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Casimir energy between media-separated cylinders: The scalar case
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We derive exact expressions for the Casimir scalar interaction energy between media-separated eccentric
dielectric cylinders and for the media-separated cylinder-plane geometry using a mode-summation approach.
Similarly to the electromagnetic Casimir-Lifshitz interaction energy between fluid-separated planar plates, the
force between cylinders is attractive or repulsive depending on the relative values of the permittivities of the three
intervening media.
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I. INTRODUCTION

The sign of van der Waals and Casimir [1] forces between
media-separated plates can be tailored by carefully choosing
the frequency-dependent permittivities of the plates and the
intervening media. For the simplest geometry of two planar
slabs separated by a fluid, the Lifshitz theory [2] predicts
a repulsive force when the permittivity of the fluid is inter-
mediate between those of the two slabs for a large range of
frequencies; otherwise, the force is attractive. Such repulsive
fluctuating forces in fluids have been measured recently [3].
In order to go beyond the simple parallel-plate geometry, sev-
eral approximation methods have been employed, including
the proximity force approximation (PFA) [4], the pairwise
summation approach (PWS) [5], and dilute-limit expansions
[6,7]. Exact approaches have been developed to treat complex
geometries, including semianalytical approaches based on
scattering theory [8–11] and on the mode-summation tech-
nique combined with the Cauchy theorem [12,13]. There are
also fully numerical methods based on Green functions [14],
worldline approaches [15], and the combination of boundary
methods traditionally used to compute eigenvalues of the
Helmholtz equation with the Cauchy theorem in order to
perform the sum over modes [16]. Most of these computations
have been performed for vacuum-separated dielectric or metal-
lic plates. Fluid-separated complex geometries have been the
subject of recent works, including a numerical study of Casimir
repulsive forces and torques between fluid-separated eccentric
cylinders [17] (see also [18] for the analysis of the Casimir
force in a configuration consisting of an object contained inside
a spheroidal cavity filled with a dielectric medium).

Here we derive the exact analytical expression for the
Casimir interaction in media-separated cylindrical configu-
rations, including eccentric cylinders and the cylinder-plane
geometry. For simplicity, we consider in this work the case
of a quantum real scalar field satisfying the usual boundary
conditions at the interfaces. Our approach is a generalization of
our previous work on the electromagnetic Casimir interaction
in cylindrical geometries with perfect reflectors [12] to the
case of dielectric media and is based on the computation of the
Casimir energy as a sum of the zero-point eigenfrequencies of
the three-media geometry. We should note that this approach
requires the notion of real zero-point energies, and therefore

the three media should have negligible absorption in the whole
range of frequencies relevant to the Casimir interaction. The
case of absorbing media can be considered with alternative
techniques [19,20].

II. MODE-SUMMATION APPROACH:
ECCENTRIC CYLINDERS

We consider a massless scalar field φ in the presence of two
parallel, eccentric dielectric cylinders of radii a and b (a < b)
and length L � a,b separated by a fluid. The eccentricity
(i.e., the distance between the centers of the cylinders) will be
denoted by aδ, with δ a dimensionless number. The inner and
outer cylinders have permittivity ε1(ω) and ε3(ω), respectively,
and ε2(ω) is the permittivity of the fluid. In order to enclose
the system in a finite volume, we will include a very large
cylinder of radius R � a,b that is concentric with the outer
cylinder. We will assume that the scalar field satisfies Dirichlet
boundary conditions on the larger cylinder. The limit R → ∞
will be taken at the end of the calculation.

Using the translational symmetry in the z direction, the
solutions of the corresponding Klein-Gordon equation can
be written as φ(r,z,t) = ϕ(r)e−iωt+ikzz, where r = xx̂ + yŷ.
For the region inside the inner cylinder (0 < r < a), it is
convenient to use a polar coordinate system r = (r,θ ) centered
on the inner cylinder. The most general solution for ϕ(r) in this
region is

ϕ(r,θ ) =
∑

n

CnJn(λ1r)einθ , (1)

where Cn are constants to be determined. For the region outside
the cylinder of radius b it is convenient to use a coordinate
system r = (ρ,φ) centered on it. The solution in this region
(b < ρ < R) has the form

ϕ(ρ,φ) =
∑

n

[C̄nJn(λ3ρ) + D̄nH
(1)(λ3ρ)]einφ, (2)

where C̄n and D̄n are constants to be determined. Finally, in
the region between the cylinders where the fluid is located, the
solution is

ϕ(r,θ ) =
∑

n

[
AnJn(λ2r) + BnH

(1)
n (λ2r)

]
einθ , (3)
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written in the (r,θ ) coordinate system, or

ϕ(ρ,φ) =
∑

n

[ĀnJn(λ2ρ) + B̄nH
(1)(λ2ρ)]einφ, (4)

written in the (ρ,φ) coordinate system. In these equations, we
have defined λ2

i = εi(ω)ω2/c2 − k2
z (i = 1,2,3).

Imposing the continuity of the field and its derivative at the
interface between the inner cylinder and the fluid (r = a), one
obtains

CnJn(λ1a) = AnJn(λ2a) + BnH
(1)
n (λ2a),

(5)
λ1CnJ

′
n(λ1a) = λ2

[
AnJ

′
n(λ2a) + BnH

′(1)
n (λ2a)

]
.

Therefore, Bn = −An[Jn(λ2a)/H (1)
n (λ2a)]R(1−2)

n , where

R(1−2)
n = R(1−2)

n (kz,ω) =
1 − λ2

λ1

Jn(λ1a)J ′
n(λ2a)

Jn(λ2a)J ′
n(λ1a)

1 − λ2
λ1

Jn(λ1a)H ′(1)
n (λ2a)

J ′
n(λ1a)H (1)

n (λ2a)

. (6)

Before imposing the boundary conditions at ρ = b, we
consider that, at ρ = R � a,b, the scalar field satisfies the
Dirichlet boundary conditions

C̄nJn(λ3R) + D̄nH
(1)
n (λ3R) = 0. (7)

The final results do not depend on whether we impose
Dirichlet or Neumann boundary conditions at ρ = R. As we
know from previous calculations [12], in order to evaluate
the Casimir energy, it is convenient to rotate to imaginary
frequencies ω → iξ , which implies that, in the above equation,
Jn(λ3R) → In(λ̃3R) and H (1)

n (λ3R) → Kn(λ̃3R), where λ̃i =√
εi(iξ )ξ 2/c2 + k2

z . Taking into account the behavior of the
modified Bessel functions In and Kn for large arguments, it
follows that the coefficients C̄n must vanish when R → ∞. An
equivalent procedure would be, without enclosing the system
in a finite volume, to consider only outgoing waves in Eq. (2),
which amounts to imposing C̄n = 0. Either way, the boundary
conditions at ρ = b have the form

D̄nH
(1)
n (λ3b) = ĀnJn(λ2b) + B̄nH

(1)
n (λ2b),

(8)
λ3

λ2
D̄nH

′(1)
n (λ3b) = ĀnJ

′
n(λ2b) + B̄nH

′(1)
n (λ2b).

It is then possible to find a relationship between B̄n and Ān as
B̄n = −Ān[Jn(λ2b)/H (1)

n (λ2b)]R(2−3)
n , where

R(2−3)
n = R(2−3)

n (kz,ω) =
1 − λ2

λ3

J ′
n(λ2b)H (1)

n (λ3b)

Jn(λ2b)H ′(1)
n (λ3b)

1 − λ2
λ3

H
(1)
n (λ3b)H ′(1)

n (λ2b)
H

′(1)
n (λ3b)H (1)

n (λ2b)

. (9)

The coefficients associated with the solution written with
coordinates centered at the inner cylinder can be related to
those centered at the outer cylinder by the use of the addition
theorem for Bessel functions:

An =
∑
m

ĀmJn−m(λ2aδ),

(10)
Bn =

∑
m

B̄mJn−m(λ2aδ).

Combining equations (5), (8), and (10), one obtains a linear,
homogeneous system of equations. The solution of this system
is nontrivial only if det[M] = 0, where

Mnm =
[

1 − R(1−2)
n

R
(2−3)
n

H (1)
m (λ2b)Jn(λ2a)

Jm(λ2b)H (1)
n (λ2a)

]
Jn−m(λ2aδ). (11)

The interaction energy between the inner (medium 1)
and outer (medium 3) cylinders is given by the sum of the
zero-point eigenenergies that are the solutions to det[M] = 0.
We shall assume that absorption in the media is negligible
and therefore the zero-point eigenfrequencies will be real.
Moreover, as we are enclosing the system in a big cylinder
of radius R, the solutions to det[M] = 0 form a discrete
set ωn(kz), n = 1,2,3, . . . . In order to compute the Casimir
interaction energy, we will use Cauchy’s theorem, which
involves an analytic continuation of the determinant to the
complex plane. As the matrix elements in Eq. (11) are functions
of λi = √

εi(ω)ω2/c2 − k2
z , there will be branch points at

λi = 0. For example, if the permittivities are described using
the plasma model εi(ω) = 1 − ωPi/ω

2, the branch points are
located on the real axis at ωi = ±√

c2k2
z + ω2

Pi
, where ωPi is

the plasma frequency of the medium i. The presence of branch
points is typical for geometries with translational invariance,
even for the case of a single cylinder (see, for instance,
Refs. [21,22]).

The Casimir interaction energy E13 is

E13 = h̄cL

4π

∫ +∞

−∞
dkz

∑
n

[
ωn(kz) − ω∞

n (kz)
]
, (12)

where ω∞
n (kz) are the solutions of detM∞ = 0 with M∞ given

by Eq. (11) with b replaced by b∞ � b.
Let us denote as ωmax the maximum of ω1, ω2, and ω3,

the positions of the branch points. We split the sum over
eigenfrequencies as∑

n

ωn(kz) =
∑

n

ω<
n (kz) +

∑
n

ω>
n (kz), (13)

where ω<
n (ω>

n ) are the eigenfrequencies smaller (bigger) than
ωmax. The sum over ω>

n can be written as
∑

n

ω>
n (kz) = 1

2πi

∮
C

dz z
d

dz
ln[det M], (14)

where C is the contour shown in Fig. 1. The contour C starts
at i∞ goes along the positive imaginary axis to the origin,
circumvents the three branch points, follows the negative
imaginary axis up to −i∞, and closes with a large semi-
circumference.

One can show that the contribution to the integral of
the semi-circumference vanishes. Moreover, the contribution
of the segments above and below the real axis gives the
opposite of the sum over ω<

n (kz). Therefore, we end up with
a representation of the interaction energy as an integral on the
imaginary axis:

E13 = h̄cL

8π2i

∫ ∞

−∞
dkz

∫
dz z

d

dz
ln[det M/det(M∞)]. (15)

From this point onwards, the calculation of the exact
Casimir interaction energy between media-separated material
cylinders proceeds as in the case of vacuum-separated perfectly
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FIG. 1. Integration contour in the complex plane. Dots indicate
the different branch points, where we have set (without loss of
generality) ω1 < ω2 < ω3. Crosses denotes the eigenfrequencies.
There is a branch cut in the interval [−ω3,ω3] on the real axis.

reflecting cylinders [12]. The main difference with that
calculation is the presence of R(1−2)

n and R(2−3)
n , both of which

are equal to unity in the perfectly reflecting case. Following
the same procedure as in [12], the interaction energy can be
written as

E13 = h̄cL

4π2

∫ ∞

−∞
dkz

∫ ∞

0
dξ ln det(I − A), (16)

where the matrix elements of A are

Anp = R̃(1−2)
n

In(λ̃2a)

Kn(λ̃2a)

×
∑
m

Km(λ̃2b)

Im(λ̃2b)

1

R̃
(2−3)
n

In−m(λ̃2aδ)Ip−m(λ̃2aδ). (17)

The functions R̃n are the analytic continuation of the functions
Rn to imaginary frequencies iξ :

R̃(1−2)
n = R(1−2)

n (kz,iξ ) =
1 − λ̃2

λ̃1

In(λ̃1a)I ′
n(λ̃2a)

In(λ̃2a)I ′
n(λ̃1a)

1 − λ̃2

λ̃1

In(λ̃1a)K ′
n(λ̃2a)

I ′
n(λ̃1a)Kn(λ̃2a)

, (18)

and

R̃(2−3)
n = R(2−3)

n (kz,iξ ) =
1 − λ̃2

λ̃3

I ′
n(λ̃2b)Kn(λ̃3b)

In(λ̃2b)K ′
n(λ̃3b)

1 − λ̃2

λ̃3

Kn(λ̃3b)K ′
n(λ̃2b)

K ′
n(λ̃3b)Kn(λ̃2b)

. (19)

In order to derive this result, we enclosed the system into a
large cylinder; alternatively, one can deal with the unbounded
configuration following the approach described in Ref. [21].

A. Attraction-repulsion crossover

In this subsection, we study the condition for the crossover
from attractive to repulsive interaction. For simplicity, we
concentrate on the case of concentric cylinders. In the

particular case of δ = 0, the matrix Anp becomes diagonal
and the Casimir interaction energy reduces to

E13 = h̄cL

4π2

∑
n

∫ ∞

−∞
dkz

∫ ∞

0
dξ

× ln

[
1 − R̃(1−2)

n

R̃
(2−3)
n

In(λ̃2a)

Kn(λ̃2a)

Kn(λ̃2b)

In(λ̃2b)

]
. (20)

We now analyze the signs of R̃(1−2)
n and R̃(2−3)

n as a function
of the three permittivities εi . For the R̃(1−2)

n coefficients, we
rewrite Eq. (18) using the new variables x ≡ λ̃2a and λ̃12 ≡
λ̃1/λ̃2, obtaining

R̃(1−2)
n =

1 − 1
λ̃12

In(λ̃12x)I ′
n(x)

In(x)I ′
n(λ̃12x)

1 − 1
λ̃12

In(λ̃12x)K ′
n(x)

Kn(x)I ′
n(λ̃12x)

. (21)

Since In(x), Kn(x), and I ′
n(x) are always positive for x > 0,

whereas K ′
n(x) is always negative, the denominator in Eq. (21)

is positive. Therefore, the sign of R̃(1−2)
n is determined by the

numerator N , which can be written as

N = 1 − f (x)

f (λ12x)
, (22)

where f (x) = x
I ′
n(x)

In(x) . It is possible to show [23] that f (x)

is an increasing function of x. Therefore, f (x) > f (λ̃12x)
for λ̃12 < 1 and viceversa when λ̃12 > 1. This implies that
R̃(1−2)

n > 0 when ε1 > ε2 (λ̃12 > 1), and R̃(1−2)
n < 0 when

ε1 < ε2 (λ̃12 < 1).
Using a similar argument it is possible to analyze the sign of

R̃(2−3)
n as given by Eq. (19). The numerator is always positive,

and then the sign of R̃(2−3)
n is governed by the denominator D,

which reads

D = 1 − g(λ̃23u)

g(u)
, (23)

where u = λ̃3b, λ̃23 = λ̃2/λ̃3, and g(u) = −u
K ′

n(u)
Kn(u) . As g(u) is

an increasing function, it is easy to check that R̃(2−3)
n < 0 for

ε2 > ε3, and R̃(2−3)
n > 0 for ε2 < ε3.

The sign of the Casimir interaction energy E13 in Eq. (20)
is determined by the sign of the ratio R̃(1−2)

n /R̃(2−3)
n . When this

ratio is positive (negative) the energy is negative (positive).
From the above considerations it follows that for ε1 < ε2 < ε3

(corresponding to R̃(1−2)
n > 0 and R̃(2−3)

n < 0), or for ε1 >

ε2 > ε3 (corresponding to R̃(1−2)
n < 0 and R̃(2−3)

n > 0), the
Casimir pressure is repulsive. For all other cases, the Casimir
pressure is attractive. Strictly speaking, the sign of the energy
is not enough to determine the attractive or repulsive character
of the pressure. However, we have checked by using simple
numerical evaluations that the integrand of Eq. (20) is always
a monotonous function of b.

As we will see in Sec. IV, when the cylinders are eccentric
(δ �= 0), the same conditions imply a repulsive or attractive
force, with the concentric configuration being an equilibrium
situation. When ε1 < ε2 < ε3 or when ε1 > ε2 > ε3 this
equilibrium is stable, and it is unstable in all other situations.
Just as in the case of the electromagnetic Casimir-Lifshitz
interaction between media-separated planar slabs, it is only
necessary that the above mentioned inequalities between
the three different permittivities should hold in the relevant
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range of frequencies in Eq. (20). This frequency range is
determined by the geometrical parameters, particularly by
the minimum distance between the cylinders. In cases where
the three permittivities satisfy the inequalities needed for
repulsion in some frequency range, but violate them in some
other frequency range, the global sign of the force results
from a competition between the different contributions to the
integrand in Eq. (20) (see [17] for further details).

B. Perfect conductivity limit

In this subsection, we study the perfect conducting limit of
the expression for the interaction energy of Eq. (16). For the
scalar field, “perfect conductivity” corresponds to Dirichlet
boundary conditions on the interfaces. These conditions can
be formally achieved for large values of the permittivities ε1

and ε3 of the two cylinders.
Using the asymptotic expansions for In(x), Kn(x), and their

derivatives, it follows that, in the limit λ̃1 → ∞, the function
R̃(1−2)

n takes the form

R̃(1−2)
n ≈ 1 − λ̃2

λ̃1

[
I ′
n(λ̃2a)

In(λ̃2a)
− K ′

n(λ̃2a)

Kn(λ̃2a)

]
. (24)

Similarly, in the limit λ̃3 → ∞, the function R̃(2−3)
m takes the

form

R̃(2−3)
n ≈ 1 + λ̃2

λ̃3

[
I ′
n(λ̃2b)

In(λ̃2b)
− K ′

n(λ̃2b)

Kn(λ̃2b)

]
. (25)

In this perfect conductor (PC) limit, the matrix elements of
A can be written as Anp ≈ APC

np − �Anp, where APC
np are the

matrix elements corresponding to taking the PC limit R̃(1−2)
n =

R̃(2−3)
n = 1 (see [12]), and

�Anp = λ̃2

λ̃1

[
I ′
n(λ̃2a)

In(λ̃2a)
− K ′

n(λ̃2a)

Kn(λ̃2a)

]

× In(λ̃2a)

Kn(λ̃2a)

∑
m

Km(λ̃2b)

Im(λ̃2b)
In−m(λ̃2aδ)Ip−m(λ̃2aδ)

+ λ̃2

λ̃3

In(λ̃2a)

Kn(λ̃2a)

∑
m

[
I ′
m(λ̃2b)

Im(λ̃2b)
− K ′

m(λ̃2b)

Km(λ̃2b)

]

× Km(λ̃2b)

Im(λ̃2b)
In−m(λ̃2aδ)Ip−m(λ̃2aδ). (26)

The Casimir interaction energy is therefore E13 ≈ EPC
13 +

�E13, where

�E13 = −h̄cL

4π2

∫ ∞

−∞
dkz

∫ ∞

0
dξTr

�A
1 − APC

. (27)

In this limit, and assuming that the εi are constants (i.e., no
dispersion), it is possible to obtain the explicit dependence of
the interaction energy �E13 on the three permittivities. The
key point is to note that

�E13 = h̄cL

4π2

∫ ∞

−∞
dkz

∫ ∞

0
dξ

(
1

λ̃1
f1(λ̃2,a,b,δ)

+ 1

λ̃3
f2(λ̃2,a,b,δ)

)
, (28)

for some functions fi . We change variables in the
integral above by introducing polar coordinates (η,ϕ)

in the plane (
√

ε2ξ/c,kz), so that λ̃2 = η and λ̃i =
η
√

(εi/ε2 − 1) cos2 ϕ + 1 for i = 1,3. The integral in ϕ can
be computed explicitly and gives∫ 2π

0

dϕ√
(εi/ε2 − 1) cos2 ϕ + 1

≈
√

ε2

εi

ln

(
εi

ε2

)
, (29)

for ε1,ε3 → ∞. Inserting this result into Eq. (28), we obtain

�E13

L
≈ ln(ε1/ε2)√

ε1
G1(a,b,δ) + ln(ε3/ε2)√

ε3
G2(a,b,δ), (30)

where the functions Gi involve integrals in the radial coordi-
nate η.

In previous works [6], the Casimir energy was evaluated
using dilute-limit expansions. Equation (30) gives the depen-
dence with the permittivities in the opposite limit. The result
shows that the convergence to the case of perfect conductivity
is rather slow.

III. CYLINDER-PLANE GEOMETRY

In the case of perfect conductors, we have shown in [12] that
the cylinder-plane configuration is contained as a particular
case of the exact formula for eccentric cylinders. In this
section, we obtain the matrix elements for the cylinder-plane
configuration from the media-separated cylinders Eqs. (16)
and (17). As in [12], let us consider a cylinder of radius a above
an infinite plane. The permittivities are ε1 inside the cylinder, ε2

between the cylinder and the plane, and ε3 in the region below
the plane. Let us denote by H the distance between the center
of the cylinder and the plane. The expression for the interaction
energy in the media-separated cylinder-plane geometry can be
obtained from the eccentric cylinders’ formula Eq. (16) by
taking the limit b/a, δ → ∞ and keeping H/a = b/a − δ

fixed. Using the asymptotic limit of the Bessel functions, it is
possible to show that the coefficient R̃(2−3)

n → λ̃3+λ̃2

λ̃3−λ̃2
, so it can

be taken outside the sum in Eq. (17). After this, and making use
of the uniform expansion and the addition theorem of Bessel
functions, it can be also shown that [12]

∑
m

Km(y + l)

Im(y + l)
Im−n(y)Im−p(y)

≈
∑
m

Km(y + l)Im−p−n(y − l) = Kn+p(2l), (31)

in the limit y → ∞. Finally, the expression for the matrix
elements in the cylinder-plane geometry is given by

Acp
np = R̃(1−2)

n

λ̃3 − λ̃2

λ̃3 + λ̃2

In(λ̃2a)

Kn(λ̃2a)
Kn+p(2λ̃2H ). (32)

This generalizes the result of [24] for a vacuum-separated, per-
fectly conducting cylinder-plane to the three-media cylinder-
plane geometry.

The sign of the Casimir interaction energy for the cylinder-
plane geometry is ruled by the signs of R̃(1−2)

n and (λ̃3 − λ̃2)/
(λ̃3 + λ̃2). The attractive-repulsive character of the force
depends on the relative values of ε1, ε2, and ε3, in the same
way as for the eccentric cylinders.

The dependence of the Casimir energy on the permittivities
in the perfect conductivity limit can also be derived from
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Eq. (32). The procedure is similar to the one used to obtain
Eq. (30), so we only quote the final result:

�E
cp
13

L
≈ ln(ε1/ε2)√

ε1
G

cp
1 (a,d) + ln(ε3/ε2)√

ε3
G

cp
2 (a,d), (33)

for some functions G
cp
i . In the next section, we will provide

numerical evaluations that confirm this behavior.

IV. NUMERICAL EVALUATIONS

In this section, we show numerical results for the Casimir
interaction energy between eccentric media-separated cylin-
ders and a cylinder in front of an infinite plane. For sim-
plicity, we consider the dispersionless case in which εi are
constants.

The value of the Casimir interaction energy is obtained by
the numerical evaluation of Eq. (16) through the use of the
different definitions of the matrix elements Anp depending
upon the geometry considered [Eqs. (18) and (32)]. We
numerically compute the Casimir interaction energy using a
FORTRAN program which defines the matrix elements of A,
computes the corresponding eigenvalues. and finally performs
the frequency and wave-vector integrations. The parameters
used by the program are the dimension of the M matrix,
the number of addends corresponding to each element of the
M matrix, the integration limits kzmax and ξmax, and the desired
precision. In the following, we show the numerical results
obtained.

Figure 2 shows the interaction-energy difference between
the eccentric and concentric configurations as a function of the
dimensionless eccentricity δ. There are two sets of parameters
used, namely for α = b/a = 2.0 and α = 2.5. We have used
ε1 = 2, ε2 = 5, and ε3 = 50 in all cases, varying the relative
order among them: ε1 < ε2 < ε3 and ε1 > ε2 > ε3 for the
positive curves, while ε1 < ε2, ε3 < ε2 and ε1 > ε2, ε3 > ε2

for the negative ones. The plot clearly shows the change of the
sign of the energy depending on the relative order among the
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FIG. 2. (Color online) Exact Casimir interaction-energy differ-
ence between the eccentric and concentric configurations as a function
of δ for different values of α = b/a. Curves with circles correspond
to α = 2.0, while those without circles correspond to α = 2.5. In all
cases ε1 = 2, ε2 = 5, and ε3 = 50, ordered as indicated in the legend.
Energy is plotted in units of h̄cL.
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FIG. 3. (Color online) Exact Casimir interaction energy for the
cylinder-plane configuration as a function of the minimum distance
between the cylinder and the plane. In the upper curves, we show
the energy for the cases in which ε1 < ε2 < ε3 or ε1 > ε2 > ε3, and
the force is repulsive. The opposite case is shown in the lower part
of the plot. In these cases ε1 > ε2, ε3 > ε2 or ε1 < ε2, ε3 < ε2, and
therefore the force is attractive. Energy is plotted in units of h̄cL.

dielectric constants, and also the unstable or stable equilibrium
position at the concentric configuration.

In order to analyze the dependence of the sign of the force
in the cylinder-plane geometry on the relation between ε1,
ε2, and ε3, we show in Fig. 3 the exact Casimir interaction
energy as a function of the minimum distance between the
cylinder and the plane d = H − a. Again, we plot different
orderings of the dielectric constants. It is easy to note that, for
a decreasing or increasing ordering of the dielectric constants,
we get a repulsive force, whereas in any other case the force
is attractive.

Finally, in Fig. 4 we numerically check Eq. (33) with ε3 →
∞. In this plot we show the difference between the interaction
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FIG. 4. (Color online) Exact Casimir interaction-energy differ-
ence between the dielectric cylinder-plane and the perfect conductor
configurations. As can be seen in Eq. (33), the convergence to the
perfect conductors’ case is ruled by a ln ε1/

√
ε1 coefficient, making

it slower than is naively expected from a simple 1/ε1 decay. In this
plot, we have set ε2 = 1. Energy is plotted in units of h̄cL.
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energy for the scalar dielectric example and for the perfectly
conducting case, as a function of ln ε1/

√
ε1 (different values

of the distance to the plane are considered).

V. CONCLUSIONS

We have derived the exact expression for the scalar Casimir
interaction energy between media-separated eccentric cylin-
ders, and obtained the cylinder-plane result as a particular case.
In analogy with the well-known electromagnetic Casimir-
Lifshitz interaction energy between fluid-separated planes, our
results show that the force in the two non-planar geometries
studied can be repulsive or attractive depending on the relative
strength of the permittivities of the three intervening media
over a broad range of frequencies. We have presented both
analytical and numerical calculations to prove that this is
indeed the case regardless the value of the radii of the cylinders
and of the eccentricity.

We have considered the case of a quantum scalar field.
The analogous calculation for the full electromagnetic field
is much more involved. The reason is that, unlike the case
of perfect reflectors, TE and TM modes do not decouple
for finite values of the permittivities, and this fact introduces
algebraic complications in the derivation of the exact formula
presented in Sec. II. We expect to analyze this issue in a future
publication.
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