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a b s t r a c t

The maximum asymptotic bias of an estimator is a global robustness measure of
its performance. The projection median estimator for multivariate location shows a
remarkable behavior regarding asymptotic bias. In this paperwe consider amodification of
the projection median estimator which renders an estimate with better bias performance
for point mass contaminations (the worst situation for the projection median estimator).
Moreover, it achieves the lowest bound for an equivariant estimate for point mass
contaminations.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The seminal paper by Huber [1] highlights the median as the most bias robust estimator in the location model since
it minimizes the asymptotic bias among the class of translation equivariant estimators. Several proposals tried to extend
the median for multidimensional data. A remarkable attempt in this direction is the paper by Tukey [2], who introduces
the concept of depth in the multivariate data cloud and the deepest point according to that definition is known as Tukey’s
median. Stahel [3] and Donoho [4] introduce projection depth based weighted means which are extremely competitive
regarding bias (see Zuo et al. [5] for a detailed account). Zuo and Serfling [6] also give a deep insight into the concept of depth.
A good measure of the robustness of an estimate is the maximum bias, which is the maximum asymptotic bias of the

estimate caused by a given fraction of contamination. Other measures used to summarize the robustness performance of an
estimate, such as the breakdown point (see Hampel [7]) and the gross error sensitivity (see Hampel [8]), can be derived
from the maximum bias. Riedel [9] and He and Simpson [10] find lower bounds for the maximum bias of equivariant
estimates. Adrover and Yohai [11] derive explicitly this lower bound for the case of elliptical distribution and show that
the projection median proposed in Tyler [12] has a maximum bias which is approximately twice this lower bound for small
levels of contaminations. Zuo et al. [5] derive themaximum bias of the projectionmedian under weaker assumptions on the
underlying model and the maximum bias of projection based weighted means in the case of point mass contaminations.
In this paper we consider a modification in the definition of the projectionmedian estimate which has minimax bias, i.e.,

its maximum bias (maxbias) function attains the mentioned lower bound for point mass contaminations for an important
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range of level of contaminations. The basic idea common to the different projection based estimates (P-estimates) is to
transform, by means of projections, a multivariate problem into the corresponding univariate problem, which is dealt with
using univariate estimates. We define the functional form of the P-estimate TP as follows. Let T and S be location and
dispersion univariate estimating functionals, i.e., if y∗ = ay+ b and a, b ∈ R then

T (D(y∗)) = aT (D(y))+ b, S(D(y∗)) = |a|S(D(y)), (1)
whereD(x) denotes the distribution of x. The P-estimate approach relies on the idea that ζ ∈ Rp is a good center of the data,
if for any direction a ∈ Rp, the univariate projected set a′(X− ζ) is well centered around 0. Then, a standardized measure of
how wrongly centered is X− ζ, is given by

v(ζ, F) = sup
a6=0
|h(ζ, a, F)| , (2)

where

h(ζ, a, F) =
T (D(a′(X− ζ)))
S(D(a′X))

. (3)

An ideal center for a distribution F would be a value ζ such that v(ζ, F) = 0, i.e., such that all the projected vectors are
perfectly centered for any direction a. But in general, for an arbitrary distribution, such a vector ζ does not exist. Then the
functional version of the P-estimate of multivariate location defined by Tyler [12] is given by

TP(F) = argmin
ζ∈Rp

v(ζ, F). (4)

In the rest of the paperwewill take as T themedian (med) and as S themedian absolute deviation around themedian (MAD).
The corresponding projection estimate TP will be called TMP . It may occur that for some a 6= 0we have S(D(a′X)) = 0. This
may happen, at least in the case that S is the MAD, if X lies with probability at least 0.5 in a hyperplane of the form a′X = b,
where a =(a1, . . . , ap)′. This implies that any affine equivariant location estimate T = (T1, . . . , Tp)′ with breakdown point
0.5 should lie in the same hyperplane too, see Section 6.2.2 of Maronna et al. [13]. Therefore. in this case we can delete any
component Xi of X such that ai 6= 0, and estimate the location of the corresponding (p− 1)-dimensional observations. If in
the (p − 1)-dimensional space all the linear combinations have a scale different from 0, we can define Tj for j 6= i, by (4),
and then set Ti = −

∑
j6=i ajTj/ai. In case that in the (p− 1)-dimensional space there are still linear combinations with scale

equal to zero we eliminate another variable. We continue reducing the dimension of the problem in this way until all linear
combinations have scale different from zero.
Tyler [12] shows that the P-estimates of multivariate location have a finite sample breakdown point close to 0.5, as long

as the corresponding univariate estimates of location and dispersion also have this property. It is also shown that they are
affine equivariant. The

√
n-rate of convergence and the non-normal asymptotic distribution of the P-estimates are analyzed

by Kim and Hwang [14] and Zuo [15].
In other words, we can say that the TMP estimate is the point in Rp such that when the data are centered around this

point, weminimize themaximum absolute value of the standardizedmedianwhen the centered data are projected along all
directions. The new estimator is defined using a similar idea, but, instead of minimizing the maximum absolute value of the
standardized median we propose to minimize the maximum difference between the standardized medians corresponding
to projecting the centered data along two arbitrary directions. An interesting property of the new proposal is that it will
capture a desirable property of the centered data: The median should not change too much when the centered data are
projected in different directions.
For the definition of the modified projection estimate we need the following concepts. Given any vector a =

(a1, . . . , ap)′ ∈ Rp − {0}, the corresponding half-space L(a) through the origin is defined by

L(a) = {x ∈ Rp : a′x ≥ 0}. (5)
If it is clear enough from the context we will simply write L instead of L(a) and the set of all half-spaces is denoted by L.
Next, we define a newmeasure to assess the outlyingness of a point ζ. Given ζ ∈ Rp, L ∈ L and a distribution F in Rp, define

V (ζ, L, F) = sup
a∈Sp−1∩L

h(ζ, a, F)− inf
a∈Sp−1∩L

h(ζ, a, F), (6)

where Sp−1 = {a ∈ Rp : ‖a‖ = 1}. Then the modified projection estimate is defined by

TMMP(F) = argmin
ζ∈Rp

inf
L∈L
V (ζ, L, F). (7)

V (ζ, L, F) measures the maximum difference between the standardized medians of two projections of the data centered
around ζ,when both directions are in the half-space L. Note that h(ζ, a, F) = −h(ζ,−a, F) and therefore, if instead of taking
the two directions in the same half-space we would consider all the differences between two arbitrary directions in Sp−1,
we would obtain the same outlyingness measure v(ζ, F) given in (2) which was used to define the projection estimate TMP .
In Section 2 we state the main results concerning the optimal bias behavior of the TMMP estimate. Section 3 gives an

algorithm to compute an approximate version of the estimate. Section 4 contains simulation studies comparing the efficiency
performance for the newproposal and some competitors including the P-estimator. Section 5 is an Appendixwith the proofs.
For shortness sake, some of the proofs are omitted here and can be found in a Technical Report by Adrover and Yohai [16]
available on the Web.
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2. Bias performance of the modified P-estimate

In the multivariate location model we observe a p-dimensional random vector X = (X1, . . . , Xp)′ with distribution
Fµ(x) = F0(x − µ), where F0 is symmetric around 0, i.e., if X has distribution F0, then −X also has distribution F0. An
important case is the family of elliptical distributions. We say that X has an elliptical distribution if it has a density of the
form

f (x,µ,Σ) =
1

(detΣ)1/2
f0((x− µ)′Σ−1(x− µ)), (8)

where f0 : R+ → R+, andΣ is a p×p positive definitematrix. IfX has a density f (x, 0, I), then a′X has the same distribution
for all a ∈ Sp−1 = {a ∈ Rp : ‖a‖ = 1}. This common distribution will be denoted by H0 and its density by h0.
All multivariate location estimating functionals T considered in this paper are affine equivariant, i.e., given a p × p

nonsingular matrix A and b ∈ Rp,

T(D(AX+ b)) = AT(D(x))+ b. (9)

It is immediate to show that the modified P-estimate introduced in Section 1 is affine equivariant.
An estimating functional T is Fisher consistent if T(Fµ) = µ. In the next Theorem we state the Fisher consistency of the

estimate TMMP defined by (7) for elliptical families,

Theorem 1. Let X be a random vector with elliptical density given by (8). Then, TMMP is Fisher consistent estimating functional of
µ.

To study the robustness property of the multivariate location estimate we will consider contamination neighborhoods of
the target distribution. Given a fraction of contamination ε > 0, the corresponding contamination neighborhood of Fµ is
defined by

Vε(Fµ) = {F = (1− ε)Fµ + εF∗ : F∗ any distribution on Rp}.

All estimates studied here are defined by means of a functional on a subset F of the space of all the distributions on Rp. We
will assume that F contains the empirical distributions, all distributions belonging to Vε(Fµ), and that it is closed under
affine transformations. If x1, . . . , xn is a random sample from some distribution F and T is a continuous functional in the
sense of weak convergence, then T(F) is the a.s. limit value of Tn(x1, . . . , xn). Then it is natural to require that an estimating
functional T have the Fisher consistency property: T(Fµ) = µ. In general, given F ∈ Vε(Fµ) we will have T(F) 6= µ. Then,
we define the asymptotic bias of T in F by

b(T, F ,µ) = ((T(F)− µ)′Λ(Fµ)−1(T(F)− µ))1/2, (10)

whereΛ is an affine equivariant scatter functional. Themaximumasymptotic bias of an estimating functional T for a fraction
of contamination ε is defined by

B(T, ε, Fµ) = sup
F∈Vε(Fµ)

b(T, F ,µ). (11)

The inclusion of the scatter matrixΛ(F0) in (10) yields a definition of maximum asymptotic bias which is invariant by affine
transformations when applied to an equivariant functional. Therefore, if the functional T is affine equivariant, themaximum
bias does not depend onµ, i.e., B(T, ε, Fµ) = B(T, ε, F0). In the elliptical case, wewill assume that the scatter matrixΛ used
in (10) is Fisher consistent for the shape of Σ, i.e., Λ(Fµ) = λΣ, where λ is an scalar. In this case, if T is affine equivariant
then the maximum bias is also independent ofΣ .
He and Simpson [10] introduced the contamination sensitivity of an estimate T as

γ (T, Fµ) =
∂B(T, ε, Fµ)

∂ε

∣∣∣∣
ε=0
.

Observe that γ (T, Fµ) = γ (T, F0) because of the invariance of the bias. For small ε, the maximum bias can be approximated
by

B(T, ε, Fµ) ≈ εγ (T, Fµ). (12)

The contamination sensitivity γ (T, Fµ) is closely related to the gross error sensitivity γ ∗(T, Fµ) defined in Hampel [7]. In fact,
it is easy to show that always

γ (T, Fµ) ≥ γ ∗(T, Fµ),

where

γ ∗(T, Fµ) = sup
c∈Rp

∥∥∥∥limε→0 T((1− ε)Fµ + εδc)− T(Fµ)
ε

∥∥∥∥ ,
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and δc stands for a point mass contamination at c. Under very general regularity conditions γ ∗(T, Fµ) = γ (T, Fµ). Another
relevant concept associated with the maximum bias is the asymptotic breakdown point which measures the least level of
contamination for which the bias is unbounded and then noninformative. More precisely,

ε∗(T, Fµ) = arg inf{ε > 0 : B(T, ε, Fµ) = ∞}.
In many situations B(T, ε, Fµ) is extremely difficult to be calculated while ε∗(T, Fµ) is much easier to handle since the
definition does not rely on the actual form of B(T, ε, Fµ).
Huber [1] proved that if L0 is a univariate symmetric distribution with unimodal density l0 and Lµ(x) = L0(x − µ), the

median estimating functional TM is minimax among the translation equivariant estimates, i.e., if T is another translation
equivariant estimating functional, then

B(T , ε, Lµ) ≥ B(TM , ε, Lµ) = L−10

(
1

2(1− ε)

)
= d1(ε, L0). (13)

He and Simpson [10] obtained a lower bound for the maximum bias of equivariant estimates. Using this result Adrover and
Yohai [11] proved that d1(ε,H0) is a lower bound for any equivariantmultivariate location estimatorwhen the centralmodel
is elliptical, with H0 the univariate marginal distribution for µ = 0 and Σ = I . More precisely, if X has a distribution with
density given by (8), where f0 is nonincreasing, then, for any affine equivariant estimate T of multivariate location we have

B(T, ε, Fµ) ≥ d1(ε,H0) (14)

and

γ ∗(T, Fµ) ≥
1

2h0(0)
. (15)

A restricted neighborhood of Vε(F) of special importance is defined to be

VRε (Fµ) = {(1− ε)Fµ + εδc, c ∈ R
p
}. (16)

Analogously, we can have a maximum bias function restricted to this set,

BR(T, ε, Fµ) = sup
G∈VRε (Fµ)

b(T,G,µ).

Actually, in most of the cases B(T, ε, Fµ) = BR(T, ε, Fµ).
Similarly we can define the restricted contamination sensitivity of an estimate T as

γ R(T, Fµ) =
∂BR(T, ε, Fµ)

∂ε

∣∣∣∣
ε=0
.

If f0 in (8) is a decreasing function, it can be proved (see Adrover and Yohai [11] and Zuo et al. [5]) that

B(TMP , ε, Fµ) = BR(TMP , ε, Fµ).

To give the expression for the maxbias of TMP and TMMP we need to introduce the following notation:

m1(c) = argmin
{
d : P(|X − c| ≤ d) ≥

1− 2ε
2(1− ε)

}
, (17)

m2(c) = argmin
{
d : P(|X − c| ≤ d) ≥

1
2(1− ε)

}
and

k(c) =
c

m1(c)
. (18)

Moreover, put

d1 = H−10

(
1

2(1− ε)

)
,

d0 = sup
c∈[0,d1]

k(c),

d2 = m2(d1)

and

d3 = m1(d1).

Adrover and Yohai [11] show that the maxbias of TMP is given by
B(TMP , ε, Fµ) = d1 + d0d2. (19)
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Table 1
Maximum biases for ε = 0.05 and ε = 0.10.

p ε = 0.05 ε = 0.10
Estimator Estimator
SD0 SD90 MVE MCD MP MPM SD0 SD90 MVE MCD MP MPM

2 0.08 0.13 0.39 0.28 0.14 0.066 0.16 0.29 0.62 0.54 0.32 0.14
3 0.09 0.15 0.39 0.31 0.14 0.066 0.20 0.33 0.69 0.65 0.32 0.14
4 0.12 0.19 0.39 0.34 0.14 0.066 0.27 0.44 0.72 0.79 0.32 0.14
5 0.16 0.22 0.39 0.37 0.14 0.066 0.36 0.52 0.73 0.93 0.32 0.14
6 0.20 0.25 0.39 0.41 0.14 0.066 0.48 0.61 0.74 1.09 0.32 0.14
7 0.25 0.30 0.39 0.44 0.14 0.066 0.62 0.72 0.75 1.28 0.32 0.14
8 0.31 0.35 0.39 0.48 0.14 0.066 0.76 0.84 0.75 1.48 0.32 0.14
9 0.37 0.40 0.39 0.52 0.14 0.066 0.89 0.95 0.75 1.70 0.32 0.14
10 0.42 0.44 0.39 0.56 0.14 0.066 1.02 1.07 0.75 1.96 0.32 0.14
15 0.71 0.72 0.39 0.78 0.14 0.066 1.75 1.75 0.76 3.85 0.32 0.14
20 1.01 1.01 0.39 1.12 0.14 0.066 2.47 2.47 0.77 7.00 0.32 0.14

Remark 1. When k(x) is non-decreasing for x ∈ [0, d1], it turns out that d0 = d1/d3. If X is multivariate normal, then
H0 is N(0, 1). Numerical computations show that in this case k(x) is increasing for x ≤ d1 provided ε < 0.4088, and
B(TMP , ε, F0) = d1(1+ d2/d3). If ε > 0.4088, then ∂k(x, ε)/∂x|x=d1 < 0 and the maxbias is given by (19).

Theorem 2 below shows that TMMP , as its original counterpart TMP , also reaches the maximal breakdown point for an
equivariant estimator.

Theorem 2. The asymptotic breakdown point of TMMP is ε
∗(TMMP , Fµ) = 0.5.

To get a deeper insight into the robust behavior of themodified PMestimate, the following result gives the restrictedmaxbias
curve of TMMP .

Theorem 3. Let Fµ with density given by (8) and f0 decreasing. Assume that Λ(Fµ) = Σ . Then,
(i) The maximum bias of TMMP restricted to contaminations in the neighborhood VRε (Fµ) is given by

BR(TMMP , ε, Fµ) =
{
d1 if d2(d0 − 1) < d1
d0d2 if d2(d0 − 1) ≥ d1.

(ii) There exists ε0 > 0 such that d2(d0 − 1) < d1 holds for ε < ε0. Therefore TMMP is bias minimax for ε < ε0 for the restricted
neighborhood.

(iii) The restricted contamination sensitivity is

γ R(TMMP , ε, Fµ) =
∂d1(ε)
∂ε

∣∣∣∣
ε=0
,

which is the lowest bound attainable.

Remark 2. In the normal case the condition d2(d1−d3) < d1d3 holds provided ε < 0.3144 and therefore the lowest bound
for maximum bias is attainable. It is worth noticing that even when ε > 0.3144 the maximum bias of TMMP is smaller than
the bias of TMP and according to the expression given in Theorem 3 (i) and (19) the difference between both is d1.

In Tables 1 and 2 we compare the maximum biases for pointwise contamination of the estimates TMMP (MPM), TMP (MP), the
minimum volume ellipsoid (MVE), the minimum covariance determinant (MCD) and two Stahel–Donoho estimates (SD0
and SD90). The Stahel–Donoho estimates are of the form

µ̂ =

n∑
i=1
w(ν(xi, Fn))xi

n∑
i=1
w(ν(xi, Fn))

, (20)

where Fn is the empirical distribution, ν is defined in (2), the weight functionw is equal tow(u) = 1/u for SD0 and

w(u) = min
(
1
u
,
1
c

)
and c =

(
χ20.90,p

)1/2, where χ2α,p is the α-quantile of the χ2-distribution with p degrees of freedom for SD90. We have also
tried other intermediate values of c , and the maximum biases in all cases were an increasing function of c.
The values for MVE, MCD, SD0 and SD90 were taken from Tables 1 and 2 from [11]. We note that the new estimate MPM

outperforms all the other estimates for all values of p and ε. When p increases, the advantage of the MPM estimate becomes
more notorious.
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Table 2
Maximum biases for ε = 0.15 and ε = 0.20.

p ε = 0.15 ε = 0.20
Estimator Estimator
SD0 SD90 MVE MCD MP MPM SD0 SD90 MVE MCD MP MPM

2 0.27 0.51 0.91 0.90 0.56 0.23 0.40 0.81 1.29 1.49 0.90 0.32
3 0.36 0.56 1.03 1.20 0.56 0.23 0.57 0.98 1.48 2.22 0.90 0.32
4 0.48 0.79 1.08 1.58 0.56 0.23 0.84 1.31 1.57 3.19 0.90 0.32
5 0.67 0.95 1.12 2.04 0.56 0.23 1.18 1.59 1.65 4.46 0.90 0.32
6 0.90 1.14 1.14 2.58 0.56 0.23 1.58 1.91 1.71 6.17 0.90 0.32
7 1.13 1.33 1.16 3.23 0.56 0.23 1.98 2.25 1.78 8.53 0.90 0.32
8 1.41 1.54 1.18 4.07 0.56 0.23 2.44 2.62 1.84 11.69 0.90 0.32
9 1.67 1.77 1.20 5.05 0.56 0.23 2.91 3.02 1.90 15.92 0.90 0.32
10 1.91 1.99 1.22 6.28 0.56 0.23 3.41 3.48 1.97 21.68 0.90 0.32
15 3.27 3.28 1.31 18.00 0.56 0.23 5.76 5.77 2.30 116.8 0.90 0.32
20 4.63 4.63 1.41 49.92 0.56 0.23 8.12 8.11 2.65 412.0 0.90 0.32

3. Computing algorithm

We compute an approximate modified MP estimate as follows. Consider a sample x1, . . . , xn in Rp. First, we compute the
approximate outlyingness vn(xi) for each observation of the sample as in Section 4.1 of [17]. According to (4), the location
MP estimate is the value in Rp with the smallest outlyingness. A set of candidates to minimize the outlyingness is generated
as follows. We drawM random subsamples J of size p+1 from the set {1, . . . , n} and we compute the mean and covariance
matrix for those subsamplesµJ = avei∈J(xi) andΣJ = avei∈J(xi−µJ)′(xi−µJ), where ave stands for average. Let h = [n/2].
We perform two concentration steps as proposed by Rousseeuw and Van Driessen [18]. The concentration steps are as

follows: given the Mahalanobis distances di(µJ ,ΣJ) =
√
(xi − µJ)Σ

−1
J (xi − µJ)′, i = 1, . . . , n we construct a h-subset by

sorting the Mahalanobis distances
d1:n(µJ ,ΣJ) ≤ d2:n(µJ ,ΣJ) ≤ · · · ≤ dṅ:n(µJ ,ΣJ)

and keeping the indexes H1 = H1(J) = {π1(1), . . . , π1(h)}, with π1 the permutation which gives the ordered sample
di:n(µJ ,ΣJ) = dπ(i)(µJ ,ΣJ). Thenwe computeµH1 = avei∈H1(xi) andΣH1 = avei∈H1(xi−µH1)

′(xi−µH1). Next, we carry out
another concentration step by computing the Mahalanobis distances di(µH1 ,ΣH1), i = 1, . . . , n and we get another subset
H2 = H2(J) = {π2(1), . . . , π2(h)} through the ordered sample di:n(µH1 ,ΣH1) = dπ(i)(µH1 ,ΣH1), i = 1, . . . , n, where π2 is
the permutation which gives the ordered sample. The resulting mean is µH2 = avei∈H2(xi). Then the set ofM candidates to
minimize themodified outlyingness is given by U = {µH2(J) : J a random subsample}. We considerM(M−1)/2 half-spaces
generated as L(µ1,µ2) = {x : (µ1 − µ2)′x ≥ 0}, with, µ1 6= µ2,µ1 and µ2 in U . The set of directions A = {a1, . . . , aN}
is generated through a random sample {a1, . . . , aN} from a multivariate normal distribution Np(0, I). Then, an approximate
MP estimate µ̂n and an approximate modified MP estimate µ̂

M
n are computed through the following scheme:

hn(µ, a) =
med1≤i≤n(a′(xi − µ))

med1≤i≤n|a′xi −med1≤j≤n(a′xj)|
, a ∈ A,µ ∈ U

νn(µ) = max
a∈A
|hn(µ, a)| , µ ∈ U

Vn(µ,µ1,µ2) = max
a∈L(µ1,µ2)∩A

hn(µ, a)− min
a∈L(µ1,µ2)∩A

hn(µ, a)

µ̂n = argmin
µ∈U

νn(µ)

µ̂Mn = arg min
µ∈U,µ1∈U,µ2∈U

Vn(µ,µ1,µ2).

The sample mean was also included in the set of candidates to improve the efficiency of the estimate. There are some small
differences between the efficiencies computed in Adrover and Yohai [11] since the approximate algorithmused in this paper
differs from the procedure in [11].

4. Monte Carlo efficiencies

Weperform aMonte Carlo study to compare the efficiencies undermultivariate normal distribution for finite sample size
of the estimates considered in Sections 2 and 3. Since all the estimates are equivariant we consider without loss of generality
only the case of zero mean and identity covariance matrix. We also include in this study the sample mean which is optimal
in the normal case. We take p = 2–10, 15 and 20. The sample size nwas chosen as equal to 100. The number of replications
was 500. For each estimate Twe compute the mean square error (MSE) defined by

1
500

500∑
i=1

‖Ti‖2,
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Table 3
MSE of the Mean and Relative Efficiencies (RE) of robust estimates for the Gaussian Distribution and n = 100.

p MEAN SD0 SD90 MVE MCD MP MPM

MSE RE RE RE RE RE RE

2 0.019 0.80 0.97 0.17 0.20 0.72 0.64
3 0.030 0.83 0.98 0.14 0.22 0.77 0.75
4 0.039 0.89 0.98 0.13 0.28 0.76 0.75
5 0.049 0.89 0.98 0.13 0.30 0.77 0.78
6 0.058 0.91 0.98 0.13 0.32 0.76 0.78
7 0.069 0.91 0.98 0.13 0.34 0.79 0.77
8 0.081 0.92 0.99 0.13 0.35 0.83 0.78
9 0.090 0.93 0.99 0.13 0.38 0.82 0.79
10 0.099 0.94 0.99 0.14 0.39 0.86 0.80
15 0.148 0.95 0.99 0.18 0.43 0.94 0.81
20 0.203 0.95 0.99 0.22 0.45 0.97 0.84

where Ti is the value of the estimate for the ith sample. To compute the TMP and the TMMP estimators we use the algorithm
described in Section 3 withM = 500 and N = 500.
In Table 3 we show the MSE of the mean and the relative efficiencies with respect to the mean of SD0, SD90, MVE, MCD,

MP and MPM for different values of p. The results for the estimates SD0, SD90, MVE and MCD were taken from Table 4
of [11]. The most efficient estimates are both SD estimates followed by the MP estimate. The new proposal MPM ranks a
little less efficient than the MP estimate but much more efficient than MVE and MCD estimates. The MVE estimate was
computed using subsampling as explained as in Subsection 6.7.3 of Maronna et al. [13]. To compute SD0 and SD90, ν(xi, Fn)
in (20) was approximated using 500 directions. Each of these directions is orthogonal to the hyperplane determined by a
random subsample of size p. The MCD estimate was computed using the fast algorithm proposed in Rousseeuw and Van
Driessen [18] with 500 subsamples and two concentration steps.

5. Concluding remarks

A modification of the projection based estimators introduced by Tyler [12] was considered. We show that this new
estimator is biasminimax in the restricted neighborhood of pointmass contaminations for a range [0, ε0], ε0 > 0 of levels of
contaminations. The value ε0 depends on the central distribution and it is equal to 0.3044 in the normal case. Evenwe cannot
prove that this estimate is bias minimax in the subset [ε0, 0.5), it has smaller bias than any other known robust estimate
including the projection estimate. Themain shortcoming of the new estimate is its computational complexity. Nevertheless,
we describe an algorithm based on subsampling which seems to be at the present the best computational approximation to
our proposal.
Themultivariate problemusually requires the estimation of a center of the data and a scattermatrix. Projection estimates

allow for the estimation of the location without using any dispersion matrix. With the help of this estimator we can have a
better center of the data and in this way a more accurate estimation of the dispersion matrix can be performed.
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Appendix

Because of the affine equivariance of the P-estimate, without loss of generality we will assume in this Appendix that
the true parameters are µ = 0 and Σ = I . We need some notation and definitions to deal with the proofs of the main
results. e1, . . . , ep will denote the canonical basis in Rp, that is ej stands for the vector with a 1 in the jth coordinate and 0’s
elsewhere. Given a set A ⊂ Rp and γ ∈ Rp,we define

A− γ = {b ∈ Rp : b+ γ ∈ A},
−A = {b ∈ Rp : −b ∈ A},
A⊥ = {n ∈ Rp : a′n = 0 for all a ∈ A}.

When A = {a}we will denote a⊥ = {a}⊥. The set of affine subspaces is denoted by

P = {l = a⊥ + v : a ∈ Rp, a 6= 0, v ∈ Rp}.

Given the ball B(0, d1) its boundary is denoted by C(0, d1). Let d(Q , v) be the Euclidean distance from the point v to the
subset Q . Let d > 0 and l ∈ P such that 0 6∈ l, then

T (d) = {π ∈ P : d(π, 0) ≤ d},
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Tb(d) = {π ∈ P : d(π, 0) = d},

Ql(d) =
{
v ∈ Rp : v = d

(1− θ)a+ θb
‖(1− θ)a+ θb‖

, a, b ∈ l ∩ Sp−1, 0 ≤ θ ≤ 1
}
.

We next show the Fisher consistency and the breakdown point of the MP-estimator TMMP .

Proof of Theorem 1. Without loss of generality we can assume that F0 is spherically symmetric around 0. Suppose first
ζ = 0. Since h(ζ, a, F0) = 0, then, for any half-space Lwe have

V (ζ, L, F0) = sup
a∈Sp−1∩L

h(ζ, a, F0)− inf
a∈Sp−1∩L

h(ζ, a, F0) = 0.

We show now that given ζ 6= 0,we obtain minL∈L V (ζ, L, F0) > 0. In fact, we have

medF0(a
′(X− ζ))

MADF0(a′X)
= −

a′ζ
MADF0(a′X)

= −ca′ζ,

since MADF (a′X) is constant for any a ∈ Sp−1. Then there exists 0 ≤ φ0 ≤ π/2 such that

V (ζ, L, F0) = c

[
sup

a∈Sp−1∩L
a′ζ − inf

a∈Sp−1∩L
a′ζ

]

=

{
c‖ζ‖[cosφ0 + 1] if ζ 6∈ L,
c‖ζ‖(1+ sinφ0) if ζ ∈ L.

Since the min0≤φ0≤π/2 (cosφ0 + 1, 1+ sinφ0) = 1 we get minL V (ζ, L, F0) > c‖ζ‖. �

Proof of Theorem 2. Let ε < 0.5. Suppose that there exists a sequence of contaminated distributions Hn such that putting
un = TMMP(Hn), we have limn→∞ ‖un‖ = ∞. Call Ln the half-space which gives the minimum of

V (un, L,Hn) = sup
a∈Sp−1∩L

h(un, a,Hn)− inf
a∈Sp−1∩L

h(un, a,Hn)

among the half-spaces L ∈ L. Without loss of generality we can assume that un ∈ Ln. Letwn ∈ Ln such that u′nwn = 0. Then,
for n large enough it holds that

V (un, Ln,Hn) ≥ |h(un,wn,Hn)− h(un,un/‖un‖,Hn)| (21)

and the right-hand side of the inequality converges to∞. On the other hand, since the univariate location and dispersion
estimates have breakdown point of 0.5 we have

V (0, Ln,Hn) = sup
a∈Ln

medF (a′X)
MADF (a′X)

− inf
a∈Ln

medF (a′X)
MADF (a′X)

<∞. (22)

(21) and (22) contradict the fact that un = TMMP(Hn). Therefore, the estimate cannot break down for ε < 0.5. �

We next introduce some extra lemmas, rather technical in nature but which are needed to derive the bias performance of
the modified P-estimate. The proofs of the lemmas can be found in [16], except for the proof of Lemma A.1, which is quite
straightforward, and then it is omitted.

Lemma A.1. (i) If l ∈ Tb(d) then there exists a unique point t = l ∩ C(0, d).
(ii) Given c ∈ Rp, ‖c‖ > d1 there exists l∗(c) ∈ P such that for each vector x ∈ l∗(c) ∩ C(0, d1) there exists l+(x) ∈ Tb(d1)
such that {c, x} ∈ l+(x) and l+(x) ∩ C(0, d1) = {x} for every x ∈ l∗(c) ∩ C(0, d1).

(iii) Let l∗(c) be as in (ii). Then, for every x ∈ l∗(c) ∩ C(0, d1), c′x = d21. Moreover, l
∗(c) = c⊥ + d21c/ ‖c‖

2 .

Lemma A.2 below summarizes Lemma 3 and 4 from Adrover and Yohai [11]. This technical result is crucial in the derivation
of the main results since it calculates the median and MAD of projections when the central distribution is contaminated by
point mass distributions.

Lemma A.2. Let F = (1− ε)F0 + εδc for c ∈ Rp. If ‖a‖ = 1 then

medF (a′X) = max{−d1,min(a′c, d1)}

and

MADF (a′X) = m1(|a′c|)1(0,d1)(|a
′c|)+ d31(d1,d1+d3)(|a

′c|)+ |a′c| − d1|1(d1+d3,d1+d2)(|a
′c|)+ d21(d1+d3,d1+d2)(|a

′c|).

Lemma A.2 gives an analytic formulation for the median and the MAD of a′X. A more geometrical insight of medF (a′X) is
provided by the following lemma.
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Lemma A.3. Let F = (1 − ε)F0 + εδc with c = (c, 0, . . . , 0)′. Let L(c) be defined as in (5). Let l∗(c) ∈ P be defined as in
Lemma A.1 (ii). Then,

(i) If 0 ≤ c ≤ d1, ‖a‖ = 1 and 0 ≤ a′c thenmedF (a′X) = d(a⊥ + c, 0) = a′c.
(ii) If ‖a‖ = 1, d1a ∈ Ql∗(c)(d1) and c ≥ d1 thenmedF (a′X) = d1.
(iii) If ‖a‖ = 1, d1a ∈ C(0, d1) ∩

(
Ql∗(c)(d1)

)c
∩ L(c),and c ≥ d1 thenmedF (a′X) = d(a⊥ + c, 0) = a′c.

(iv) If ζ = ζe1 with d1 < ζ ≤ c, then there exists l∗(ζ) ∈ P such that medF (a′(X − ζ)) ≤ 0 if a ∈ Ql∗(ζ)(d1) and
medF (a′(X− ζ)) ≥ 0 if a ∈ C(0, d1) ∩

(
Ql∗(ζ)(d1)

)c
∩ L(c). Moreover, l∗(ζ) = ζ⊥ + d21ζ/ ‖ζ‖

2 .

The following lemma shows that the outlyingness measure infL∈L V (ζ, L, (1 − ε)F0 + εδc) given in (5) is obtained for the
half-space L(c), which is needed in the derivation of the maximum bias.

Lemma A.4. Let X ∼ (1− ε)F0+ εδc for c = (c, 0, . . . , 0)′. If a = (a1, . . . , ap)′, b = Dawhere D = (dij) is a diagonal matrix
such that d11 = 1 and djj is 1 or −1 for j > 1. Put ζ = (ζ , 0, . . . , 0)′, 0 ≤ ζ ≤ c, then a′(X− ζ) and b′(X− ζ) have the same
distribution, and therefore

medF (a′(X− ζ))
MADF (a′X)

=
medF (b′(X− ζ))
MADF (b′X)

. (23)

Moreover, let L(c) = L∗ =
{
x : x = (x1, x2, . . . , xp)′ : x1 ≥ 0

}
. Then, for all L ∈ L,

V (ζ, L∗, F) ≤ V (ζ, L, F).

Proof of Theorem 3. (i) Since c = ce1, it can be shown that TMMP has also the last coordinates equal to 0. Take ζ = d1 = d1e1
and L∗ as in Lemma A.4. Letm1(c) be defined as in (17). Let c ≥ d1. Then, if a′c ≤ d1, by using Lemma A.2 we get

0 ≤
med(a′X)− a′ζ
MADF (a′X)

=
a′c− d1a′e1
MADF (a′X)

=
(c − d1)
c

a′c
MADF (a′X)

=
(c − d1)
c

a′c
MADF (a′X)

=
(c − d1)
c

a′c
m1(|a′c|)

≤
(c − d1)
c

d0.

On the contrary, if a′c > d1, by using Lemma A.2 we get

0 ≤
med(a′X)− a′ζ
MADF (a′X)

=
d1 − d1a′e1
MADF (a′X)

=
d1(1− a′e1)
MADF (a′X)

≤
d1(1− d1/c)

d3
≤
d1
d3

(c − d1)
c

.

If a = e′p then med (a
′X)− a′ζ = 0 and then h(ζ, a, F) = 0. Therefore,

V (d1, L∗, F) = sup
a∈Sp−1∩L∗

h(ζ, a, F)− inf
a∈Sp−1∩L∗

h(ζ, a, F)

= d0
(c − d1)
c

.

Let us take now d1 < ζ < c. To calculate V (ζ, L∗, F)we proceed as follows. If a′c ≤ d1, then

0 ≤
med(a′X)− a′ζ
MADF (a′X)

=
a′c− ζa′e1
MADF (a′X)

=
(c − ζ )
c

a′c
MADF (a′X)

=
(c − ζ )
c

a′c
m1(|a′c|)

≤
(c − ζ )
c

d0.

If a′c > d1 we have

med(a′X)− a′ζ
MADF (a′X)

=
d1 − ζa′e1
MADF (a′X)

≤
d1
(
1− ζ

c

)
d3

=
d1
d3

(c − ζ )
c

.

In brief,

sup
a∈Sp−1∩L∗

med(a′X)− a′ζ
MADF (a′X)

= d0
(c − ζ )
c

.
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Let us compute the infimum. If a′c ≤ d1, it holds that

med(a′X)− a′ζ
MADF (a′X)

=
a′c− ζa′e1
MADF (a′X)

=
(c − ζ )
c

a′c
m1(|a′c|)

≥ 0. (24)

If d1 < c ≤ d1 + d3 then, either a′c ≤ d1 or d1 < a′c ≤ d1 + d3. Because of (24), we just have to deal with the case
d1 < a′c ≤ d1 + d3. Thus,

med(a′X)− a′ζ
MADF (a′X)

=
d1 − ζa′e1
MADF (a′X)

≥
d1 − ζ
d3

.

Therefore, we have

V (ζ, L∗, F) = sup
a∈Sp−1∩L∗

h(ζ, a, F)− inf
a∈Sp−1∩L∗

h(ζ, a, F)

= d0
(c − ζ )
c
+
ζ − d1
d3

= d0
(c − d1)
c

+ (ζ − d1)
(
1
d3
−
d0
c

)
> d0

(c − d1)
c

= V (d1, L∗, F),

if and only if

c ≥ d0d3.

Then, if d1 ≤ c ≤ d1 + d3 we get that

TMMP((1− ε)F0 + εδc) =
{
d1 if d0d3 ≤ c ≤ d1 + d3,
c if c ≤ min{d1 + d3, d0d3}.

(25)

Let us take d1 + d3 < c ≤ d1 + d2. Since (24) holds, we only have to consider two cases: If d1 < a′c ≤ d1 + d3 we have

med(a′X)− a′ζ
MADF (a′X)

=
d1 − ζa′e1
MADF (a′X)

≥
d1 − ζ (d1 + d3)/c

d3
= I1(ζ ).

If d1 + d3 < a′c ≤ d1 + d2, since the function g(x) = x/(cx− d1) is decreasing in [0, 1] and g(a′e1) ≥ g(1), then we have

med(a′X)− a′ζ
MADF (a′X)

=
d1 − (ζ − c)a′e1 − ca′e1

a′c− d1

= −1+ (c − ζ )
a′e1

a′c− d1

= −1+
(c − ζ )a′e1
ca′e1 − d1

≥ −1+
(c − ζ )
c − d1

=
d1 − ζ
c − d1

= I2(ζ ).

Let us note that

I2(d1) = 0 < d1
c − (d1 + d3)

cd3
= I1(d1),

I2(c) = −1 = I1(c),

and then

I2(ζ ) < I1(ζ ) for ζ ∈ [d1, c).

Then,

V (ζ, L∗, F) = sup
a∈Sp−1∩L∗

h(ζ, a, F)− inf
a∈Sp−1∩L∗

h(ζ, a, F)

= d0
(c − ζ )
c
+
ζ − d1
c − d1

=

[
1

c − d1
−
d0
c

]
ζ + d0 −

d1
c − d1

.
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If,

either c < d1
d0
d0 − 1

or d0 − 1 ≤ 0

then
1

c − d1
−
d0
c
> 0,

and

V (ζ, L∗, F) > d0

(
c − d1
c

)
= V (d1, L∗, F).

On the contrary, if

d0 − 1 > 0 and d1
d0
d0 − 1

≤ c < d1 + d2

then
1

c − d1
−
d0
c
≤ 0,

and we get that

V (c, L∗, F) = sup
a∈Sp−1∩L∗

h(c, a, F)− inf
a∈L∗
h(c, a, F) = 1

≤
d0(c − d1)

c
= V (d1, L∗, F).

Then, if d1 + d3 < c ≤ d1 + d2 we have

TMMP((1− ε)F0 + εδc) =


d1 if d0 − 1 ≤ 0 or

c ≤ d1d0/(d0 − 1),

c if d0 − 1 > 0 and
d1d0/(d0 − 1) ≤ c ≤ d1 + d2.

(26)

Let us take now c > d1 + d2. Then

med(a′X)− a′ζ
MADF (a′X)

=
d1 − ζa′e1
MADF (a′X)

≥
d1 − ζ
d2
= J1(ζ ).

On the other hand, if d1 + d3 < a′c ≤ d1 + d2,
med(a′X)− a′ζ
MADF (a′X)

=
d1 − (ζ − c)a′e1 − ca′e1

a′c− d1

= −1+ (c − ζ )
a′e1

a′c− d1

= −1+
(c − ζ )a′e1
ca′e1 − d1

≥ −1+
(c − ζ )(d1 + d2)

cd2

=
cd1 − ζ (d1 + d2)

cd2
= J2(ζ ).

Since c > d1 + d2 then

J1(ζ ) < J2(ζ ) for ζ ∈ [d1, c),

J1(ζ ) =
d1 − ζ
d2

<
d1 − ζ
c − d1

= I2(ζ ) < I1(ζ ) < 0 for ζ ∈ [d1, c),

and we have

V (ζ, L∗, F) = sup
a∈Sp−1∩L∗

h(ζ, a, F)− inf
a∈Sp−1∩L∗

h(ζ, a, F)

= d0
(c − ζ )
c
+
ζ − d1
d2

=

[
1
d2
−
d0
c

]
ζ +

[
d0 −

d1
d2

]
.
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Thus,

1
d2
−
d0
c
< 0

if and only if

c < d0d2

and

V (c, L∗, F) = sup
a∈Sp−1∩L∗

h(c, a, F)− inf
a∈Sp−1∩L∗

h(c, a, F) =
c − d1
d2

< d0
(c − d1)
c

= V (d1, L∗, F).

Then, if d1 + d2 < c we have

TMMP((1− ε)F0 + εδc) =

{d1 if d2d0 ≤ d1 + d2 or c > d0d2,

c if d1 + d2 < d2d0, and
d1 + d2 < c ≤ d0d2.

(27)

Observe that (25)–(27) are connected one another, since d3d0 < d1 + d3 if and only if, either d0 − 1 ≤ 0 or d1 + d3 <
d1d0/(d0 − 1). On the other hand, d0 − 1 > 0 and d1d0/(d0 − 1) ≤ d1 + d2 if and only if d1 + d2 ≤ d2d0. Summing up, if
d3d0 < d1 + d3, from (25)–(27) we obtain that the estimator is given by

TMMP((1− ε)F0 + εδc) =


d1 if c ∈

[
d1, d1

d0
d0 − 1

]
,

c if c ∈
[
d1

d0
d0 − 1

, d0d2

]
,

d1 if c ∈ (d0d2,∞) .

If d1 + d3 ≤ d3d0, then the estimator is given by

TMMP((1− ε)F0 + εδc) =
{
c if c ∈ [d1, d0d2] ,
d1 if c ∈ (d0d2,∞) ,

and the point mass maximum bias is

BR(TMMP , ε, F0) =
{
d1 if d2(d0 − 1) < d1,
d2d0 if d2(d0 − 1) ≥ d1.

(ii) Note that limε→0+ d1 = 0, limε→0+ d0 = 0 and limε→0+ d2 > 0. Then, limε→0+ d2(d0 − 1) < 0 = limε→0+ d1 and the
statement follows.
(iii) It follows easily from (i) and (ii). �
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