0, thus

dψ1

da1
+

4
a1
ψ1 = −2αH0

ΩM√
ΩRa2

1

. (A.3)

Integrating, we find

ψ1(a1) =
−2H0ΩMα

3
√

ΩRa1

+
AH0

a4
1

, (A.4)

where A is an integration constant.
To find φ1(a1), it is necessary to integrate once again, taking into account that

dφ1

da1
=

1
a1H1

dφ1

dτ
=

1
a1H1

ψ1(a1) . (A.5)

Then, we have

φ1(a1) = B +
∫
da1ψ(a1)

a1

H0

√
ΩMa1 + ΩR

� B +
∫
da1 ψ(a1)

a1

H0

√
ΩR

, (A.6)

where B is a constant, and we only considered the first term in the power expansion
of a1√

ΩMa1+ΩR
.
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The solution to the differential equation is

φ1(a1) = B − A

2
√

ΩRa2
1

− 2ΩMα

3ΩR
a1 . (A.7)

A.2. Matter and cosmological constant regime

During this regime the Klein–Gordon equation is

φ̈+ 4H2φ̇+ 2αH2
0

ΩM

a3
2

= −16αH2
0ΩΛ (A.8)

which, written as a function of a2 derivatives, is

dψ

da2
+

4
a2
ψ =

−2αH0

a
5
2
2

√
ΩM + ΩΛa3

2

(
ΩM + 8ΩΛa

2
2

)
. (A.9)

• First, consider a2 � 1:

1

a
5
2
2

√
ΩM + ΩΛa3

2

(
ΩM + 8ΩΛa

2
2

) � √
ΩM

a
5
2
2

. (A.10)

Substituting this equation in (A.9), we have

ψ2(a2) = −4H0

√
ΩMα

5a
3
2
2

+
CH0

a4
2

, (A.11)

where C is an integration constant.
The solution for the field comes from the integral

φ2(a2) = D +
∫
da2 ψ2(a2)

1
a2H2

� D +
∫
da2 ψ2(a2)

1
H0

√
a2

ΩM
, (A.12)

where D is a constant, and (48) and (A.11) have been used. Also, 1/a2H2 was
approximated by its first order in the power expansion, for a2 � 1. After inte-
grating, we have

φ2(a2) = D − 2C

5
√

ΩMa
5
2
2

− 4
5
α ln(a2) . (A.13)

• Now, consider a2 ∼ 1:

1

a
5
2
2

√
ΩM + ΩΛa3

2

(
ΩM + 8ΩΛa

2
2

) � 8ΩΛ + ΩM√
ΩΛ + ΩM

. (A.14)

As above, and making the approximation
1

a2H2
� 1
H0

√
ΩΛ + ΩM

, (A.15)

we obtain the approximate value for the field

φ3(a2) = G− F

3
√

ΩΛ + ΩMa3
2

− α

5(ΩΛ + ΩM)
(8ΩΛ + ΩM)a2

2 , (A.16)

where G and F are constants.
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A.3. Final form for the field

The values we take for the cosmological parameters appearing in the expression of
the fields are H0 = 22.69 × 10−19 s−1; ΩM = 0.28; ΩΛ = 0.716; ΩR = 4.6 × 10−5

(see Ref. 14 for further details).
The values for the integration constants can be found with the parameters above

and with the boundary conditions discussed in Sec. 2. The value for the scale factor
in the intermediate time aI is 0.542. Then,

φ1(a1) = 682.718α+ 57.1142p0 − 6.9539α+ 2.2674p0

a2
1

− 4029.68αa1 , (A.17)

φ2(a2) = −(543.028α+ 224.698p0) + (15241.3α+ 6283.55p0)(a2 − au)

− (297480α+ 122591p0)(a2 − au)2 , (A.18)

φ3(a2) = p0(a2 − a0) − (6.0313α+ 2p0)(a2 − a0)2 , (A.19)

with au = 0.0897 and a0 = 1.
Note that φ2 series is around au = 0.0897, while φ3 series is around a0 = 1.
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